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Ž . nLet m be a measure on a measure space X, L with values in R and f be the
Ž .density of m with respect to its total variation. We show that the range RR m s

� Ž . 4m E : E g L of m is strictly convex if and only if the determinant
w Ž . Ž .x ndet f x , . . . , f x is nonzero a.e. on X . We apply the result to a class of1 n

measures containing those that are generated by Chebyshev systems. Q 1999
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1. INTRODUCTION

Ž . nLet m: X, L ª R be a nonatomic vector measure. A theorem of
w x Ž . � Ž . 4Lyapunov 15 states that its range RR m s m E : E g L is closed and
w xconvex. In 5, 7 the authors, motivated from the study of some bang]bang
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control problems, were led to introduce a broad class of measures, Cheby-
shev measures, whose range is strictly convex. Their definition involves a

Ž n mn.signed measure det m defined on the product space X , L by the
relation

;A , . . . , A g L det m A = ??? = A s det m A , . . . , m A ,Ž . Ž . Ž .1 n 1 n 1 n

w xwhere det u , . . . , u denotes the determinant of u , . . . , u .1 n 1 n
w xIn the simpler case when X s I s 0, 1 and L coincides with the set LL

of its Lebesgue measurable subsets the measure m is said to be Chebyshev
w xwith respect to the Lebesgue measure l in 0, 1 if the measure det m is

mn �Ž .strictly positive on the non l -negligible subsets of G s x , . . . , x g1 n
n 4 mnR : 0 F x F ??? F x F 1 , l denoting the n-product measure of l. In1 n

the case where m is absolutely continuous with density g with respect to l
the above condition is equivalent to the fact that the determinant

w Ž . Ž .x mndet g x , . . . , g x is strictly positive l -a.e. in G i.e. that g is a1 n
Ž w x.Chebyshev system or T system, following the terminology of 11 .
w x Ž .As it is shown in 7 the range RR m of such a measure is strictly convex

and contains the origin in its boundary. A peculiar property of a Cheby-
shev measure is that its range can be described through the values that the
measure assumes on the finite union of intervals. It is well known that a
compact, convex, centrally symmetric subset of R2 containing the origin is

Žthe range of a two dimensional measure, i.e. a bidimensional zonoid see
w x. w x3 . In 2 the authors show that every strictly convex, compact, centrally

2 Ž .symmetric subset of R with O in its boundary is the range of a
Chebyshev measure. It is then natural to ask whether this result can be in
some way extended to greater dimensions and, more generally, to try to
characterize the measures whose ranges are strictly convex. The latter
question was asked during a workshop to R. Schneider who answered with
the following result.

w x Ž .THEOREM. 16 RR m is strictly con¨ex if and only if for e¨ery A such that
Ž . Ž . Ž .m A / O there exist A , . . . , A in A such that m A , . . . , m A are1 n 1 n

linearly independent.

It seems difficult however to check whether or not a measure does
satisfy these conditions. One of the purposes of this paper is to show that
the range of a measure m is strictly convex if and only if the density f of m

< < w Ž . Ž .xwith respect to its total variation m is such that det f x , . . . , f x is1 n
nonzero a.e. on X n. The latter determinant being the density of det m with

< <mn Ž .respect to the product measure m it turns out that RR m is strictly
< <mnconvex if and only if the total variation of det m is equivalent to m . The
Ž .main result is obtained via the study of the exposed faces of RR m ; this

allows also to give an alternative simple proof of Schneider’s Theorem.
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In Section 4 we study some applications of this characterization to
ŽChebyshev measures. First we show that again considering for simplicity

.the case where X s I and L s LL m is a Chebyshev measure with respect
< <mnto l if and only if the measure det m is positive and equivalent to m on

w xG. We improve the main result of 2 showing that if the range of a
bidimensional measure m is strictly convex and contains the origin in its

Ž .boundary then not only is RR m the range of a suitable Chebyshev
measure but m is itself a Chebyshev measure. Finally we answer the initial

Žquestion: when n ) 2 there exist strictly convex zonoids with the origin in
.the boundary that are not the range of a Chebyshev measure. Actually the

latter have a nonregular boundary.

2. EXTREME POINTS AND EXPOSED POINTS OF THE
RANGE OF A MEASURE

5 5Notation. By ‘‘?’’ we denote the usual scalar product, ? is the eu-
n ny1 � n 5 5 4clidean norm in R and S s x g R : x s 1 is the unit sphere in

R n; O is the zero vector in R n. In what follows X is a set and L is a s
Ž .algebra of subsets of X. If n , n , . . . , n are measures on X, L we denote1 m

Ž mm. Žby n m ??? m n resp. n the m-product measure of n , . . . , n resp.1 m 1 m
. Ž m mm. m Ž . mmof n on X , L , where X s X = ??? = X m times and L is the

1 Ž n.m-product s algebra of L. We set L X, R to be the space of then

n-integrable functions on X with values in R n.

In Sections 2 and 3 we assume that m is a nonatomic vector measure on
Ž . n < <X, L with values in R ; we will denote by m its total variation and by f

< < 1 Ž n.the density of m with respect to m ; we recall that f belongs to L X, R< m <

5 5 Ž . Ž .and that f s 1 almost everywhere a.e. in X. The range RR m of m is
n Ž . � Ž . 4the subset of R defined by RR m s m E : E g L .

Unless the contrary is expressly stated, for A, B in X by A : B we
< <mean that B _ A is m negligible and by A s B that A : B and B : A,

< <Ž .i.e., that m A^ B s 0.
n ny1 Ž .For a compact convex subset K of R and p in S let h K, p s

� 4 Ž .max p ? x : x g K ; the supporting hyperplane H K, p with outer normal
¨ector p is defined by

H K , p s x g R n : p ? x s h K , p� 4Ž . Ž .

Ž . Ž .and F K, p s H K, p l K is the exposed face with outer normal ¨ector p.
We recall that a point x in K is said to be exposed if it coincides with an

ny1 Ž . � 4exposed face, i.e., if there exists p in S such that F K, p s x ;
Žobviously each exposed point of K is an extreme point of K but the

w x. ny1converse is not true, see for example 14 . For p in S we introduce the
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following measurable subsets of X :

Dq p s x g X : p ? f x ) 0 , Dy p s x g X : p ? f x - 0 ,� 4 � 4Ž . Ž . Ž . Ž .

D0 p s x g X : p ? f x s 0 .� 4Ž . Ž .

Ž w x. Ž .Lyapunov’s Theorem see for example 15 states that RR m is closed and
Ž .convex. We describe here the exposed faces of RR m .

ny1 Ž Ž . .PROPOSITION 2.1. Assume that p belongs to S ; then h RR m , p s p ?
Ž qŽ ..m D p and

F RR m , p s m E : E g L , Dq p : E : Dq p j D0 p .� 4Ž . Ž . Ž . Ž . Ž .Ž .

Proof. For E in L we have

< <p ? m E s p ? f x d mŽ . Ž .H
E

< < < <s p ? f x d m q p ? f x d mŽ . Ž .H H
qŽ . Ž .ElD p ElD py

< < < < qF p ? f x d m F p ? f x d m s p ? m D p ,Ž . Ž . Ž .Ž .H H
q qŽ . Ž .ElD p D p

proving the first part of the claim. Moreover the above inequalities show
Ž . Ž qŽ ..that, for E in L, the equality p ? m E s p ? m D p holds if and only if

< <Ž yŽ .. qŽ . qŽ . qŽ .m E l D p s 0 and E l D p s D p or, equivalently, D p :
q 0Ž . Ž .E : D p j D p .

ny1 Ž Ž . . Ž .COROLLARY 2.2. For p in S the exposed face F RR m , p of RR m
< <Ž 0Ž ..with outer normal ¨ector p is reduced to a point if and only if m D p s 0.

We recall that a compact convex subset of R n is strictly convex if and
only if each of its exposed faces reduces to a point. The above result yields

Ž .then directly a first characterization of the strict convexity of RR m .

Ž . < <Ž 0Ž ..PROPOSITION 2.3. RR m is strictly con¨ex if and only if m D p s 0
for each p in Sny1.

As an application we give a short alternative proof to Schneider’s
characterization of the measures whose range are strictly convex.

� 4 n ² :If m is a set of vectors in R we denote by u the vector spaceig Ii i g I i

spanned by the vectors u . The orthogonal space of a vector space L isi

denoted by LH .
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w x Ž .THEOREM 2.4. 16 RR m is strictly con¨ex if and only if for e¨ery A such
Ž . Ž . Ž .that m A / O there exist A , . . . , A in A such that m A , . . . , m A are1 n 1 n

linearly independent.

Ž .Proof. Let A be such that m A / O and assume that the vector space

² :L s m B : B g L , B : AŽ .

Ž . ny1 His at most n y 1 dimensional. Then if p belongs to S l L we have

< < < <;B g L , B : A « p ? f x d m s p ? f x d m s p ? m B s 0Ž . Ž . Ž .H H
B B

0Ž . < <Ž 0Ž ..so that A : D p and, thus, m D p ) 0; Proposition 2.3 implies that
Ž . Ž .RR m is not strictly convex. Conversely if RR m is not strictly convex by

ny1 < <Ž 0Ž ..Proposition 2.3 there exists p in S satisfying m D p ) 0: let
0Ž . Ž .A : D p be such that m A / O. Then

< <;B g L , B : A « p ? m B s p ? f x d m s 0Ž . Ž .H
B

H n² Ž . : ² :and, thus, m B : B g L, B : A : p / R .

The next result is traditionally obtained from a celebrated Theorem of
w xOlech 12 ; we prove it here in an elementary way.

Ž . Ž .PROPOSITION 2.5. Let E, F in L be such that m E s m F is an extreme
Ž . < <Ž .point of RR m . Then m E^ F s 0.

< <Ž .Proof. Assume that m E _ F ) 0 and let A : E _ F be such that
Ž . Ž .m A / O. Set E s E _ A and E s F j A. Clearly we have m E s1 2 1
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .m E y m A / m E , m E s m F q m A s m E q m A / m E2

Ž . Ž . Ž . Ž . Ž .and m E s 1r2 m E q 1r2 m E , contradicting the extremality of1 2
Ž .m E .

Ž .COROLLARY 2.6. Assume that the origin O is an extreme point of RR m
Ž . < <Ž .and let A in L be such that m A s O. Then m A s 0.

Ž . Ž . Ž .Proof. Since m A s O s m B is an extreme point of RR m then
< <Ž . < <Ž .Proposition 2.5 implies that m A s m A^B s 0.

As a consequence we obtain the following characterization of the
Ž .exposed points of RR m .

Ž . Ž .PROPOSITION 2.7. For E in L the point m E is exposed in RR m if and
ny1 qŽ . < <Ž 0Ž ..only if there exists p in S such that E s D p and m D p s 0.

< <Ž 0Ž ..Proof. Assume that m D p s 0; then by Proposition 2.1 the ex-
Ž Ž . . � Ž qŽ ..4posed face F RR m , p coincides with m D p so that the latter is an
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Ž . Ž Ž . .exposed point of RR m . Conversely, let E in L be such that F RR m , p
� Ž .4 ny1s m E for some p in S . By Corollary 2.2 necessarily we have

< <Ž 0Ž .. Ž Ž . . � Ž qŽ ..4 Ž .m D p s 0 and therefore F RR m , p s m D p so that m E s
Ž qŽ .. Ž . Ž . Ž .m D p . Since m E is an exposed and thus extreme point of RR m

qŽ .then Proposition 2.5 yields E s D p .

Ž .COROLLARY 2.8. The origin is an exposed point of RR m if and only if
ny1 Ž .there exists p in S such that p ? f x - 0 a.e. on X.

Ž .Proof. Proposition 2.7 implies that O s m B is an exposed point of
Ž . ny1 qŽ .RR m if and only if there exists p in S such that D p s B and

0< <Ž Ž ..m D p s 0.

3. THE MEASURES WHOSE RANGE IS STRICTLY
CONVEX

The main result of this section stems from Corollary 2.3: it states that
Ž . Ž .the range of m is strictly convex if and only if the vectors f x , . . . , f x1 n

Ž . nare linearly independent for a.e. x , . . . , x in X . We introduce the1 n
subset S of X n defined by

nS s x , . . . , x g X : det f x , . . . , f x s 0 .� 4Ž . Ž . Ž .1 n 1 n

Ž . < <mnTHEOREM 3.1. RR m is strictly con¨ex if and only if S is m negligible.

Ž .Proof. If RR m is not strictly convex by Proposition 2.3 there exists p
ny1 < <Ž 0Ž .. Ž 0Ž ..nin S such that m D p ) 0; since D p : S then we obtain

< <mnŽ . w < <Ž 0Ž ..xnm S G m D p ) 0.

We give two proofs of the opposite implication. For each subset S of X n

Ž . ny1 Ž . � Ž . 4and x , . . . , x in X let S x , . . . , x s x g X : x , . . . , x g S2 n 2 n 1 1 n
Ž .be the x , . . . , x section of S.2 n

First proof. We first show that the set
n ² :B s x , . . . , x g X : f x g f x , . . . , f x� 4Ž . Ž . Ž . Ž .1 n 1 2 n

n Ž . < <is measurable. For u , . . . , u in R m F n we denote by u n ??? n u1 m 1 m
their Gramian, i.e., the sum of the squares of the minors of order m of the

Ž . Ž Ž . n.matrix e ? u where e is the standard basis in R ; clearly u , . . . , ui j i, j i i 1 m
are linearly dependent if and only if their Gramian vanishes. For every

� 4 Ž 4nonempty subset I s i , . . . , i of 2, . . . , n let B be the measurable1 k I
subsets of B defined by

n <B s x , . . . , x g X : f x n f x n ??? n f x s 0,Ž . Ž . Ž . Ž .�I 1 n 1 i i1 k

< <f x n ??? n f x /0Ž . Ž . 4i i1 k
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�Ž . n Ž . Ž . 4and set Z s x , . . . , x g X : f x s ??? s f x s 0 . Let x s1 n 1 n
Ž . � 4x , . . . , x g B: then either x g Z or there exists a subset I of 2, . . . , n1 n

� Ž . 4such that f x : i g I is a maximal subset of linearly independent vectorsi
� Ž . � 44 Ž . ² Ž . :among f x : i g 2, . . . , n and f x g f x : i g I or, equivalently,i 1 i

Ž .x g B . Thus, B s ZD D B , proving the claim.I I : �2, . . . , n4 I
Fubini’s theorem gives

< <mn < < < < < <m S s d m x d m x m ??? m m x .Ž . Ž . Ž . Ž .Ž .H H 1 2 n½ 5ny1 Ž .X D x , . . . , x2 n

Ž .Assume that RR m is strictly convex; then Proposition 2.3 yields

; x , . . . , x g X ny1Ž .2 n

< < ² :m x g X : f x g f x , . . . , f x s 0� 4Ž . Ž . Ž .Ž .1 1 2 n

Ž .so that if S is the measurable subset of S defined by1

² :S s x , . . . , x g S : f x f f x , . . . , f x� 4Ž . Ž . Ž . Ž .1 1 n 1 2 n

from the above formula we obtain

< <mn < < < < < <m S s d m x d m x m ??? m m xŽ . Ž . Ž . Ž .Ž .H H 1 2 n½ 5ny1 Ž .X D x , . . . , x1 2 n

< <mnand thus Tonelli’s Theorem yields S s S m -a.e. Similarly if for i in1
w 42, . . . , n we put

S s x , . . . , x g S : f x� Ž . Ž .i 1 n i

² :f f x , . . . , f x , f x , . . . , f x 4Ž . Ž . Ž . Ž .1 iy1 iq1 n

< <mnthe same arguments give S s S m -a.e. As a consequencei

n
mn< <S s S m -a.e.F i

is1

Obviously the set Fn S is empty; the conclusion follows.is1 i

Second proof. Let g : X ny1 = Sny1 ª R be the map defined by

; y , . . . , y g X ny1 ;z g Sny1Ž .1 ny1

n
2

g y , . . . , y , z s z ? f y .Ž . Ž .Ž . Ž .Ý1 ny1 i
is2
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Ž .The function g is measurable in y , . . . , y and continuous in z:1 ny1
w x ny1Corollary 6.3 in 10 then implies that the set-valued map G: X ª

Ž ny1.PP S defined by

G y , . . . , y s z g Sny1 : g y , . . . , y , z s 0Ž . Ž .� 4Ž .1 ny1 1 ny1

² :H ny1s f y , . . . , f y l SŽ . Ž .1 ny1

w xhas a measurable graph: Theorem 5.7 in 10 then yields the existence of a
measurable selection p: X ny1 ª Sny1 of G, i.e., p is measurable and
Ž . Ž . ny1 � 4p y , . . . , y g G y , . . . , y a.e. in X . For i in 1, . . . , n let A1 ny1 1 ny1 i

be the measurable subset of X n defined by

A s x , . . . , x g X n : f x ? p x , . . . , x , x , . . . , x s 0 .� 4Ž . Ž . Ž .i 1 n i 1 iy1 iq1 n

Ž < <mn.We claim that S s D A modulo m .i i
Ž . w Ž . Ž .xIn fact let x s x , . . . , x g S: then det f x , . . . , f x s 0 so that1 n 1 n

Ž . ² Ž . Ž . Ž . Ž .:there exists i such that f x g f x , . . . , f x , f x , . . . , f x ;i 1 iy1 iq1 n
modulo a negligible set the latter vector space is contained in
² Ž .:Hp x , . . . , x , x , . . . , x and, thus, x belongs to A . Conversely let1 iy1 iq1 n i
Ž . Ž . Ž . Ž .for instance x , . . . , x g A . Either f x , . . . , f x are linearly inde-1 n 1 2 n

Ž . ² Ž .:H ² Ž . Ž .:pendent so that f x g p x , . . . , x s f x , . . . , f x or1 2 n 2 n
Ž . Ž .f x , . . . , f x are linearly dependent: in both cases we obtain2 n

w Ž . Ž .xdet f x , . . . , f x s 0, proving the claim.1 n
< <mnŽ . < <mnŽ .Assume that m S ) 0: then there exists i such that a m A ) 0;i

again without loss of generality we suppose that i s 1. Fubini’s Theorem
gives

< <mn < < < < < <m A s d m x d m x m ??? m m xŽ . Ž . Ž . Ž .Ž .H H1 1 2 n½ 5ny1 Ž .X A x , . . . , x1 2 n

Ž . ny1 < <Ž Ž ..so that there exists x , . . . , x in X such that m A x , . . . , x ) 0.2 n 1 2 n
Ž . 0Ž Ž ..Now we have A x , . . . , x s D p x , . . . , x : Proposition 2.3 implies1 2 n 2 n

Ž .that RR m is not strictly convex.

Ž .The determinant measure det m associated to m s m , . . . , m was1 n
w xintroduced in 7 . It seems natural to use it here.

We shall denote by SS the symmetric group of order n and, for s inn
Ž .SS , by e s its sign.n

DEFINITION 3.2. The determinant measure of m, denoted by det m, is
Ž n mn.the signed measure defined on X , L by

det m s e s m m ??? m m .Ž .Ý s Ž1. s Žn.
sgSSn
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This is the only measure whose restriction to the product sets A = ??? =1
Ž . w Ž . Ž .xA satisfy det m A = ??? = A s det m A , . . . , m A .n 1 n 1 n

w xThe next result appears in the proof of 7, Th. 3.4 but is not explicitly
stated.

PROPOSITION 3.3. The function det f defined on X n by

det f x , . . . , x s det f x , . . . , f xŽ . Ž . Ž .1 n 1 n

< <mnis the density function of det m with respect to m .

Ž . nProof. Set f s f , . . . , f . For any measurable subset A of X the1 n
application of Fubini-Tonelli’s Theorem yields

det m AŽ .
s e s m m ??? m m AŽ . Ž .Ž .Ý s Ž1. s Žn.

sgSSn

< < < <s e s f x ??? f x d m x m ??? m m xŽ . Ž . Ž . Ž . Ž .Ž .ÝH s Ž1. 1 s Žn. n 1 n
A sgSSn

mn< <s det f x , . . . , f x d m x , . . . , x .Ž . Ž . Ž .H 1 n 1 n
A

The measure det m allows us to reformulate Theorem 3.1 in terms of the
< <mnbehavior of m with respect to det m. We recall that a vector measure t

is said to be absolutely continuous with respect to some other signed
Ž Ž ..measure j both defined in X, L , in symbols t < j , whenever for A in

< <Ž . Ž .L the condition j A s 0 implies t A s O. Two positive measures t , j
on X are said to be equivalent if they are absolutely continuous with
respect to each other. We will use the fact that if t , j are finite positive
measures and t < j then t is equivalent to j if and only if the density of
t with respect to j is strictly positive a.e. on X.

< <mnTHEOREM 3.4. The range of m is strictly con¨ex if and only if m is
< < Ž .equï alent to det m the total ¨ariation of det m .

w x < <Proof. Proposition 3.3 together with 1, Ex. 26.10 imply that det m is
< < < <mnabsolutely continuous with density det f with respect to m . Thus, the

< < ncondition that det f does not vanish in X is equivalent to the absolute
< <mn < <continuity of m with respect to det m . Theorem 3.1 yields the conclu-

sion.
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4. SOME APPLICATIONS TO CHEBYSHEV MEASURES

As usual X is a set and L is a s algebra of subsets of X. We consider
the following assumption.

Ž . Ž . Ž .ASSUMPTION A . A : MM s M is an increasing family of1 i igw0, 1x
Ž .measurable sets i.e., M : M if i - j such that M s B, M s X and ni j 0 1

Ž .is a positive nontrivial bounded measure on X, L such that the function
Ž .i ¬ n M is continuous and strictly increasing.i

Ž . Ž . nA : m is a vector measure on X, L with values in R and the2
< <Ž .function i ¬ m M is continuous.i

Remark. The existence of such a family implies clearly that both n and
m are nonatomic; conversely if these measures are nonatomic then Lya-

Ž < <.punov’s Theorem applied to the vector measure n , m yields the exis-
Ž . Ž . Ž . < <Ž .tence of a family M such that n M s in X and m M si igw0, 1x i i

< <Ž . Ž w x. Ž .i m X for every i see 8 and, thus, satisfying the assumption A .
ŽThe family MM induces an order relation $ or simply $ when noMM

. w xambiguity may occur on X defined by x $ y if there exists i in 0, 1MM
Ž .such that x g M and y f M . By P or P we will denote the subset ofi i MM

n �Ž . n 4X defined by P s x , . . . , x g X : x $ ??? $ x if n ) 1, P sMM 1 n 1 MM MM n MM
ŽX if n s 1. We will assume for simplicity that P is measurable in theMM

.general case one should replace P with any of its measurable coverings .MM

Žw x. �Ž . w xnEXAMPLE. If MM s 0, i then P s x , . . . , x g 0, 1 : 0 Figw0, 1x MM 1 n
4x - ??? - x F 1 .1 n

w xChebyshev measures with respect to n and MM have been defined in 7 :
they are vector measures whose associated determinant measure is strictly
positive on the non n-negligible subsets of P .MM

DEFINITION 4.1. The vector measure m is a Chebyshë measure with
Žrespect to n and to the family MM or simply a T measure or T measuren

< <. Ž .when n s m if m, n , MM satisfy assumption A and the measure det m
verifies

;A g Lmn l P , n mn A ) 0 « det m A ) 0.Ž . Ž .MM

When no ambiguity may occur we shall often omit to mention the
dependence with respect to MM.

Remark. The measure det m is absolutely continuous with respect to
< <mnm ; it follows then directly from the definition that m is a T measure< m <

< <mnif and only if det m is positive and equivalent to m on P .MM

Remark. When n s 1 then P s X for every family of subsets MM ;MM

moreover if m is a signed measure then det m s m. Therefore m is a Tn
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measure whenever it assumes strictly positive values on the non n-negligi-
ble subsets of X. In particular a positive measure m is a T measure if andn

only if n < m. It may happen however that m is not absolutely continuous
w xwith respect to n . Let, for instance, m be the Lebesgue measure on 0, 1 ,

Ž . Ž .E a measurable set such that 0 - m E l I - m I for every nontrivial
Ž . Ž .interval I, n be the measure defined by n A s m A l E for every

Žw x.measurable set A and set MM s 0, i . Clearly, n , m, MM verify as-igw0, 1x
Ž .sumption A ; moreover n is absolutely continuous with respect to m so

that m is a T measure; however m is not absolutely continuous withn

Ž Žw x . Žw x . Ž . .respect to n n 0, 1 _ E s 0 whereas m 0, 1 _ E s 1 y m E ) 0 .

w xWe will use the following result 7, Funny corollary 4.5 .

PROPOSITION 4.2. Let m be a T measure and A in L be such thatn

Ž . Ž n. Ž .m A s O the origin in R ; then n A s 0. In particular n is absolutely
< <continuous with respect to m .

Ž .Sketch of the proof. Assume that n A ) 0. If m is a T measure withn

Ž .respect to a family MM s M of subsets of X then the continuity of thei i
Ž .map i ¬ n M allows to decompose A as a disjoint union of some noni

n-negligible sets A , . . . , A such that their product A = ??? = A is1 n 1 n
w Ž . Ž .x Žcontained in P . It follows that det m A , . . . , m A s det m AMM 1 n 1

. Ž . Ž .= ??? = A ) 0 so that the vectors m A , . . . , m A are linearly inde-n 1 n
Ž . Ž . Ž .pendent. However O s m A s m A q ??? qm A , a contradiction.1 n

< <Ž .It follows that if m is a T -measure then the map i ¬ m M is strictlyn i
increasing. The term ‘‘Chebyshev’’ arises from the well-known concept of

Ž .T system where ‘‘T’’ stands for Tchebycheff , applied in approximation
theory and to moment problems in statistics, involving continuous func-

Ž w x.tions defined on intervals of R see 11 . We recall here a slightly more
general definition.

w x Ž . 1 Ž n.DEFINITION 4.3. 7 Let n , MM satisfy A . A function g in L X, R is1 n

Žsaid to be a Chebyshë system with respect to n and MM or simply a Tn

. w Ž . Ž .x mnsystem if the determinant det g x , . . . , g x is positï e n -a.e. in P .1 n MM

1 Ž n.Let g g L X, R and m be the measure with density function g withn

respect to n . The arguments involved in the proof of Proposition 3.3 show
w Ž . Ž .xthat det g x , . . . , g x is the density function of det m with respect to1 n

n mn. As a consequence Chebyshev systems generate absolutely continuous
Chebyshev measures.

w x Ž .THEOREM 4.4. 7, Theorem 3.4 Let m, n , MM satisfy A and let m be
absolutely continuous with density g with respect to n . Then m is a T measuren

if and only if g is a T system.n
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Chebyshev systems arise naturally from linear differential equations;
some of their applications to control theory and the calculus of variations

w xwere given in 5 .

`Ž . Ž i.Ž .EXAMPLE. Let h g CC R satisfy h 0 s 0 for 0 F i F n y 2 and
Žny1.Ž .h 0 s 1. There exists d ) 0 such that the function f s

Ž Žny1. Žny2. . w xh , h , . . . , h9, h is a Chebyshev system on yd , d with respect to
w xthe Lebesgue measure and the family of intervals M s yd , yd q 2 idi

Ž w x.i g 0, 1 .

We give now a remarkable example: a function with values in a half
plane of R2 and whose inverse images of lines are negligible sets generates

2 � 4a Chebyshev measure. For u in R and u in R _ O we denote by arg uu

Ž xthe argument of u in u y p , u q p .

Ž . Ž .PROPOSITION 4.5. Let X, L, n be a measure space n being nontrï ial ;
1 Ž 2 . � Ž . 4g in L X, R be such that the set x g X : p ? g x s 0 is n negligible forn

1 Ž . 1e¨ery p in S and q ? g x ) 0 n-a.e. for some q in S . Then the two
Ž .dimensional measure m defined by m A s H g dn for e¨ery A in L is aA

Ž Ž .Chebyshë measure i.e., there exists a family MM s M of subsets of Xi igw0, 1x
.with respect to which m is a T measure .n

Proof. Let u in R be such that q s eiu : then if we set a s u y pr2, b
Ž . Ž . Ž xs u q pr2 the argument arg g x of g x in u y p , u q p belongs tou

w x w xa, b for x in X _ Z, for some negligible set Z. For t in a, b let

N s x g X : arg g x F t� 4Ž .t u

w x q Ž . Ž .and f : a, b ª R be the increasing map defined by f t s n N fort
w xevery t in a, b . Our assumption implies that for every t in R the sets

� Ž . 4 Ž . Ž . Ž .x g X : arg g x s t are negligible. Clearly f a s 0 and f b s n X .u

Ž .Moreover the family of sets N being increasing it follows that f ist t gw a, b x
Žw x. w Ž .x w Ž .x w xcontinuous and therefore f a, b s 0, n X . Let c : 0, n X ª a, b

w xbe a right inverse of f and set, for every a in 0, 1 , M s N . Thea c Žan Ž X ..
Ž . Ž Ž Ž ... Ž .definition of c then implies that n M s f c an X s an X so thata

Ž .the map a ¬ n M is continuous and strictly increasing. The absolutea

< <Ž .continuity of m with respect to n yields the continuity of a ¬ m M anda

Ž .thus n , m, MM fulfill assumption A . For x , x in X the relation x $ x1 2 1 MM 2
w x Ž .here implies that there exists t in a, b such that arg g x F t andu 1

Ž .arg g x ) t. Since b y a s p it follows that if x , x are not in Z thenu 2 1 2
w Ž . Ž .x m2det g x , g x ) 0. Hence, this latter condition is fulfilled for n }1 2

Ž .almost every couple x , x belonging to the set P associated to MM and1 2 MM

therefore g is a T system. Theorem 4.4 yields the conclusion.n
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w xThe main result of 7 s tates that given a positive measure n and a
Ž . � Ž . 4prescribed increasing family of sets MM s M the range m E , E g L ofi i

a n-dimensional T -measure m with respect to MM can be described throughn

Ž .the values that it assumes on the finite unions of at most n sets of the
form M _ M . Let G be the subset of R n defined byj i

G s g , . . . , g g R n : 0 F g F ??? F g F 1 .� 4Ž .1 n 1 n

w xREPRESENTATION THEOREM 4.6. 7 Suppose m is a T measure withn

Ž .respect to the family MM s M and let r be a measurable function suchi igw0, 1x
Ž .that 0 F r F 1 a.e. There exists a s a , . . . , a in G satisfying1 n

m E s r dm where E s M _ M a s 1 .Ž . Ž .Ž .DHa a a a nq1iq1 i
X 1FiFn

i odd

If 0 - r - 1 on a n-nonnegligible set then a is unique, it belongs to the
Ž . Ž .interior of G and m E lies in the interior of RR m .a

w xRemark. We recall that Lyapunov’s Theorem 15 states that there
Ž .exists a set E in L such that H r dm s m E ; the improvement here isX

w xthat the set E can be chosen among a family of ‘‘nice’’ sets. We refer to 6
w xfor some comments about this fact and to 5 for an application of this

result of the bang]bang principle in control theory.
Chebyshev measures are considered here in connection with Sections 2

and 3 because they represent a broad class of measures whose range is
strictly convex.

w x Ž .THEOREM 4.7. 7, Theorem 5.3 The range RR m of a T -measure m isn

Ž .strictly con¨ex. The boundary points of RR m admit a unique representation
< < Ž . Ž .modulo m ; moreo¨er a point m E belongs to the boundary of RR m if and

< <Ž .only if there exists g in the boundary of G such that m E^ E s 0. Ing

Ž . Ž . Ž .particular O s m B s m E belongs to the boundary of RR m .Ž1, . . . , 1.

Ž . Ž .Proof of strict con¨exity. Let E, F in G be such that m E / m F : then
< <Ž . < <Ž . Ž .m E^ F / 0; let for instance m E _ F ) 0. Then for l in 0, 1 the

Ž .function r s lx q 1 y l x is such that 0 - r - 1 a.e. on E _ F.E F
Ž . Ž . Ž .Theorem 4.6 implies that Hr dm s lm E q 1 y l m F belongs to the

Ž .interior of RR m .

In what follows we shall denote by m a n-dimensional vector measure
< <and by f the density of m with respect to its total variation m .

Assume that m is a T measure with respect to a family MM of subsets ofn

X. If m is absolutely continuous with respect to n then, trivially, m is a T < m <

w Ž . Ž .x < <mnmeasure; it follows from Theorem 4.4 that det f x , . . . , f x ) 0 m -1 n
a.e. on P . Otherwise, if m is not absolutely continuous with respect to n ,MM
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it does not seem clear at all from Definition 4.1 whether the above
conclusion still holds. Certainly, by Proposition 4.2, n is absolutely contin-

< <uous with respect to m ; however one might think that there exists a
mn Ž < <mn .n -negligible but not m negligible subset A in P such thatMM

Ž .det m A F 0. The next result shows that this pathology does not occur; its
proof is based on the fact that a T measure has a strictly convex range andn

on our characterization of the measures having this property.

Ž .THEOREM 4.8. Let m be a T measure with respect to a family MM . Thenn

Ž .m is a T measure with respect to MM .< m <

Proof. By Theorem 4.7 the range of m is strictly convex; Theorem 3.1
then implies that

mn< <det f x , . . . , f x / 0 m -a.e.Ž . Ž .1 n

Let

yP s x , . . . , x g P : det f x , . . . , f x - 0� 4Ž . Ž . Ž .MM 1 n MM 1 n

< <mnŽ y.and assume that m P ) 0. Since, from Proposition 3.3MM

mny < <det m P s det f x , . . . , f x d m ,Ž . Ž .Ž . HMM 1 nyPMM

< <then by the continuity of m with respect to the sets M , there exists ai
Ž .2n -tuple

a 1 , a 2 , . . . , a 1 , a 2 g R2 nŽ .1 1 n n

such that

0 - a 1 - a 2 - ??? - a 1 - a 2 - 11 1 n n

and

det m Pyj M 2 _ M 1 = ??? = M 2 _ M 1 - 0.Ž . Ž .Ž .MM a a a a1 1 n n

However, n being a positive measure, we have

n mn Pyj M 2 _ M 1 = ??? = M 2 _ M 1Ž . Ž .Ž .MM a a a a1 1 n n

G n mn M 2 _ M 1 = ??? = M 2 _ M 1 ) 0,Ž . Ž .Ž .a a a a1 1 n n

a contradiction. Therefore f is a T system; Theorem 4.4 yields the
conclusion.
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Remark. The above result shows that, in Definition 4.1, the auxiliary
positive measure n can be omitted: in dealing only with T measures, as we
do in the rest of the paper, there is undoubtedly a gain of clarity. However

Žw x.in the applications 5 it happens that n and MM are given a priori and
1 Ž n.that m is defined through a density function g in L X, R : the easiestn

way to see if m is a Chebyshev measure is then to check whether g is a Tn

system.
Theorem 4.7 states that the range of a Chebyshev measure is strictly

convex and that the origin O belongs to the boundary of its range. It is
well known that each compact, convex, centrally symmetric subset of R2 is

w xthe range of a two dimensional measure 2, 3 , i.e., a zonoid. Conversely, in
w x 22, Theorem 2 the authors show that, in R , each strictly convex zonoid
Ž .with O in its boundary is the range of a Chebyshev measure. The results
obtained in Sections 2 and 3 allow us to give a much stronger result: the
bidimensional Chebyshev measures are exactly those measures whose

Ž . 2range satisfies the above geometrical properties. Let m: X, L ª R be a
nonatomic bidimensional measure and, as usual, let f be the density of m

< <with respect to m .

THEOREM 4.9. Assume that m is a bidimensional measure whose range
Ž .RR m is strictly con¨ex and contains the origin in its boundary. Then there

exists a family of sets with respect to which m is a Chebyshë measure.
Moreo¨er there exists u in R such that for e¨ery measurable function r with

w x¨alues in 0, 1 there exist a , b in R satisfying

r x dm s m x g X : a F arg f x F b .� 4Ž . Ž .Ž .H u
X

1 Ž .Proof. By Corollary 2.8 there exists q in S such that q ? f x ) 0 a.e.
� Ž . 4on X and, by Proposition 2.3, the sets x g X : p ? f x s 0 are negligible

1 Ž < < .for every p in S . The application of Proposition 4.5 with m , f instead
Ž . Ž .of n , g yields the existence of a family MM s M of subsets of X withi i

respect to which m is a Chebyshev measure. Furthermore, the proof of
Proposition 4.5 shows that there exists u in R such that for every i we

� Ž . 4 Ž xhave M s x g X : arg f x F j for some j in u y p , u q p : thei u i i
conclusion follows from the representation theorem 4.6.

Ž .Let m be a vector measure on X, L , E be in L and let m be theE
Ž . Ž . Ž .vector measure defined by m B s m E _ B y m E l B for every B inE

Ž w x. Ž .L. It is easy to verify see 3, Lemma 1.3 that the range RR m of m is aE E
Ž . Ž .translate of the range of m; more precisely we have that RR m s RR mE

Ž . � Ž . Ž .4y m E s x y m E : x g RR m . The next characterization of the bidi-
mensional strictly convex zonoids in R2 follows then directly.
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Ž . 2COROLLARY 4.10. Let m be a measure on X, L with ¨alues on R . The
range of m is strictly con¨ex if and only if there exists a subset E in L such mE
is a Chebyshë measure.

Proof. If there exists E in L such that m is a Chebyshev measureE
then by Theorem 4.7 the range of m is strictly convex. Thus, each of itsE
translates, in particular the range of m, is strictly convex too. Conversely

Ž .assume that the range of m is strictly convex. Let E be such that m E
Ž .belongs to the boundary of RR m . Then the origin lies in the boundary of

Ž . Ž .the translate RR m y m E . The latter set is the range of m and isE
strictly convex: it follows from Theorem 4.9 that m is a T measure.E

Our next result shows that, when n ) 2, the boundary of the range of a
n dimensional Chebyshev measures is not regular. In particular, Theorem
4.9 cannot be extended to greater dimensions: a measure whose range is a

Ž w x.ball it exists, see for instance 13 is certainly not the range of some
Chebyshev measure.

Ž .PROPOSITION 4.11. Let m s m , . . . , m be a T measure and n G 3.1 n
Ž . Ž . 1Then the boundary of RR m is not a n y 1 -dimensional TT manifold.

We need the following Lemma, whose proof is postponed at the end of
the paper.

LEMMA 4.12. Let m be a T measure with respect to an increasing family
Ž .M of subsets of X. Then there exists a ¨ector measure m on the˜a a gw0, 1x

w xLebesgue s algebra of 0, 1 such that m is a T measure with respect to the˜
Žw x. Ž . Ž .inter̈ als 0, a and RR m s RR m .˜a gw0, 1x

Proof of Proposition 4.11. By Lemma 4.12 it is not restrictive to suppose
w xthat m is a Chebyshev measure on 0, 1 with respect to the intervals

Žw x. w . w x n0, x . Fix x in 0, 1 and let l : 0, 1 y x ª R be the curvex gw0, 1x x
defined by

w x w x; t g 0, 1 y x : l t s m x , x q t .Ž . Ž .x

Since n G 3 and x has at most two jumps Theorem 4.7 implies thatw x, xqt x
Žw x. Ž .the set G s l 0, 1 y x is entirely contained in the boundary ­ RR m ofx x

Ž . Ž .RR m . Remark further that the origin O s l 0 belongs to G . Assumex x
Ž . 1that ­ RR m is a manifold of cl ass CC and let p be a unit normal vector to

Ž . Ž .the tangent plane P of ­ RR m at the origin. For every point q of RR m ,
the distance of q from P is the absolute value of q ? p; therefore

Ž . 5 5. Ž .lim q ? p r q s 0. Since, by Proposition 4.2, m I / O forq ª 0, q g ­ RRŽ m .
Ž Žw x.every nontrivial interval I it follows that lim m x, x q t ?t ª 0

. Ž5 Žw x.5. 5 Ž .5 < <Ž .p r m x, x q t s 0 and therefore, recalling that m A F m A
Ž Žw x.. Ž < <Žw x..for every measurable set A, lim m x, x q t r m x, x q t ? p s 0.t ª 0
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w x Ž Žw x.. Ž < <Žw x.. Ž . w xSince, by 17 , lim m x, x q t r m x, x q t s f x a.e. in 0, 1t ª 0
0Ž . � w x Ž . 4 w x Ž < < .we obtain that D p s x g 0, 1 : f x ? p s 0 s 0, 1 m -a.e. . How-

Ž .ever the set RR m is strictly convex: Proposition 2.3 then implies that
0< <Ž Ž ..m D p s 0, a contradiction.

Ž . � 4Proof of Lemma 4.12. Let m s m , . . . , m and, for each i in 1, . . . , n ,1 n
q y w xlet m s m y m be the Jordan decomposition of m . Let g : 0, 1 ª R bei i i i i

the bounded variation function defined by

g a s mq M y my MŽ . Ž . Ž .i i a i a

and let m be the Lebesgue-Stieltjes measure generated by g . Clearly m is˜ ˜i i
Ž .regular and if we set m s m , . . . , m the continuity of the functions g˜ ˜ ˜1 n i

yields
w x;a , b g 0, 1 , a F b

w x x wm a , b s m a , b s m a , b s m a , b s m M _ M .Ž .Ž . Ž . . Ž .Ž Ž .˜ ˜ ˜ ˜ Ž .b a

˜ Žw x.We shall show now that m is a T measure with respect to MM s 0, i .˜ igw0, 1x
Notice first that, m being a T measure, by Proposition 4.2 for< m <

w x Ž . < <Žw x.every a - b in 0, 1 we have m M _ M / O. Therefore m a , b G˜b a

5 Žw x.5 5 Ž .5 < < < <m a , b s m M _ M ) 0. Moreover, it is clear that m F m . It˜ ˜b a

˜< < Ž .follows that m, m , MM satisfy assumption A . We recall that in this case˜ ˜
˜ n�Ž . w xthe set P associated to MM is given by P s x , . . . , x g 0, 1 : 0 F x˜ ˜MM MM 1 n 1

4- ??? - x F 1 .n
< <mnŽ . < <mnLet A : P be such that m A ) 0. The measure m being˜ ˜M̃M

w xnregular and P being open in 0, 1 there exists a GG subset E of P such˜ ˜MM d MM
< <mnŽ .that A : E and m E _ A s 0. We may assume that˜

`

E s V ,F m
ms1

Ž .where V are open subsets of P and V = ??? = V = V = ??? .˜m mg N MM 1 m mq1
Moreover we can choose the sets V such that for each m in Nm

`
k kV s I = ??? = I ,Dm m , 1 m , n

ks1

k w x k kwhere the I are subintervals of 0, 1 satisfying sup I F inf I andm , i m , i m , iq1

I k = ??? = I k F I l = ??? = I l s B if k / l.Ž . Ž .m , 1 m , n m , 1 m , n

If a k s inf I k , b k s sup I k , we define J k s M k _ M k and wem , j m , j m , j m , j m , j b am , j m , j

set
` `

k kG s J = ??? = J .F D m , 1 m , nž /
ms1 ks1
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Clearly G is a subset of P . Moreover, by definition of J k ,MM m , i

`
mn k k< < < < < <m G s lim m J ??? m JŽ . Ž . Ž .Ý m , 1 m , nž /mª` ks1

`
k k< < < <s lim m I ??? m I˜ ˜Ž . Ž .Ý m , 1 m , nž /mª` ks1

` `
mn k k< <s m I = ??? = I˜ F D m , 1 m , nž /ž /

ms1 ks1

< <mn < <mns m E s m AŽ . Ž .˜ ˜
< <mnŽ . Ž .so that m G ) 0: the measure m being T we deduce that det m G< m <

Ž .) 0. Let s s s , . . . , s be a permutation of 1, . . . , n. We have1 n

`
k km m ??? m m G s lim m J ??? m JŽ .Ž . Ž . Ž .Ýs s s m , 1 s m , n1 n 1 nž /mª` ks1

`
k ks lim m I ??? m I˜ ˜Ž . Ž .Ý s m , 1 s m , n1 nž /mª` ks1

s m m ??? m m E ;Ž .˜ ˜Ž .s s1 n

< < < <mnmoreover m m ??? m m F m and, thus˜ ˜ ˜s s1 n

m m ??? m m E s m m ??? m m A .Ž . Ž .˜ ˜ ˜ ˜Ž . Ž .s s s s1 n 1 n

As a consequence

m m ??? m m G s m m ??? m m AŽ . Ž .˜ ˜Ž . Ž .s s s s1 n 1 n

so that
det m A s det m G ) 0Ž . Ž .˜

and thus m is a Chebyshev measure.˜
Finally Theorem 4.6 applied to the T-measures m and m gives˜

RR m s m M _ M : a , . . . , a g G a s 1Ž . Ž . Ž .Ž .D a a 1 n nq1iq1 iž /½ 51FiFn
i odd

s m a , a : a , . . . , a g G s RR m .Ž Ž . Ž .˜ ˜D i iq1 1 nž /½ 51FiFn
i odd
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