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Abstract

The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to
be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and
connexin30 from postnatal day 5 to adult age in double transgenic Cx26Sox10Cre mice, which we obtained by crossing
connexin26 floxed mice with a deleter Sox10–Cre line. Cx26Sox10Cre mice presented with complete connexin26 ablation in
the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed;
immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological
measurements in Cx26Sox10Cre mice revealed profound hearing loss accompanied by reduction of endocochlear potential,
and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling.
Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and
rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via
recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead
to the development of therapeutic interventions in humans.
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Introduction

Connexins are tetraspan transmembrane proteins that form

hexameric assemblies in the plasma membrane called connexons;

head–to–head docking of two connexons in adjacent cells

establishes intercellular channels that cluster into a plaque, and

the two adjoining plasma membranes in the plaque remain

separated by a narrow extracellular gap of 2–3 nm [1].

GJB2, the gene encoding connexin26 (Cx26) was the first gene

to be linked to an autosomal recessive form of deafness, DFNB1 [2],

as well as to a rare dominant form of deafness, DFNA3 [3]. More

than 90 distinct recessive mutations of GJB2 have been described,

including nonsense, missense, splicing, frame–shift mutations and

inframe deletions [4] (see also http://davinci.crg.es/deafness/

index.php). Altogether these mutations account for approximately

50% of congenital, recessively inherited, sensorineural nonsyn-

dromic hearing loss in several populations, with approximate

carrier frequency of 1 in 33 and up to 1 in 28 amongst

Mediterraneans [5] (see also http://hereditaryhearingloss.org/).

DFNB1–linked familial cases with no mutation in GJB2 have also

been reported and shown to be associated with two large deletions

occurring upstream of GJB2 in GJB6, the gene encoding

connexin30 (Cx30) which lies 30 kb telomeric to GJB2 on human

chromosome 13 (chromosome 14 in the mouse) [4]. To date, a

threonine–to–methionine substitution at position 5 is the only

Cx30 mutation (Cx30T5M) associated to DFNA3 [6].

The recent 3.5–Å crystal structure of the wild–type human

Cx26 provides the most detailed model so far available for a

connexin channel [7]. Cx26 shares 77% amino acid similarity with

Cx30 and both are highly expressed in non–sensory cells of the

inner ear [8,9] where they form two separate intercellular gap

junction networks [10]. In the murine cochlea, the epithelial gap

junction network forms around embryonic day 16 and connects all

supporting cells in the sensory epithelium (which comprises the

organ of Corti) as well as adjacent epithelial cells, and also includes

interdental cells of the spiral limbus and root cells in the spiral

ligament. The connective tissue gap junction network starts to develop

around birth and comprises fibrocytes of the spiral limbus,

fibrocytes of the spiral ligament as well as basal and intermediate

cells of the stria vascularis, a structure responsible for K+ secretion
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and generation of the endocochlear potential [11] (the electrical

potential difference between the endolymphatic and perilymphatic

compartments of the cochlea which in mice appears around

postnatal (P) day 5 (P5) and increases progressively to reach adult

levels in excess of +100 mV by P18 [12]).

Mouse models confirmed that Cx26 and Cx30 are essential for

auditory function [13] and have helped establishing a link between

inherited deafness, connexin expression, endolymphatic K+

concentration, endocochlear potential [14,15,16], transfer of

nutrients within the sensory epithelium of the inner ear [17] and

cellular degeneration in the cochlea [18].

In this study we examine a mouse model with targeted deletion

of Cx26 in the inner ear, referred to as Cx26Sox10Cre [19], obtained

by crossing Cx26loxP/loxP mice, carrying the floxed GJB2 gene [14],

and Sox10Cre mice, which express a Cre recombinase under the

Sox10 promoter [20]. Cx26Sox10Cre mice may be a model for many

DFNB1–affected patients since the most frequent GJB2 mutation,

35delG, is a single base deletion that results in a frameshift at the

12th amino acid and premature termination of the Cx26 protein

[4]. We then exploited the efficient gene transfer activity and

minimal toxicity of bovine adeno-associated viral (BAAV) vectors

to deliver a replacement Cx26 gene and restore gap junction

coupling in cochlear non–sensory cells maintained in organotypic

cultures.

Results

Hearing impairment, reduced endocochlear potential
and hair cell loss in Cx26Sox10Cre mice
Loss of Cx26 in mammary epithelium during early pregnancy

results in unscheduled apoptosis and impaired development [21].

For this reason, Cx26 full knock out mice present with a lethal

phenotype, calling for conditional knock out mice in which Cx26

deletion can be both controlled and specific for different tissues. By

crossing Cx26loxP/loxP mice [14] with Sox10Cre mice [20,22], we

generated double transgenic Cx26Sox10Cre mice with a predicted

ablation pattern of GJB2 in cells deriving from the neural crest and

otic vesicle [23].

Auditory function in Cx26Sox10Cre mice and in Cx26loxP/loxP mice,

taken as controls, was quantified by recording auditory brainstem

responses (ABR) which are electrical signals evoked from the

brainstem following the presentation of sound stimuli (Figure 1a).

We measured the IV wave thresholds of the ABR for click and

tone burst stimuli of 8, 14, 20, 26, 32 kHz in Cx26loxP/loxP mice

(n = 12) and Cx26Sox10Cre mice (n= 12) aged between P29 and P64

(Figure 1b). Compared to Cx26loxP/loxP mice, thresholds were

significantly elevated in Cx26Sox10Cre mice (P,0.001, ANOVA)

and in excess of 90 dB sound pressure level (SPL) for tone bursts as

well as for click stimuli, whereas endocochlear potential

(Figure 1c) was significantly reduced (3862 mV in Cx26Sox10Cre

mice, n=7, vs. 10963 mV in Cx26loxP/loxP mice, n= 11; P,0.001,

ANOVA). These differences were paralleled by degeneration of

the sensory epithelium in the basal turn of P30 Cx26Sox10Cre

cochleae, affecting both sensory and non–sensory cells (Figure 2).

The percentage of surviving hair cells was very low in the basal

turn, and increased towards the apical turn (Figure 2a); cell loss

was less dramatic for inner hair cells than for outer hair cells,

which were missing altogether in the basal turn (Figure 2b).

Time course of connexin immunolabeling and organ of
Corti morphology
To characterize connexin expression, we performed immuno-

labeling in the basal turn of the cochlea with antibodies specific for

Cx26 or Cx30 proteins at different time points: P6, P9, P14 and

P30. Inner hair cells and outer hair cells showed no sign of

immunoreactivity to these antibodies, in accord with the notion

that sensory cells are not coupled by gap junction channels to any

other cell type in the organ of Corti [10]. Cx26 was not detected in

the sensory epithelium of Cx26Sox10Cre mice at any time point

(Figure 3a–d) whereas Cx30 was downregulated at P6

(Figure 3e) but its expression level started to increase between

P6 and P9 (Figure 3f). It appeared virtually normal around P14

(Figure 3g) but severely deficient by P30 (Figure 3h) reflecting

cell death in the sensory epithelium of Cx26Sox10Cre mice

(Figure 3d,h and Figure 2). Morphologically, the tunnel of

Corti and Nuel’s space were open at P6 in controls (Figure 3i,m)

but failed to open in Cx26Sox10Cre mice (Figure 3a–c,e–g).

Control cochleae from Cx26loxP/loxP mice presented with a time–

dependent increase of connexin expression which was most

evident in the spiral limbus, the sensory epithelium, and between

the stria vascularis and the spiral ligament (Figure 3i–p) as

previously reported [24]. In cochleae from Cx26Sox10Cre mice at

P30, Cx26 and Cx30 were still present in the spiral limbus, spiral

ligament (Figure S1) as well as in basal and intermediate cells of

the stria vascularis (Figure S2). The latter finding is consistent

with the residual endocochlear potential measured in Cx26Sox10Cre

mice (Figure 1c).

Characterization of gap junction channel permeability in
the developing cochlea by fluorescence recovery after
photobleaching
In order to determine whether the hearing loss in Cx26Sox10Cre

mice may be ascribed to a diminished cell–cell coupling during the

crucial post–natal period, as observed in Cx30(2/2) mice [25] and

Cx30T5M knock in mice [26], we performed fluorescence

recovery after photobleaching assays [27] in cochlear cultures

obtained from P5 mice. In particular, we focused on non–sensory

cells of the receding greater epithelial ridge, the region of the

sensory epithelium that gives rise to the inner hair cells and medial

non–sensory cells [28,29]. We also measured coupling among

non–sensory cells in the lesser epithelial ridge, the area thought to

give rise to the outer hair cells and lateral non–sensory cells

[28,29] (Figure 4a). After overnight incubation in vitro, cochlear

organotypic cultures were loaded with the acetoxymethyl ester of

calcein, a fluorescent tracer that diffuses through gap junction

channels in this preparation [19]. Following the delivery of a

405 nm laser pulse to a restricted tissue area, the intracellular

calcein fluorescence was partially restored via diffusion of the

indicator dye through gap junction channels from adjacent

unbleached cells in Cx26loxP/loxP control cultures (Figure 4b,

blue traces). Incomplete recovery of fluorescence intensity is

ascribed to the fraction of the calcein pool which is not available

for intercellular transfer (immobile fraction) due to trapping into

subcellular organelles and/or binding to subcellular structures

[30]. These experiments confirm that non–sensory cells in the

normal developing cochlea are dye–coupled in all cochlear turns

[31]. The different time courses of fluorescence traces in the lesser

epithelial ridge (Figure 4b, right) compared with the greater

epithelial ridge (Figure 4b, left) is indicative of a substantially

larger immobile fraction in the latter. Targeted ablation of Cx26

in Cx26Sox10Cre cultures, and the consequent downregulation of

Cx30, caused a substantial reduction of dye coupling levels in the

greater epithelial ridge and a complete loss of dye coupling in the

lesser epithelial ridge (Figure 4b, red traces). The process of

fluorescence recovery after photobleaching was inhibited by pre–

incubating Cx26loxP/loxP cochlear cultures for 20 min with 100 mM

carbenoxolone, a broad spectrum inhibitor of connexin channels

[32] (Figure 4b, black traces). The minute residual downward
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peak, which is resistant to carbenoxolone, is due to a small and

rapid recovery of fluorescence caused by the diffusion of dye

within the cell from deeper, relatively unbleached regions to more

superficial, bleached regions.

Connexin gene delivery to cochlear organotypic cultures
by BAAV
We have previously shown that transduction with a BAAV

vector encoding a Cx30GFP fusion protein (BAAVCx30GFP)

restored gap junction coupling and intercellular Ca2+ signaling

among non–sensory cells of Cx30(2/2) organotypic cultures [25].

To test whether the expression level of Cx26 could be similarly

restored in cochlear organotypic cultures obtained from

Cx26Sox10Cre mice at P5, we used a BAAV vector encoding a

Cx26CFP fusion protein (BAAVCx26CFP). Confocal fluorescence

microscopy images obtained 48 hours post transduction showed

recombinant Cx26CFP protein expressed in a large fraction of the

non–sensory cells (Figure 5). The recombinant protein expression

pattern (Figure 5, bottom) resembled closely that of endogenous

Cx26 in control cultures from Cx26loxP/loxP mice immunoassayed

with a Cx26 specific antibody (Figure 5, top) whereas no Cx26

immunoreactivity was detected in untreated Cx26Sox10Cre cultures

(Figure 5, middle) consistent with the results shown in

Figure 3a–d. Moreover, recovery of fluorescence after photo-

bleaching of calcein in Cx26Sox10Cre cultures transduced with

BAAVCx26CFP was even faster than that of untreated Cx26loxP/

loxP control cultures (Figure 6) possibly due to a higher-than-

normal level of recombinant Cx26 expression driven by the CMV

promoter in the BAAV vector.

Discussion

Gene therapy offers an attractive method for modulating gene

expression in the inner ear with the ultimate goal of treating

cochlear disorders. Recombinant BAAV vectors have several

attributes that make them well suited for gene transfer in the inner

ear, including efficient gene transfer in vivo and in vitro, low toxicity,

and a unique serological identity. The tropism for the inner ear

has been demonstrated by several groups and appears to be well

tolerated [23,25,33,34]. Indeed, in our study we report transduc-

tion of most of the non-sensory cells in cochlear organotypic

cultures (Figure 5). In utero, apical transduction has also been

reported which would be preferred in an in vivo gene therapy

application [33]. Cell surface receptors are an important

determinant of vector transduction and characterization of BAAV

transduction requirements have demonstrated sialic acid contain-

ing gangliosides are essential for BAAV entry and transduction

Figure 1. In vivo electrophysiological recordings from Cx26loxP/loxP and Cx26Sox10Cre mice. (a) Representative recordings of auditory
brainstem responses (ABR) evoked by 14 kHz tone burst stimuli in a Cx26loxP/loxP mouse (P32, blue line) and a Cx26Sox10Cre mouse (P39, red line). Note
that waves II, IV and V were detected down to 30 dB SPL in the Cx26loxP/loxP mouse, whereas no evoked responses were identified for intensities
#90 dB SPL in the Cx26Sox10Cre mouse. (b) ABR audiograms for tone bursts at 8, 14, 20, 26, 32 kHz and for click stimuli obtained from Cx26loxP/loxP mice
(blue line, n = 12) and Cx26Sox10Cre mice (red line, n = 12) aged between P29 and P64; error bars represent standard deviation. Note that click
responses are plotted at an arbitrary point on the frequency axis (the position does not reflect the frequency content of click stimuli). (c)
Representative recordings of endocochlear potential (EP) obtained from a Cx26loxP/loxP mouse (blue line) and a Cx26Sox10Cre (red line) mouse, aged P38
and P41 respectively. Standards for reliable recording were: 1) stable EP during minimum 10 seconds and 2) a maximum difference of 62 mV
between starting and final baseline potentials.
doi:10.1371/journal.pone.0023279.g001
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[35,36], and multiple gangliosides are expressed in the mamma-

lian cochlea [37,38,39].

Auditory threshold measurements indicate that Cx26Sox10Cre

mice were severely deaf, despite the presence of a residual

endocochlear potential of about 40 mV (Figure 1). Deafness in

these mice was accompanied by degeneration of the organ of Corti

in the basal cochlear turn and by a gradient of hair cell loss along

the coiling axis of the cochlea (Figure 2). Prior in situ

hybridization work in the postnatal mouse cochlea detected

Sox10 mRNA expression in the supporting cells of the organ of

Corti, namely inner sulcus cells, inner pillar cells, Deiters’ cells,

Hensen’s cells, Claudius’ cells and outer sulcus cells, but not in

sensory hair cells and in cells of the stria vascularis [22]. Consistent

with these findings, we report complete Cx26 ablation in the

epithelial gap junction network of the cochlea, from the spiral

limbus to the spiral prominence (Figure 4a) including the organ

of Corti (Figure 3a–d and Figure S1). Furthermore, Cx30

immunofluorescence highlighted a delayed development of the

labeling pattern in cells forming the epithelial gap junction

network (Figure 3e–h). In the basal turn of the cochlea, the

tunnel of Corti and Nuel’s space were open at P6 in controls

(Figure 3i,m) but failed to open before degeneration of the organ

of Corti in Cx26Sox10Cre mice (Figure 3a–h) indicative of

developmental defect.

Functional gap junction channels are crucial for maturation of

different tissues [40]. Furthermore, several lines of experiments

indicate that permeability to larger metabolites, rather than small

inorganic ions, may play an important role in the development,

physiology and aetiology of connexin–related diseases [41]. Our

experiments of calcein fluorescence recovery after photobleaching

showed reduced cell–cell communication in the epithelial network

of Cx26Sox10Cre mice (Figure 4b). Altogether, these results indicate

that ablation of Cx26 is associated with altered expression of Cx30

in the organ of Corti and affects not only hair cell survival but also

the normal development of the organ of Corti.

Cx26 and Cx30 may assemble to form heteromeric and

heterotypic intercellular channels [9], which mediate the transfer

of ions, metabolites and second messengers, including inositol

1,4,5–trisphosphate (IP3) between cochlear non–sensory cells

[42,43]. Extrajunctional connexons, also referred to as connexin

hemichannels, have been implicated in the release of signaling

molecules, such as ATP, to the extracellular medium and

proposed to serve a variety of paracrine signaling roles [44].

Connexins in the sensory epithelium of the inner ear form

hemichannels that release ATP to the extracellular medium [45]

and thus sustain intercellular Ca2+ signal propagation [19,31].

Recently, studies performed in a Cx30T5M knock in mouse model

linked hearing loss to a diminished frequency of spontaneous Ca2+

transients, mediated by ATP release through connexin hemi-

channels in the developing cochlea [26]. Prior work performed on

cochlear organotypic cultures from Cx30(2/2) mice highlighted a

Ca2+–dependent coordinated regulation of Cx26 and Cx30

Figure 2. Hair cell loss in Cx26Sox10Cre mice at P30. (a) Horizontal
sections (orthogonal to the modiolus) of cochleae from P30 Cx26Sox10Cre

mice. Images from apical, medial and basal turns were obtained by
maximal intensity back–projection of 20 confocal optical sections from
a 2 mm step though–focus sequence (z–stack). Actin filaments were
stained with Texas red conjugated phalloidin (red) and nuclei with DAPI
(blue); OHC, outer hair cells; IHC, inner hair cell. scale bar: 50 mm. (b)
Percentage of hair cell survival in the basal, middle and apical turn of
cochleae from Cx26Sox10Cre mice relative to corresponding controls in
Cx26loxP/loxP mice.
doi:10.1371/journal.pone.0023279.g002
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expression mediated by signaling through phospholipase C and

the NF–kB pathway [25].

Recent work has suggested that lateral wall gap junction

channels interconnecting cells of the spiral ligament and stria

vascularis acquire mature features as early as P7 in the rat [46].

The time course of immunofluorescence labeling in the lateral wall

of Cx26Sox10Cre mice showed no appreciable differences in the

expression of either connexins with respect to control Cx26loxP/loxP

mice (Figure S2). These data suggest that intercellular commu-

nication is preserved in the connective tissue network of

Cx26Sox10Cre mice and that the reduced endocochlear potential

(Figure 1c) is likely ascribed to morphological abnormalities in

the sensory epithelium. Indeed, endocochlear potential values

developed normally up to P12–P13 in the related Cx26OtogCre

mouse model, decreasing significantly shortly after the onset of

hearing in parallel with the appearance of epithelial breaches that

compromised the integrity of the endolymphatic compartment

[14].

Cx26OtogCre mice were obtained by crossing Cx26loxP/loxP mice

with OtogCre founder mice, generated by pronuclear injection of

the OtogCre BAC insert into C57BL/6 oocytes, expressing the

Cre recombinase under the control of the murine Otogelin

promoter. The deafness phenotype was more exacerbated in our

Cx26Sox10Cre mice than in Cx26OtogCre mice, which presented with

progressive and significant hearing loss ranging from 30 dB to

70 dB [14]. These differences may depend on the different

techniques adopted to create their respective deleter mouse lines,

and/or on specific features of the Otogelin and Sox10 promoters

in the inner ear despite the overlapping expression patterns.

Hearing loss in our Cx26Sox10Cre mice was comparable to that of

a conditional Cx26 null mouse model (cCx26) obtained by

crossing Cx26loxP/loxP mice with Rosa26–CreERT mice, in which

Cre can be activated by a single injection, on embryonic day 19, of

the synthetic estrogen 4–hydroxytamoxifen [18]. However,

peripheral nerve fibers and the somata of spiral ganglion neurons

at corresponding cochlear locations were completely degenerated

in cCx26 mice, whereas there was no sign of degeneration in spiral

ganglion neurons of Cx26OtogCre mice [14] or Cx26Sox10Cre mice

(Figure S3).

Transduction of Cx26Sox10Cre cochlear organotypic cultures

with BAAV at P5 not only restored Cx26CFP correctly targeted

to the plasma membrane of cochlear non–sensory cells (Figure 5)

but also induced the formation of functional intercellular

channels at points of contact between adjacent cells (Figure 6).

BAAV [47] exhibits preferential tropism for cochlear non–

sensory cells, with sporadic transduction of sensory inner and

outer hair cells [23,25,33,34]. These results suggest that

restoration of normal connexin levels by gene delivery via

recombinant AAV could be a way to rescue hearing function in

DFNB1 mouse models and might, in future, lead to the

development of therapeutic interventions in humans, particularly

in children.

Figure 3. Time course of connexin immunoreactivity in the sensory epithelium of Cx26Sox10Cre mice.Maximal projection rendering of two
consecutive midmodiolar confocal optical sections taken at 1 mm intervals in the basal cochlear turn of Cx26Sox10Cre mice (panels a–h) and control
Cx26loxP/loxP mice (panels i–p) at P6, P9, P14 and P30. Expression of Cx26 (panels a–d, i–l) and Cx30 (panels e–h, m–p) was detected with selective
antibodies (green) nuclei were stained with DAPI (blue) and actin filaments with Texas red conjugated phalloidin (red). TCC, tall columnar cells
forming a transient structure, also known as Kölliker’s organ; CC, cuboidal cells that replace TCC during the first two postnatal weeks; DC, Deiters’ cells
(also known as outer phalangeal cells); IHC, inner hair cell; IS, inner sulcus; SLi, spiral limbus; OHC, outer hair cells; OS, outer sulcus; PC, pillar cells
forming the tunnel of Corti (TC); NS, Nuel’s space; V, vas spiralis; BM, basilar membrane; SL, spiral ligament; scale bar, 50 mm.
doi:10.1371/journal.pone.0023279.g003
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Materials and Methods

Transgenic mice and genotyping
Animal handling was approved by the Ethical Committee of

Padua University (Comitato Etico di Ateneo per la Sperimentazione

Animale, C.E.A.S.A.) project n. 54/2009, protocol n. 51731. The

background strains of the transgenic mice used in this study were: (a)

Cx26loxP/loxP [14], mixed C57BL/6 and 129/SvPasCrl; (b)

Sox10CRE [20], mixed BL6CBAF1 and 129/Sv. Double trans-

genic Cx26Sox10Cre mice were detected by screening for the presence

of the two insertions, loxP and Cre, by PCR on extracted mouse tail

tips using the following primers (see also Suppl. Mat. in Ref. [14]):

Cx26F 59–TTTCCAATGCTGGTGGAGTG–39

Cx26R 59–ACAGAAATGTGTTGGTGATGG–39

CreF 59–CATTACCGGTCGATGCA–39

CreR 59–GAACCTGGTCGAAATCAG–39.

Cre recombinase transmitted via maternal germline was

activated only in Sox10 expressing cells whereas transmission via

Figure 4. Dye coupling through gap junction channels in the developing cochlea of Cx26loxP/loxP and Cx26Sox10Cre mice. (a) Scheme of
the sensory epithelium (midmodiolar section) in the developing cochlea (middle turn, P6); red arrowheads indicate the approximate position of laser
foci in the receding greater epithelial ridge (GER) and in the lesser epithelial ridge (LER); AD, afferent dendrites of type I spiral ganglion neurons; BM,
basilar membrane; Cap, capillary; CC, cuboidal cells; DC, Deiters’ cells; EA, efferent axons; IC, interdental cells; IHC, inner hair cell; IS, inner sulcus; OHC,
outer hair cells; OS, outer sulcus; OSL, osseous spiral lamina; PC, pillar cells; R, root cells; SL, spiral ligament; SLi, spiral limbus; SP, spiral prominence;
TCC, tall columnar cells; V, vas spiralis. (b) Plots of fb/fu (bleached over unbleached fluorescence intensity) versus time in P5 organotypic cultures from
the basal, middle and apical turns of the cochlea (see Materials and Methods). Solid lines are averages of n = 3 independent experiments, dashed lines
indicate standard error of the mean. Downward arrows mark the time of laser pulse delivery. Carbenoxolone (CBX) is a non–specific inhibitor of gap
junction channels [32].
doi:10.1371/journal.pone.0023279.g004

GJB2 Gene Transfer in Cx26Sox10Cre Mice

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23279



Figure 5. Recovery of Cx26 expression in Cx26Sox10Cre organotypic cultures transduced with BAAVCx26CFP. Top, immunoreactivity to
Cx26 antibodies in a representative Cx26loxP/loxP culture. Middle, lack of Cx26 immunoreactivity in a representative Cx26Sox10Cre culture. Bottom,
immunoreactivity to GFP antibodies, which also recognize CFP, in a representative Cx26Sox10Cre culture transduced with BAAVCx26CFP. In all panels,
actin filaments were stained with Texas red conjugated phalloidin (red). Scale bar, 10 mm.
doi:10.1371/journal.pone.0023279.g005

GJB2 Gene Transfer in Cx26Sox10Cre Mice
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paternal germline ensued in early Cre activation in the whole

embryo and consequent lethality.

In vivo recordings of endocochlear potential and
auditory brainstem responses
To measure endocochlear potential, mice were anaesthetized

with 0.01 ml/g body weight of 20% urethane, a tracheal cannula

was inserted, and the bulla opened to reveal the cochlea whilst

body temperature was kept at 38uC by a feedback–controlled

heating pad. A small hole was made in the bony wall of the

cochlea over the basal turn scala media, and a micropipette

electrode filled with 150 mM–KCl was advanced through the hole

and through the spiral ligament of the lateral wall into the scala

media. The potential difference between the scala media and a

reference silver/silver chloride pellet under the dorsal skin was

recorded [48].

To record auditory brainstem responses, mice were anesthetized

with an intraperitoneal injection of zolazepam (25 mg/g) and

xylazine (10 mg/g). Supplemental doses were then administered as

needed whilst body temperature was kept at 38uC by a feedback–

controlled heating pad. Each recording procedure lasts up to

70 min. Acoustic stimuli were produced in the free field within a

foam–padded, shielded acoustic chamber by a System 3 Real–time

Signal Processing System combined with an ES1 electrostatic

speaker (Tucker–Davis Technologies, Alachua, FL, U.S.A.)

positioned 4 cm lateral to the left ear of the mouse [49]. Stimuli

were calibrated by means of a ECM8000 measurement micro-

phone (Behringer International GmbH, Willich, Germany)

mounted on the 800B Larson–Davis sound level meter and placed

in the position to be occupied by the mouse ear. Stimuli consist of

tone bursts (1 ms rise/decay; 3 ms plateau) at 8, 14, 20, 26, and

32 kHz, and clicks (0.1 ms) delivered at a repetition rate of 13 Hz.

A maximum peak equivalent sound pressure level (SPL) of 100 dB

(re: 20 mPa) was employed for clicks as well as tone bursts.

Decreasing SPLs of 10 dB were employed, starting from a

maximum of 100 dB SPL. To minimize contralateral acoustic

stimulation, the outer ear canal of the right ear was filled with

condensation–vulcanizing silicone mixed with hardener paste

(Otoform A flex, in double cartridges, Dreve Otoplastik, Unna,

Germany) delivered through a mixing cannula (diameter 5.4 mm)

and dispensed by an injector (DS50, Dreve Otoplastik). Acquisi-

tion and analysis time was 12 ms for each single stimulus.

Responses were recorded between subcutaneous needle electrodes

inserted at the vertex (active) ventrolateral to the left ear (reference)

and above the tail (ground). Potential differences were amplified

(650000) with an isolated instrumentation amplifier, band pass

filtered below 100 Hz and above 8000 Hz and digitized at a rate

of 40000 samples per second. Response waveforms were typically

obtained from averages of 400 stimuli presented at the rate of 13

per second for each stimulus condition, saved in non volatile

memory of a computer and finally displayed on a computer

screen.

LabVIEW software (version 8.0.1, National Instruments,

Austin, TX, U.S.A.) was used for measurements and analysis of

amplitude and latency of auditory brainstem responses. To reduce

noise and abrupt transitions in the temporal domain, traces were

smoothed digitally by low–pass finite impulse response (FIR)

filtering with equi–ripple characteristics using the Parks–McClel-

lan algorithm. Low–pass frequency was fixed two octaves below

the original sampling frequency. For quality control, the smoothed

trace was checked against the original trace on the computer

display. Wave amplitudes were computed by a peak detection

algorithm as the difference between the two values represented by

response maxima (peak) and minima (valley). The algorithm fits a

quadratic polynomial curve to sequential groups of data points (the

number of data points used in the fit was 3). Peak latencies were

determined relative to the onset of the acoustic stimulus. Wave IV

was the most stable and robust evoked response at all intensity

levels and for all types of stimulus. The corresponding peak was

therefore utilized to estimate auditory brainstem response

threshold, defined as the lowest sound pressure level at which

any peak could be detected above the residual noise by an

experimentally experienced observer blind with respect to

genotype. If no wave was detected at maximum intensity

stimulation, a nominal threshold of 110 dB SPL was assigned. If

any wave was detected at minimum intensity stimulation of 1 or

10 dB SPL, a nominal threshold of the same level was assigned.

Stimuli of lower intensities were not applied due to intrinsic

limitations of the sound delivery system.

BAAV production
Semiconfluent 293T cells were transfected by calcium phos-

phate with four required plasmids: transgene vector, pAd12,

AAV2–Rep and BAAV–Cap. AAV–2 ITRs were used in the

vector plasmid. Forty–eight hours post–transduction, cells were

harvested by scraping in a solution containing 140 mM NaCl,

5 mM KCl, 0.7 mM K2HPO4, 25 mM Tris–HCl, pH 7.4 (TD

buffer) and the cell pellet was concentrated by low–speed

centrifugation. Cells were lysed in TD buffer containing 0.5%

deoxycholate and 100 U/ml DNase (Benzonase, Sigma) and

incubated for 30 min at 37uC. Following 10 min low speed

centrifugation, the vector was purified using CsCl gradients.

Particle titers were determined by quantitative polymerase chain

reaction (qPCR) and biological activity was tested on Hek293T

cells. For viral titration, a dilution of the viral preparation was

added to a PCR mixture containing 16SYBR Green Master Mix

(Applied Biosystems/Applera) and 0.25 pmol/ml forward and

reverse primers. Amplification was measured using a sequence

detector (ABI 7700, Applied Biosystems). Specific primers for

Figure 6. Rescue of dye coupling in Cx26Sox10Cre organotypic
cultures transduced with BAAVCx26CFP. Plots of fb/fu (bleached
over unbleached fluorescence intensity) versus time in organotypic
cultures from the middle cochlear turn. Solid lines are averages of n = 3
independent experiments, dashed lines indicate standard error of the
mean. Downward arrow marks the time of laser pulse delivery.
doi:10.1371/journal.pone.0023279.g006
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cytomegalovirus (CMV) were designed with the Primer Express

program (Applied Biosystems):

CMV forward 59–CATCTACGTATTAGTCATCGC-

TATTACCAT–39,

CMV reverse 59–TGGAAATCCCCGTGAGTCA–39.

Following denaturation at 96uC for 10 min, cycling conditions

were 96uC for 15 s, 60uC for 1 min for 40 cycles. The viral DNA

in each sample was quantified by comparing the fluorescence

profiles with a set of DNA standards. Titers were in the range of

1012–1013 BAAV particles/ml.

Cochlear cultures and transduction with BAAV
Cochleae were dissected from P5 mouse pups in ice–cold Hepes

buffered (10 mM, pH 7.2) Hanks’ balanced salt solutions (HBSS,

Invitrogen) and placed onto glass coverslips coated with 136 mg/

ml of Cell Tak (Becton Dickinson). Cultures were incubated in

Dulbecco’s modified Eagle’s medium supplemented with the F12

growth factor (DMEM/F12, Invitrogen) supplemented with 5%

fetal bovine serum (FBS) and maintained at 37uC for 1 day.

Transduction with viral constructs was performed by adding

purified and dialyzed vector at a final titer of 1011 particles/ml in

culture medium devoid of FBS. Cultures were kept in this medium

at 37uC for the first 24 h, to favor viral transduction, and

thereafter maintained in DMEM/F12 supplemented with FBS up

to 48 h before experiments.

Calcein measurements and fluorescence recovery after
photobleaching
Focal irradiation of live cochlear cultures was used to

photobleach calcein, as previously described [19,25,31]. Calcein

is a polyanionic fluorescein derivative that exhibits fluorescence

essentially independent of pH between 6.5 and 12. It has about six

negative and two positive charges at pH 7 (net charge 24, MW

622) and permeates through gap junction channels in the

immature organ of Corti [19]. In these experiments, the output

of a semiconductor lased module (50 mW, 405 nm, part number

LGT 405–60, LG–Laser Technologies GmbH) was injected into a

UV permissive fiber optic cable (single mode 0.1 N.A., Mode Field

Diameter (MDF) 3.260.5 mm, part number P1–405A–FC–2,

Thorlabs GmbH); fiber output was collected through a collimating

aspheric lens (5 mm effective focal length, part number HPUCO–

23A–S–6.2AS, LG–Laser Technologies GmbH) and the re–

collimated beam was directed onto a dichromatic mirror (440

dclp, Chroma Technology Corp.) placed at 45u just above the

objective lens of the microscope. By carefully adjusting the position

of the fiber in front of the aspheric lens with a two–axis

micromanipulator (part number HPT1, Thorlabs) we projected

a sharp image of the illuminated fiber core (spot) onto the

specimen focal plane selected by the (infinity corrected) objective

lens. Under these conditions, the fiber optic diameter determined

accurately the laser irradiated area, which encompassed one to few

cells, depending on cell size and location within the sensory

epithelium [31].

For staining with calcein, live cultures were incubated for

10 min at 37uC in an extracellular medium (EXM) containing

138 mM NaCl, 5 mM KCl, 2 mM CaCl2, 0.3 mM NaH2PO4,

0.4 mM KH2PO4, 10 mM HEPES–NaOH and 6 mM d–glucose,

pH 7.2 and 320 mOsm, supplemented with 5 mM calcein–AM,

plus 250 mM sulphinpyrazone and 0.01 w/v pluronic F–127 to

prevent dye sequestration and secretion [50]. For recording,

cultures were transferred on the stage of an upright fluorescence

microscope (BX51, Olympus Corporation, Tokyo, Japan) and

perfused in EXM for 20 min at 2 ml/min to allow for de–

esterification, and thereafter maintained in still EXM at room

temperature. Calcein fluorescence was excited and detected using

a U–MGFHQ filter cube (Olympus) incorporating a BP460–480

excitation filter, a DM485HQ dichromatic mirror and a BA495–

540HQ barrier (emission) filter. Cultures were imaged with a 606

water immersion objective (0.90 NA, Lumplan FL, Olympus) and

fluorescence emission was monitored with a cooled charge–

coupled device (CCD) camera (Sensicam QE, PCO AG). In all

experiments, the effects of photobleaching due to sample

illumination in the 460–480 nm spectral window were kept under

control by carefully selecting the most appropriate inter–frame

interval (4 s) while controlling light exposure (50 ms) with a

mechanical shutter triggered by the frame–valid (FVAL) signal of

the CCD camera. Baseline fluorescence in the 495–540 nm

emission window was recorded for 2 min, followed by focal laser

irradiation at 405 nm to bleach intracellular calcein. Laser

irradiation intervals were adjusted to cause 50% photobleaching

of the mean baseline fluorescence, which required 0.5 s for cells of

the greater epithelial ridge and 1.2 s for cells of the lesser epithelial

ridge. Fluorescence recovery after photobleaching was monitored

for up to 10 min. Image sequences were acquired using software

developed in the laboratory, stored on disk and processed off–line

using the Matlab 7.0 software package (The MathWorks, Inc.).

For the analysis of fluorescence recovery after photobleaching,

we delineated a region of interest (ROI) inside the bleached (b)

area, plus a ROI in a proximal unbleached (u) area, and we

computed ratios of fluorescence intensities (fb/fu) at each time

point, as described in Refs. [19,25,31].

Immunohistochemistry and confocal imaging
Cochleae were dissected, fixed in 4% paraformaldehyde for

20 min at room temperature, rinsed in phosphate buffered saline

(PBS) and decalcified over night in ethylenediaminetetraacetic acid

(EDTA, 0.3 M). After 3 washes in PBS, preparations were

included in 3% agarose dissolved in PBS and cut in 100 mm

thickness steps using a vibratome (VT 1000S, Leica). Tissue slices

were permeabilized for 3 hours at room temperature with 0.1%

Triton X–100, dissolved in bovine serum albumin (BSA) 2%

solution. A slightly different procedure was used for cochlear

organotypic cultures, which were fixed for 15 min and permea-

bilized for 30 min. Connexins were immunolabeled by overnight

incubation at 4uC with specific polyclonal rabbit anti–Cx30

antibodies (Invitrogen, Cat. No. 71–2200) and anti–Cx26 anti-

bodies (Invitrogen, Cat. No. 51–2800) diluted in BSA 1% rinse

solution (2.5 mg/ml). Organotypic cultures transduced with

BAAVCx26CFP were instead immunolabeled with an anti–GFP

antibody (Invitrogen, Cat. No. A11122) which also recognized

CFP, in order to amplify the Cx26CFP signal. Tissues were then

washed three times in PBS (each time for 1 h). Secondary

antibodies (Alexa FluorH 488 goat anti–rabbit IgG, Invitrogen,

Cat. No. A–11008) were applied overnight at 5 mg/ml and room

temperature to tissue slices (for 1 hour to organotypic cultures)

whilst F–Actin was stained by incubation with Texas Red–X

phalloidin (Invitrogen, Cat. No. T7471) and nuclei were stained

with 49,6–diamidino–2–phenylindole, dihydrochloride (DAPI,

Invitrogen, Cat. No. D1306) both diluted in BSA 1% rinse

solution (1:200). After washing for further three times in PBS,

samples were mounted onto glass slides with a mounting medium

(FluorSaveTM Reagent, Merk, Cat. No. 345789) and analyzed

using a confocal microscope (TCS SP5, Leica) equipped with an

oil–immersion objective (either 406HCX PL APO 1.25 N.A., or

636 HCX PL APO 1.4 N.A., Leica). Laser line intensities and
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detector gains were carefully adjusted to minimize signal bleed

through outside the designated spectral windows.

Supporting Information

Figure S1 Time course of connexin immunoreactivity in

the cochlear duct. Maximal projection rendering of two

consecutive midmodiolar confocal optical sections taken at 1 mm

intervals in the basal cochlear turn of Cx26Sox10Cre mice (a–h) and

Cx26loxP/loxP mice (i–p) at P6, P9, P14 and P30. Expression of

Cx26 (a–d, i–l) and Cx30 (e–h, m–p) was detected with selective

antibodies (green) nuclei were stained with DAPI (blue) and actin

filaments with Texas red conjugated phalloidin (red). Scale bars,

50 mm.

(TIF)

Figure S2 Time course of connexin immunoreactivity in

the cochlear lateral wall.Maximal projection rendering of two

consecutive midmodiolar confocal optical sections taken at 1 mm

intervals in the basal cochlear turn of Cx26Sox10Cre mice (a–h) and

Cx26loxP/loxP mice (i–p) at P6, P9, P14 and P30. Expression of

Cx26 (a–d, i–l) and Cx30 (e–h, m–p) was detected with selective

antibodies (green) nuclei were stained with DAPI (blue) and actin

filaments with Texas red conjugated phalloidin (red). Scale bars,

50 mm.

(TIF)

Figure S3 Confocal microscopy of spiral ganglion

neurons in Cx26Sox10Cre mice at P30. Nuclei were stained

with DAPI (blue) and actin filaments with Texas red conjugated

phalloidin (red). Scale bar, 25 mm.

(TIF)

Acknowledgments

We thank Luisa Barzon (University of Padova) for helpful discussions and

suggestions.

Author Contributions

Conceived and designed the experiments: FM GC. Performed the

experiments: GC LR FGR PS RDDS RMS. Analyzed the data: GC LR

FGR PS RDDS RMS EA FM MB. Contributed reagents/materials/

analysis tools: GDP JAC. Wrote the paper: FM JAC.

References

1. Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect
Biol 1: a002576.

2. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, et al. (1997) Connexin
26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:
80–83.

3. Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, et al. (1998)
Connexin 26 gene linked to a dominant deafness. Nature 393: 319–320.

4. Hilgert N, Smith RJ, Van Camp G (2009) Function and expression pattern of
nonsyndromic deafness genes. Curr Mol Med 9: 546–564.

5. Gasparini P, Estivill X, Volpini V, Totaro A, Castellvi-Bel S, et al. (1997)
Linkage of DFNB1 to non-syndromic neurosensory autosomal-recessive deafness
in Mediterranean families. Eur J Hum Genet 5: 83–88.

6. Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, et al. (1999)
Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at
DFNA3 locus. Nat Genet 23: 16–18.

7. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, et al. (2009) Structure
of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458:
597–602.

8. Martinez AD, Acuna R, Figueroa V, Maripillan J, Nicholson B (2009) Gap-
junction channels dysfunction in deafness and hearing loss. Antioxid Redox
Signal 11: 309–322.

9. Nickel R, Forge A (2008) Gap junctions and connexins in the inner ear: their
roles in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg 16:
452–457.

10. Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction
systems in the mammalian cochlea. Brain Res Brain Res Rev 32: 163–166.

11. Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K+

circulation in the mammalian inner ear. Physiology (Bethesda) 21: 336–345.

12. Sadanaga M, Morimitsu T (1995) Development of endocochlear potential and
its negative component in mouse cochlea. Hear Res 89: 155–161.

13. Leibovici M, Safieddine S, Petit C (2008) Mouse models for human hereditary
deafness. Curr Top Dev Biol 84: 385–429.

14. Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, et al. (2002)
Targeted ablation of connexin26 in the inner ear epithelial gap junction network
causes hearing impairment and cell death. Curr Biol 12: 1106–1111.

15. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, et al. (2003)
Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of
endocochlear potential. Hum Mol Genet 12: 13–21.

16. Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, et al. (2007)
Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within
the cochlear stria vascularis. Proc Natl Acad Sci U S A 104: 6229–6234.

17. Chang Q, Tang W, Ahmad S, Zhou B, Lin X (2008) Gap junction mediated
intercellular metabolite transfer in the cochlea is compromised in connexin30
null mice. PLoS One 3: e4088.

18. Sun Y, Tang W, Chang Q, Wang Y, Kong W, et al. (2009) Connexin30 null and
conditional connexin26 null mice display distinct pattern and time course of
cellular degeneration in the cochlea. J Comp Neurol 516: 569–579.

19. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, et al. (2008) ATP
release through connexin hemichannels and gap junction transfer of second
messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A
105: 18770–18775.

20. Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, et al. (2005)
Neural crest origins of the neck and shoulder. Nature 436: 347–355.

21. Bry C, Maass K, Miyoshi K, Willecke K, Ott T, et al. (2004) Loss of connexin 26
in mammary epithelium during early but not during late pregnancy results in
unscheduled apoptosis and impaired development. Dev Biol 267: 418–429.

22. Watanabe K, Takeda K, Katori Y, Ikeda K, Oshima T, et al. (2000) Expression
of the Sox10 gene during mouse inner ear development. Brain Res Mol Brain
Res 84: 141–145.

23. Shibata SB, Di Pasquale G, Cortez SR, Chiorini JA, Raphael Y (2009) Gene
transfer using bovine adeno-associated virus in the guinea pig cochlea. Gene
Ther 16: 990–997.

24. Lautermann J, Frank HG, Jahnke K, Traub O, Winterhager E (1999)
Developmental expression patterns of connexin26 and 230 in the rat cochlea.
Dev Genet 25: 306–311.

25. Ortolano S, Di Pasquale G, Crispino G, Anselmi F, Mammano F, et al. (2008)
Coordinated control of connexin 26 and connexin 30 at the regulatory and
functional level in the inner ear. Proc Natl Acad Sci U S A 105: 18776–18781.

26. Schutz M, Scimemi P, Majumder P, De Siati RD, Crispino G, et al. (2010) The
human deafness-associated connexin 30 T5M mutation causes mild hearing loss
and reduces biochemical coupling among cochlear non-sensory cells in knock-in
mice. Hum Mol Genet 19: 4759–4773.

27. Wade MH, Trosko JE, Schindler M (1986) A fluorescence photobleaching assay
of gap junction-mediated communication between human cells. Science 232:
525–528.

28. Eggston AA, Wolff D (1947) Embryology of the ear. Histopathology of the ear,
nose, and throat. Baltimore: Williams and Wilkins Co. pp 37–64.

29. Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM,
et al. (2006) Expression of Prox1 during mouse cochlear development. J Comp
Neurol 496: 172–186.

30. Rabut G, Ellenberg J (2005) Photobleaching techniques to study mobility and
molecular dynamics of proteins in live cells: FRAP, iFRAP, and FLIP. In:
Goldman RD, Spector DL, eds. Live Cell Imaging. New York: Cold Spring
Harbor Laboratory. pp 101–126.

31. Majumder P, Crispino G, Rodriguez L, Ciubotaru CD, Anselmi F, et al. (2010)
ATP-mediated cell–cell signaling in the organ of Corti: the role of connexin
channels. Purinergic Signalling 6: 167–187.

32. Rozental R, Miduturu S, Spray DC (2001) How to close a gap junction channel.
In: Bruzzone R, Giaume C, eds. Connexin Methods and Protocols. Totowa, NJ:
Humana Press. pp 447–476.

33. Sheffield AM, Gubbels SP, Hildebrand MS, Newton SS, Chiorini JA, et al.
(2011) Viral vector tropism for supporting cells in the developing murine
cochlea. Hear Res.

34. Di Pasquale G, Rzadzinska A, Schneider ME, Bossis I, Chiorini JA, et al. (2005)
A novel bovine virus efficiently transduces inner ear neuroepithelial cells. Mol
Ther 11: 849–855.

35. Di Pasquale G, Kaludov N, Agbandje-McKenna M, Chiorini JA (2010) BAAV
transcytosis requires an interaction with beta-1-4 linked- glucosamine and gp96.
PLoS One 5: e9336.

36. Schmidt M, Chiorini JA (2006) Gangliosides are essential for bovine adeno-
associated virus entry. J Virol 80: 5516–5522.

37. Maguchi S, Gasa S, Matsushima J, Saga Y, Kawano M, et al. (1991) Glycolipids
in rat cochlea. Auris Nasus Larynx 18: 1–8.

38. Santi PA, Mancini P, Barnes C (1994) Identification and localization of the GM1
ganglioside in the cochlea using thin-layer chromatography and cholera toxin.
J Histochem Cytochem 42: 705–716.

GJB2 Gene Transfer in Cx26Sox10Cre Mice

PLoS ONE | www.plosone.org 10 August 2011 | Volume 6 | Issue 8 | e23279



39. Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, et al. (2009) Mice

lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective

degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106: 9483–9488.

40. Levin M (2007) Gap junctional communication in morphogenesis. Prog Biophys

Mol Biol 94: 186–206.

41. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog

Biophys Mol Biol 94: 120–143.

42. Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F (2005)

Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive

hereditary deafness. Nat Cell Biol 7: 63–69.

43. Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P, et al. (2005) Gap junction-

mediated intercellular biochemical coupling in cochlear supporting cells is

required for normal cochlear functions. Proc Natl Acad Sci U S A 102:

15201–15206.

44. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet:

connexin hemichannels enter the signalling limelight. Biochem J 397: 1–14.

45. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated
ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A
102: 18724–18729.

46. Kelly JJ, Forge A, Jagger DJ (2011) Development of gap junctional intercellular
communication within the lateral wall of the rat cochlea. Neuroscience 180:
360–369.

47. Schmidt M, Katano H, Bossis I, Chiorini JA (2004) Cloning and characteriza-
tion of a bovine adeno-associated virus. J Virol 78: 6509–6516.

48. Steel KP, Barkway C (1989) Another role for melanocytes: their importance for
normal stria vascularis development in the mammalian inner ear. Development
107: 453–463.

49. Santarelli R, Arslan E, Carraro L, Conti G, Capello M, et al. (2003) Effects of
isoflurane on the auditory brainstem responses and middle latency responses of
rats. Acta Otolaryngol 123: 176–181.

50. Di Virgilio F, Steinberg TH, Silverstein SC (1989) Organic-anion transport
inhibitors to facilitate measurement of cytosolic free Ca2+ with fura-2. Methods
Cell Biol 31: 453–462.

GJB2 Gene Transfer in Cx26Sox10Cre Mice

PLoS ONE | www.plosone.org 11 August 2011 | Volume 6 | Issue 8 | e23279








