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We give an alternative proof to the well known fact that each convex compact
centrally symmetric subset of R2 containing the origin is a zonoid, i.e., the range of
a two dimensional vector measure, and we prove that a two dimensional zonoid
whose boundary contains the origin is strictly convex if and only if it is the range of
a Chebyshev measure. We give a condition under which a two dimensional vector
measure admits a decomposition as the difference of two Chebyshev measures, a
necessary condition on the density function for the strict convexity of the range of
a measure and a characterization of two dimensional Chebyshev measures.
Q 1997 Academic Press

1. INTRODUCTION

w xA well known Theorem of Lyapunov 10 states that the range of a
Žnon-atomic vector measures is compact and convex. Conversely see for

w x. 2instance 1 each compact convex centrally symmetric subset of R con-
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TWO DIMENSIONAL ZONOIDS 513

Žtaining the origin is the range of a two dimensional measure such a set is
.called a zonoid .

Some problems related to the bang-bang principle in control theory led
us to work with the class of the Chebyshev measures. Our definition of a
Chebyshev measures is essentially a linear independence condition on

w xsome vectors of its range. In 4, 5 we proved that the range of an
n-dimensional Chebyshev measure is strictly convex and its boundary

w xcontains the origin. Recently Schneider showed in 11 that the range of an
n-dimensional measure is strictly convex if and only if for every set A with
Ž .m A / 0 there exist n measurable subsets A , . . . , A of A such that1 n
Ž . Ž . w xm A , . . . , m A are linearly independent. A result by Neyman 8 states1 n

that if the origin is an extreme point of the boundary of a zonoid Z and m
Ž .is a vector measure such that RR m s Z then Z determines the m-range

Ž Ž . Ž ..of m, i.e., the set of m-uples m A , . . . , m A where A , . . . , A are a1 m 1 m
measurable partition of the space. An n-dimensional strictly convex zonoid
whose boundary contains the origin is then naturally expected to be the
range of a Chebyshev measure.

Here we prove that a strictly convex, centrally symmetric, compact
subset of R2 whose boundary contains the origin is actually the range of a
two dimensional Chebyshev measure. We give two different proofs: the
first one involves the representation theorem for Chebyshev measures

w xproved in 5 ; the second one is based on a new simple representation
result for convex sets in R2. Our technique allows also, given an arbitrary
convex centrally symmetric compact set, to build explicitly a measure
whose range coincides with it. Moreover, we give a condition under which
a two dimensional vector measure admits a decomposition as the differ-
ence of two Chebyshev measures.

Further, for two dimensional measures, we state a necessary condition
on the density function of m with respect to its total variation for the strict

Ž .convexity of the range RR m of m: as an application we show that m is a
w x Ž .Chebyshev measure on 0, 1 if and only if the map u defined by u a , b s

Ž . Ž Ž ..m a , b for 0 - a - b - 1 is a homeomorphism onto int RR m .

2. NOTATIONS AND PRELIMINARY RESULTS

Ž .Let m s m , m be a two dimensional vector measure defined on the1 2
w x < <interval 0, 1 equipped with a s-field MM and m be its total variation. The

determinant measure det m associated to m is the two dimensional mea-
w x2sure on 0, 1 defined by

det m s m m m y m m m ;1 2 2 1
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Ž .we point out that if A, B are measurable then det m A = B s
Ž Ž . Ž ..det m A , m B .

�Ž . 2We assume that MM contains the Borelians and we set G s x, y g R :
40 F x F y F 1 .

ŽDEFINITION 1. The measure m is a Chebyshev measure or simply
. Žw x.T-measure with respect to the intervals 0, a if it is non-atomic0 F a F1
< <m2 Žand each m -non-negligible measurable subset of G has a positive or

.negative det m measure.

Remark. In what follows we will always assume det m to be positive
whenever m is a Chebyshev measure; its properties do not change in the
other case.

< <In particular if m is a Chebyshev measure and A, B are m -non-negligi-
w x Ž Ž . Ž ..ble subsets of 0, 1 such that sup A F inf B then det m A , m B ) 0.

For F being an endomorphism of R2 and m a two dimensional measure
w x Ž . Ž Ž ..on 0, 1 we define the two dimensional measure Fm by Fm A s F m A

w xfor every measurable A ; 0, 1 . The next proposition is a straightforward
consequence of the definitions.

PROPOSITION 1. Let m be a T-measure and F be a rotation; then Fm is a
T-measure.

1 Žw x 2 . ŽDEFINITION 2. A function f in L 0, 1 , R is a Chebyshev system orn

.simply T-system with respect to a prescribed measure n whenever the
Ž Ž . Ž .. m2 Ž .determinant det f t , f t is positive for n -almost every t , t in G.1 2 1 2

w xPROPOSITION 2 5, Theorem 3.4 . A measure m is a Chebyshë measure
if and only if the density with respect to its total ¨ariation is a T-system.

Ž . w xFor m s m , m being a two dimensional measure on 0, 1 we denote1 2
Ž . Ž . � Ž . Ž Ž . Ž ..by RR m the range of m defined by RR m s m E s m E , m E :1 2
4 Ž . Ž . Ž .E g MM and by u : G ª RR m the map defined by u a , b s m a , b for
Ž .every a , b in G.

Ž . Ž .We denote by int A the interior of a set A, by cl A its closure, by ­ A
Ž . nits boundary, and by co A its convex hull; for L being a convex set in R

Ž . w xwe denote by ri L its relative interior. We refer to 9 for these definitions
and the basic properties.

The peculiar properties of a Chebyshev measure rely on the following
result.
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w x w xTHEOREM 1 5 . Let m be a Chebyshë measure on 0, 1 . Then the
Ž . Ž Ž ..restriction of u to int G induces a homeomorphism onto int RR m ;

Ž . � Ž . 4 Ž . � Ž .in particular RR m s m a , b : 0 F a F b F 1 and ­ RR m s m 0, a :
4 � Ž . 40 F a F 1 j m b , 1 : 0 F b F 1 .

3. A CHARACTERIZATION OF PLANAR STRICTLY
CONVEX ZONOIDS

THEOREM 2. Let K be a subset of R2. We ha¨e the following equï alence:

Ž .i the set K is strictly con¨ex, compact, centrally symmetric, and
Ž .0, 0 g ­ K ;

Ž .ii there exists a two-dimensional Chebyshë measure m such that
Ž .K s RR m .

Ž . Ž .Proof. ii « i . The identity

w x;A g MM , m 0, 1 R A s m 0, 1 y m AŽ . Ž .Ž .
1Ž . Žw x. wshows that R m is symmetric with respect to m 0, 1 . We proved in 4,2

x5 that the range of a Chebyshev measure is strictly convex; the compact-
Ž . Ž .ness of RR m follows from the Lyapunov Theorem. Moreover 0, 0 s

Žw x. Ž .m 0, 0 so that Theorem 1 yields 0, 0 g ­ K.
Ž . Ž . Ž . �Ž . 2i « ii . There exists a rotation F such that F K ; x, y g R :

4 w x Ž .x G 0 ; assume for simplicity that 0, 1 is the projection of F K on the
w xx-axis. For each x in 0, 1 let

y x s inf y g R: x , y g F K .� 4Ž . Ž . Ž .
1 Ž Ž .. Ž . Ž .Clearly p s 1, y 1 is the center of F K and the boundary of F K is2

the union of the graph of y and its symmetric with respect to p. Since y is
Ž .strictly convex and y 0 s 0 there exists a strictly increasing function g

such that

x
w x; x g 0, 1 , y x s g t dt .Ž . Ž .H

0

w xLet m be the two dimensional vector measure on 0, 1 whose density
Ž . Ž Ž ..function with respect to the Lebesgue measure is f t s 1, g t . Since g

is strictly increasing, f is a T-system with respect to the Lebesgue measure:
Proposition 2 then implies that m is a T-measure. By Theorem 1 the

Žw x.boundary points of the range of m are exactly the points m 0, x where x
1w x Žw x.varies in 0, 1 together with their symmetric with respect to m 0, 1 . By2

Žw x. Ž Ž ..the definition of m we have m 0, x s x, y x ; it follows that the
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Ž . Ž .boundaries of RR m and of F K coincide: these sets being convex and
Ž . Ž . Ž y1 .closed we obtain RR m s F K so that K s RR F m . The conclusion

follows from Proposition 1.

4. BIDIMENSIONAL ZONOIDS

Ž w x.A point P of a convex set C is said to be exposed see 9 if there exists
an hyperplane whose intersection with C is reduced to P. If C is compact

n w xin R there exists at least one exposed point: let P , P be a diameter of1 2
Ž < < � < < 4.C i.e., P y P s max P y Q : P, Q g C and let H be its orthogonal1 2

w xhyperplane at P ; if Q is in C l H then the segment Q, P is contained1 2
< < < <in C and if Q / P we have Q y P ) P y P , a contradiction: thus P1 2 1 2 1

is exposed. Strszewicz]Klee Theorem ensures the existence of exposed
points in compact convex subsets of arbitrary normed spaces.

Let C be a compact, convex, centrally symmetric subset of R2. In the
following Lemma 1 and Proposition 3 we will assume that O is an exposed
point of C and that

2 � 4C ; x , y g R : x G 0 , C l 0, y : y g R s O ;� 4� 4Ž . Ž .
notice that, in general, this can always be obtained applying an isometry of
R2.

Ž .Let L ) 0, M g R be such that Lr2, Mr2 are the coordinates of the
w xcenter I of C; clearly C is contained in 0, L = R. Let y be the function

defined by
w x; x g 0, L , y x s min y g R: x , y g C� 4Ž . Ž .

Ž . Ž .and let Graph y be its graph. Clearly y is convex, bounded, and thus
continuous on its domain.

y �Ž . 2 Ž . 4We set ­ C s ­ C l x, y g R : y F MrL x .
y Ž .LEMMA 1. ­ C s Graph y .

Ž . �Ž .Proof. Let P s M, L ; the central symmetry implies that C l L, y :
4 � 4 y �Ž . 4 � 4 Ž .y g R s P . Therefore ­ C l L, y : y g R s P and y L s M.
Ž .If int C s B the result is trivial; in what follows we assume that

Ž . w xint C / B: remark that by 9, Theorem 6.3 , C is the closure of its
w xinterior and thus each relative interior point of O, P belongs to the

interior of C.
x w Ž . Ž . Ž .Let x g 0, L and x, y g C be such that y F MrL x. If y ) y x

Ž . Ž Ž ..then x, y belongs to the relative interior of the segment joining x, y x
Ž Ž . . Ž . w xg C and x, MrL x g int C ; Theorem 6.1 in 9 then implies that

Ž . Ž . Ž Ž .. w xx, y g int C . Conversely if x, y x f ­ C for some x g 0, L there
Ž . Ž .exists y - y x such that x, y g C, contradicting the definition of1 1

Ž .y x .



TWO DIMENSIONAL ZONOIDS 517

w x yLet G: 0, L ª ­ C be the surjective map defined by

w x; x g 0, L , G x s x , y x .Ž . Ž .Ž .

w x Ž .Remark that for x in 0, L the symmetric point of G L y x with respect
Ž Ž ..to I is the point x, M y y L y x of the boundary of C. It follows that

w x; x , y g 0, L = R, x , y g C m y x F y F M y y L y x .Ž . Ž . Ž . Ž .
(Ž .

We will widely use the next representation result.

PROPOSITION 3. The following identity holds:

w xC s G x y G x : x , x g 0, L , x F x . )� 4Ž . Ž . Ž .2 1 1 2 1 2

Ž . Ž .Proof. Let x F x ; if x s x then O s G x y G x g C.1 2 1 2 1 1
Assume that x - x ; since 0 F x and x y x F x then by convexity1 2 1 2 1 2

we have

y x y x y x y y xŽ . Ž . Ž .2 1 2 1F ;
x y x x y x2 1 2 1

Ž .similarly since x F L y x y x and x F L then1 2 1 2

y x y y x y L y y L y x y xŽ . Ž . Ž . Ž .Ž .2 1 2 1F .
x y x L y L y x y xŽ .Ž .2 1 2 1

Ž . Ž . Ž . Ž Ž ..It follows that y x y x F y x y y x F M y y L y x y x ; thus2 1 2 1 2 1
Ž . Ž Ž . Ž .. Ž . Ž ..by ( the point x y x , y x y y x s G x y G x belongs to C.2 1 2 1 2 1

Ž . w xConversely let z s a, b g C. Let w : 0, L y a ª R be the map de-
fined by

w x; x g 0, L y a , w x s y x q a y y x y b.Ž . Ž . Ž .

Ž . Ž .Clearly w is continuous; moreover by ( we have y a F b F M y y
Ž . Ž . Ž . Ž . Ž .L y a . Therefore w 0 s y a y b F 0 and w L y a s M y y L y a

Ž .y b G 0: it follows that there exists x such that w x s 0. Then if we1 1
Ž . Ž . Ž .put x s x q a we obtain y x s b q y x implying that G x s z q2 1 2 1 2

Ž .G x , which is the desired conclusion.1

ŽThe construction in Theorem 2 suggests an alternative proof and an
.improvement to the well-known fact that C is the range of a measure

Ž w x.see, for instance, 1 .
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For I, J being intervals in R we write that I - J if i - j for every i in I
and j in J; we shall denote by l the Lebesgue measure in R.

THEOREM 3. Let K be a non-empty, compact, centrally symmetric, con¨ex
subset of R2 containing the origin. Then there exists a non-atomic measure m

w x Ž .on the Borelians of 0, 1 such that K s RR m and for e¨ery x in K there exist
w x Ž . Ž .a , b , g , d in 0, 1 such that x s m a , b y m g , d . Moreo¨er if the origin is

an exposed point of K then

RR m s m a , b : 0 F a F b F 1 .� 4Ž . Ž .

Proof. Let e be an exposed point of K ; then O is an exposed point of
ye q K. Let T be a rotation such that

T ye q K ; x , y g R2 : x G 0 ,� 4Ž . Ž .
� 4T ye q K l 0, y : y g R s O� 4Ž . Ž .

Ž . Ž .and let I s Lr2, Mr2 be the center of T ye q K ; we will assume that
Ž .L s 1 and set C s T ye q K . Correspondingly let y and G be the

function defined above.
w x w xBy 9, Corollary 24.2.1 there exists an increasing function g : 0, 1 ª R

such that

x2w x; x , x g 0, 1 , y x y y x s g t dt.Ž . Ž . Ž .H1 2 2 1
x1

Let n be the measure whose density function with respect to the Lebesgue
Ž .measure is 1, g . Proposition 3 then yields

w xC s n x , x : x , x g 0, 1 , x F x ))� 4Ž . Ž .1 2 1 2 1 2

Ž .so that, in particular, C ; RR n . To prove the opposite inclusion let
I - ??? - I be m disjoint non-trivial open intervals and set V s1 m
I j ??? j I . Let1 m

0 s x - x - ??? - x F 1 and 1 s y ) y ) ??? ) y G 00 1 m 0 1 m

x w x wbe such that J s x , x and L s y , y are translates of I .i iy1 i i myiq1 myi i
Then

J - ??? - J , L - ??? - L , x s l V , y s 1 y x .Ž .1 m 1 m m m m

Clearly for each i J , I and L have the same length andi i i

inf J F inf I F inf L , sup J F sup I F sup L .i i i i i i
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The function g being increasing we obtain

� 4; i g 1, . . . , m , g t dt F g t dt F g t dtŽ . Ž . Ž .H H H
J I Li i i

and thus

x 1m
g t dt F g t dt F g t dt.Ž . Ž . Ž .H H H

0 V ym

Ž .Now by ) we have

xm
p s x , g t dt s G x y G 0 g CŽ . Ž . Ž .Hm mž /0

1
and q s x , g t dt s G 1 y G y g C ;Ž . Ž . Ž .Hm mž /ym

by convexity we obtain

� 4n V s x , g t dt g co p , q ; C.Ž . Ž . Ž .Hmž /V

w xLet A be a measurable subset of 0, 1 ; the measure n being regular there
Ž . Ž .exists a GG subset E such that n A s n E . We may write E s F Vd m m

Ž .where V is a decreasing sequence of countable unions of disjoint openm m
Ž . Ž .intervals. Since n E s lim n V then the previous remarks and them m

Ž . Ž .closure of C imply that n A s n E g C. It follows that

C s RR n )))Ž . Ž .

y1 Ž . Ž y1 .and therefore K s e q T RR n s e q RR T n . If O is an exposed point
of K we may take e s 0, proving the claim. Otherwise since O g TK

Ž .there exists a set E such that n E s yTe; let n 9 be the measure on the
w xBorelians of 0, 1 defined by

n 9 B s n B _ E y n B l E .Ž . Ž . Ž .

w x Ž .It is well known 1, Lemma 1.3 and easy to check that the range of n 9 is
given by

RR n 9 s RR n y n EŽ . Ž . Ž .
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Ž . y1Ž Ž .. Ž .so that RR n 9 s TK and therefore K s T RR n 9 s RR m where m s
y1 w xT n 9. Now let A be a measurable subset of 0, 1 . Then

m A s Ty1n A R E y Ty1n A l E ;Ž . Ž . Ž .

Ž . Ž .)) and ))) yield the conclusion.

Remark. A generalized version of the integral inequalities that we use
Ž . w xto show that RR n is contained in C was stated in 2 ; their proof in this

less general context is simpler and it is given here for the convenience of
the reader.

The above arguments yield an alternative proof of Theorem 2.

COROLLARY. Let K be a non-empty, compact, centrally symmetric, strictly
con¨ex subset of R2 such that O belongs to ­ K. Then there exists a Chebyshe¨

w x Ž .measure m on the Borelians of 0, 1 such that K s RR m .

Proof. Since K is strictly convex and O belongs to ­ K then O is
exposed: with the notations of the proof of Theorem 3 we may take e s O

Ž . Ž .and thus no translation is needed. Then C s T K so that by ))) we
Ž y1 .obtain K s RR T n where n is the measure whose density with respect to

Ž .l is the vector 1, g . Since the function y is strictly convex then g is
Ž .strictly monotonic and therefore 1, g is a T-system. Proposition 2 then

shows that n is a Chebyshev measure; Proposition 1 yields the result.

Remark. The main difference between the two proofs is that, in Theo-
Ž .rem 3, the representation result for convex sets Proposition 3 is used a

substitute of the representation Theorem 1 for Chebyshev measures.

5. DECOMPOSITION OF MEASURES

Ž .Let X, MM be a measurable space and m be a non-atomic positive
Ž .measure on X. There exists a family M of sets of MM such that m isi igw0, 1x

Ž . Ž w xa Chebyshev measure with respect to m and to M we refer to 5i igw0, 1x
.for the definition of T-measure in this more general setting . In fact

Lyapunov Theorem on the range of measures yields the existence of an
Ž . Ž . Ž . w xincreasing family M such that m M s im X for each i in 0, 1 .i igw0, 1x i

More generally, if m is a signed measure on X, by the Hahn decomposi-
tion theorem we may decompose X into a disjoint union Xyj Xq such
that m s mqy my and

mq ? s m Xql? , my ? s ym Xyl? .Ž . Ž . Ž . Ž .
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The measures mq and my being positive, there exist two increasing
Ž q. Ž y. q Ž y.families M and M such that m resp. m is a Cheby-i igw0, 1x i igw0, 1x

Ž q. Ž Ž y. .shev measure with respect to M resp. M . Thus m is thei igw0, 1x i igw0, 1x
difference of two Chebyshev measures.

We give now a condition under which the same conclusion holds for two
2 �Ž .4dimensional vector measures. For a vector ¨ of R R 0, 0 we denote by

x xarg ¨ its principal argument in y p , p . Let f be a measurable function
with values in R2.

Ž .THEOREM 4. Let m be a two dimensional measure on X, MM and let
Ž . < < < <Ž� Ž .f s f , f be its density function with respect to m . If m x: arg f x s1 2

4. x x q yu s 0 for each u in y p , p then there exist two T-measures m and m
such that m s mqy my.

q � Ž . 4 y � Ž .Proof. We define X s x g X : arg f x G 0 , X s x g X : arg f x
4 w x- 0 and, for every i in 0, 1 ,

Mq s x g Xq: arg f x F ip ,� 4Ž .i

My s x g Xy: arg f x G yip .� 4Ž .i

Let fq and fy be the functions fqs f 1 q and fys f 1 . Then fq
X Xy

Ž y. q Ž y. < <resp. f is a T-system on X resp. X with respect to m and
Ž q. Ž Ž y. . q q < < yM resp. M . Then setting dm s f d m and dm si igw0, 1x i igw0, 1x
y < <f d m we obtain a decomposition of m as the difference of two Chebyshev

measures.

w xRemark. Under the above assumptions Theorem 5.1 in 5 then implies
w x Ž .that for every A g MM there exist i , i , j , j in 0, 1 such that m A s1 2 1 2

qŽ q q. yŽ y y.m M R M y m M R M . This results looks similar to the onei i j j2 1 2 1

stated in Theorem 3; however, here the measure m is imposed whereas in
Theorem 3, given a zonoid, the measure is built.

6. A CHARACTERIZATION OF TWO DIMENSIONAL
CHEBYSHEV MEASURES

Žw x .Let m be a two dimensional vector measure on 0, 1 , MM and let f be
< < ² :its density with respect to the total variation m . We denote by u: u g E

the vector subspace of R2 spanned by the vectors u belonging to a set E
and by ‘‘?’’ the usual scalar product in R2. The next result will be applied
later and has an interest in itself.

Ž .THEOREM 5. If RR m is strictly con¨ex then the determinant
Ž Ž . Ž .. Ž . Ž . < <m2 w x2det f x , f y of the ¨ectors f x , f y is not zero m -a.e. on 0, 1 .
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Proof. Let A, Z, A be the sets defined by1

A s x , y : det f x , f y s 0 , Z s x : f x s 0� 4� 4Ž . Ž . Ž . Ž .Ž .
² :A s x , y : f x / 0, f y g f x ;� 4Ž . Ž . Ž . Ž .1

Ž w x.clearly we have A s Z = 0, 1 j A . Let t be the map defined by1
Ž . Ž . �Ž . Ž . Ž . Ž Ž .. 4t a, b s yb, a ; then A s x, y : f x / 0, f y ? t f x s 0 so that1

A is measurable.1
Moreover Fubini’s Theorem gives

< <m2 < < < <m A s d m y d m x ,Ž . Ž . Ž .H H1 ½ 5w x0, 1 RZ Dx

w x � Ž . Ž Ž .. 4where, for x in 0, 1 , D s y: f y ? t f x s 0 .x
< <m2Ž . w x < <Ž .If m A / 0 there exists x in 0, 1 _ Z such that m D / 0. The1 x

very definition of D implies that for every measurable subset B of D wex x
have

< <m B ? t f x s f y ? t f x d m y s 0Ž . Ž . Ž . Ž . Ž .Ž . Ž .H
B

² Ž . :and thus the vector space m B : B g MM, B ; D is at most one dimen-x
w x Ž .sional: Theorem 3.1.2 in 11 then implies that RR m is not strictly convex,

a contradiction.
< <Ž . < <m2Ž . < <m2Ž w x.Obviously we have m Z s 0; therefore m A F m Z = 0, 1

m2< < Ž .q m A s 0, proving the claim.1

LEMMA 2. Let A be a non-empty open con¨ex bounded subset of R2 and
Ž .assume that ­ A contains a non-trï ial segment L. Then ri L is open in ­ A.

2 � 4Proof. Let p in R R O and c in R be such that

L ; x g cl A : p ? x s c , A ; x g R2 : p ? x - c� 4 � 4Ž .

� 4 Ž .and a, b a / b be the relative boundary of L. Let U , U be two disjointa b
Ž .neighbourhoods of a and b; since a, b are in cl A there exist a in1

U l A and b in U l A: leta 1 b

� 4C s co a, a , b , b .Ž .1 1

Ž .Remark that p ? a - c and p ? b - c so that L ; ­ C and L l int C s1 1
Ž . w xB; furthermore since C ; cl A then Theorem 6.3 in 9 implies that

Ž . Ž . Ž .int C ; A. As a consequence if we put D s int C j ri L we have

D l ­ A s ri L .Ž .
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Finally if we denote by B the open set defined by

B s int co a , b , a q a y a , b q b y b� 4Ž . Ž .Ž .Ž .1 1 1 1

Ž . Ž .then clearly we have D s B l cl A so that D is open in cl A ; the
conclusion follows.

n Ž . nLEMMA 3. Let A, B be open bounded subsets of R and c : cl A ª R

be a continuous map inducing a homeomorphism from A onto B. Then
Ž .c ­ A s ­ B.

Ž Ž .. Ž Ž .. Ž .Proof. Clearly we have B ; c cl A ; cl c A s cl B ; moreover
Ž . Ž Ž .. Ž Ž .. Ž .cl A is compat so that c cl A is closed. It follows that c cl A s cl B .

Ž .Clearly we have ­ B ; c ­ A . Conversely let x g ­ A and assume that0
Ž . Ž . Ž .z s c x g B. Let U resp. W be open neighborhoods of x in cl A0 0 0

Ž . Ž .resp. z in B such that c U ; W. There exists y in A satisfying0 0
Ž .c y s z ; we may assume that c is a homeomorphism from an open0 0

Ž .neighborhood V of y in A onto W and that U l V s B. Since x g cl A0 0
Ž . Ž .there exists x in U l A. Now c x g W s c V : let y g V be such1 1 1

Ž . Ž .that c y s c x ; the injectivity of c on A implies that x s y g U l1 1 1 1
V, a contradiction.

w xWe recall that we denote by l the Lebesgue measure on 0, 1 ; in what
1 Ž .follows we assume that there exists a strictly positive function h g L 0, 1l

< < < <such that d m s h dl; in particular m is absolutely continuous with
respect to l.

We prove here that Theorem 1 characterizes the Chebyshev measures.

THEOREM 6. Let u be the map defined in Section 2. If u induces a
Ž . Ž Ž ..homeomorphism from int G onto int RR m then m is a Chebyshë mea-

sure.

Ž .Proof. Since G and RR m are convex and closed then Theorem 6.3 in
w x Ž .. Ž . Ž Ž Ž ...9 yields G s cl int G and RR m s cl int RR m : applying Lemma 3

Ž . Ž Ž .. Ž . Ž .with c s u , A s int G , B s int RR m we obtain u ­ G s ­ RR m ; in
particular

­ RR m s m 0, a : 0 F a F 1 j m b , 1 : 0 F b F 1 .� 4 � 4Ž . Ž . Ž .
Ž .Assume that the boundary of RR m contains a non-trivial segment L; let

Ž . w x Ž .for instance a g 0, 1 be such that x s m 0, a belongs to the relative
interior of L. By Lemma 2 there exists an open neighbourhood V of x

Ž . Ž .such that V l ­ RR m s V l ri L . By continuity there exist a , a in1 2
x w0, 1 such that a - a - a and1 2

w xm 0, t : t g a , a ; V .� 4Ž . 1 2

Ž . Ž . Ž .Lemma 3 then implies that m 0, t g V l ri L for every t g a , a .1 2
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2 � 4 � 2 4Therefore, if p g R _ 0 , c g R are such that L ; x g R : p ? x s c
we have

; t g a , a , p ? m 0, t s c.Ž . Ž .1 2

Ž .Let U be the open subset of int G defined by

U s a , b g G : a - a - b - a .� 4Ž . 1 2

Ž . 2Our assumption implies that u U is an open subset of R ; however, we
have

; a , b g U,Ž .
p ? u a , b s p ? m a , b s p ? m 0, b y p ? m 0, a s 0,Ž . Ž . Ž . Ž .

Ž .a contradiction; it follows that RR m is strictly convex. Theorem 5 then
implies that

2m2< < w xdet f a , f b / 0, m -a.e. in 0, 1 .Ž . Ž .Ž .
w xBy 12, Corollary 10.50 we have

m a , a q xŽ .
< <lim s f a , m -a.e.Ž .

< <m a , a q xxª0 Ž .
< <m a , a q xŽ .

and lim s h a , l-a.e.Ž .
l a , a q xxª0 Ž .

so that

m a , a q xŽ .
< <lim s f a h a , m -a.e.Ž . Ž .

xxª0

< <m2 w x2Therefore the map u is differentiable m -a.e. on 0, 1 and its Jacobian
is given by

< <m2Jac u a , b s yf a h a , f b h b , m -a.e.Ž . Ž . Ž . Ž . Ž . Ž .Ž .
so that in particular the determinant of the Jacobian vanishes only on a

Ž .negligible set. The map u is a homeomorphism on int G and G is
Ž Ž . .connected; as a consequence the degree deg int G , u , p is constantly

Ž Ž .. w xequal to 1 or y1 for every p in int RR m 7, Theorem 3.35 , assume for
w xinstance that it equals y1. Then by 7, Lemma 5.9 we have

sgn det yf a , f b s sgn det Jac u a , b s deg int G , u , pŽ . Ž . Ž . Ž . Ž .Ž . Ž .
< <m2s y1, m -a.e. in G

and therefore f is a T-system; Proposition 2 yields the conclusion.
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Ž .APPENDIX: n y 1 DIMENSIONAL FACES OF CONVEX
SETS IN R n

The above Lemma 2 can be generalized to higher dimensions using
some similar arguments. We thank G. De Marco for suggesting the
following alternative proof.

THEOREM 7. Let A be an open con¨ex bounded subset of R n and assume
that ­ A contains a relatï ely open subset L of an hyperplane. Then L is open
in ­ A.

Proof. It is not restrictive to assume that O g A and that L ; H
Ž .where for some l ) 0

H s x , . . . , x g R n : x s l .� 4Ž .1 n n

Clearly H is a supporting hyperplane so that x F l for every x sn
Ž . Ž . 5 5 nx , . . . , x g cl A . We denote by ? the norm of R defined by1 n
5Ž .5 < < 5 5x , . . . , x s max x ; we recall that the map p : x ¬ xr x is a homeo-1 n i i

Ž 5 5 . n Žmorphism from ­ A onto the unit sphere S in the ? -norm of R see
w xfor instance 6 ; the elementary proof is based on the fact that the relative

interior points of a segment joining an interior point with another point of
.a convex set C belong to the interior of C . It is not restrictive to assume

that
n < < < <L ; x , . . . , x g R : x ) max x , . . . , x ;� 4� 4Ž .1 n n 1 ny1

Ž .in fact it is enough to transform A and H with the map x , . . . , x ¬1 n
Ž .x , . . . , x , rx for a sufficiently large r. Then in particular we have1 ny1 n
5 5 Ž .x s l for every x in L. It follows that K s p L ; S l Q where

�Ž . n 4 Ž . Ž .Q s x , . . . , x g R : x s 1 s 1rl H and that p x s xrl for every1 n n
x in L so that K is homothetic to L and is thus open in Q. Moreover K is

�Ž . ncontained in the open set B s x , . . . , x g R : x ) 0, 1 )1 n n
� < < < <44max x , . . . , x and Q l B s S l B: therefore K is open in S.1 ny1
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