JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 197, 925-944 (1996)
ARTICLE NO. 0062

Oriented Measures™
Raphaél Cerf
CNRS, Université Paris Sud, Mathématique, Batiment 425, 91405 Orsay Cedex, France
and
Carlo Mariconda

Dipartimento di Matematica pura e applicata, Universita di Padova, via Belzoni 7,
35131 Padua, Italy

Submitted by Dorothy Maharam Stone

Received June 15, 1994

A vector measure u = (..., u,) defined on [a, b] is oriented if for each
k-tuple of disjoint measurable sets (A;,..., A;) such that A, < -+ <A, the
determinant

m(A4y) o m(A4y)
m(A) o m(Ay)

is positive. We study the range % of an oriented measure:
% = {w(E): xg has n discontinuity points},
3% = { n(E): xp has less than n — 1 discontinuity points}.

© 1996 Academic Press, Inc.

1. INTRODUCTION

A theorem of Lyapunov states that the range % of a non-atomic vector
measure u on [a, b]

# = { u(A): A measurable subset of [a, b]}
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coincides with the convex set

{fbde:OSps 1}.

However for a given p, 0 < p < 1, the usual proofs based on convexity-
extreme points arguments [4; 5] do not give any information about the
existence of a “nice” set E such that

mw(E) = fabp du.

Consider, for instance, the two-dimensional vector measure u(A) =
(|Al,| Al + 2| A N B]) where B is a borelian subset of [a, b] and | | denotes
the Lebesgue measure. For each set E, the equality u(E) = w(B) implies
B =EFE.

When the measure w admits a density f, Halkin [3] showed that if for
each vector p € R” the set

{rela,b]:p-f(z) >0}
(where - is the usual scalar product) is a finite (respectively countable)
union of intervals, then there exists a set E which is a finite (resp.
countable) union of intervals.
In our paper [2], we introduced the stronger orientation condition A: we

say that n real functions fi,..., f, verify condition A on an interval [a, b]
if for each k in {1,..., n} the determinant
filx)  filxy) o fi(x)

L(x) folx) 0 fulxe)

fk(‘xl) fk(;fz) fk(;ck)

is not equal to zero whenever the x,’s in [a, b] are distinct and its sign is
constant on the k-tuples (x,,..., x;)suchthat ¢ <x, <x, < -+ <x, <b.

We showed that if a measure w admits a density function whose
components are continuous and satisfy the orientation condition A then
the set £ may be built in such a way that its characteristic function has at
most n discontinuity points. Moreover, if 0 < p < 1 there exist two such
sets E; and E, whose characteristic functions x; and xg, have exactly n
discontinuity points (one set is a neighbourhood of @ whereas the other is
not).

Our proofs relied upon the fact that the map

(ap,..., ) Hj;azf(x)dx+faa4f(x)dx+...
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is differentiable and has an invertible Jacobian whenever a < a; < -+ <
a, <b.

We also showed that whenever a function x satisfies x(0) = .-+ =
x"=2(0) =0 and x*~P(0) = 1 then the n functions (x"~D,..., x', x)
verify A on a neighbourhood of 0. We applied these results to the study of
reachable sets of constrained bang-bang solutions and to non-convex
problems of the calculus of variations.

In this paper, we deal with measures which are not necessarily abso-
lutely continuous with respect to the Lebesgue measure.

Oriented Measure. 1f A,,..., A, are k measurable sets of [a, b], by
A, < -+ <A, we mean that for all k-tuple (x,...,x,) of A; X =+ X A,
we have x; < -+ <x,. A measure u = (..., u,) is said to be oriented
if for each k-tuple of measurable sets A,,..., A, such that A, < -+ <A,
the determinant

I-Ll(Al) Ml(Ak)
I'Lk(./ll) Mk(;4k)

is positive.

In this more general framework, we give a new proof of the results
stated in [2].

We carry out a deep study of the range % of the measure:

e for each point g of its interior % there exist exactly two distinct
“dual” sets E,, E, whose characteristic functions have n discontinuity
points such that u(E,) = ¢ = uw(E,);

e the set % coincides with

{[bpdﬂ:0<p<l}

so that the above set is open;
e the set % is strictly convex;

e a point w(E) belongs to the boundary % of # if and only if the
characteristic function of E has less than » — 1 discontinuity points;

« finally, we give a recursive decomposition of the boundary J.%.
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2. ORIENTED MEASURES

Throughout the paper, we will work with an interval [a, b] equipped with
the Lebesgue o-field . Measurable will mean measurable with respect to
this o-field. A negligible set is a measurable set of Lebesgue measure zero.
A vector measure on [a, b] is a countably additive set function defined on
the Lebesgue o-field with values in R” for some integer 7.

Notation. If A,,..., A, are k measurable sets of [a, b], by 4; < -+ <
A, we mean that A4,,..., A, have non-zero Lebesgue measure and for all
k-tuple (x,...,x,) of A; X -+ X A, we have x; < -+ <x,.

Let w = (uy,..., w) be a vector measure. If p belongs to L} ([a, b]), we
note

mi( p) =/abpdu,-, w(p) =fabpdu= (mi(p)svvs ().

DEFINITION 2.1. A vector measure u = (uq,..., u,) on [a, b] is said to
be oriented on [a, b] if it is non-atomic and if for each k in {1,..., n} and
for each k-tuple of measurable sets A,,..., A; such that 4, < - <A,
the determinant

M1(A1) :U~1(Ak)

m(Ay) o m(Ay)
is positive.

Remark. If w is oriented, then w, is a positive measure which assigns
positive values to sets of positive Lebesgue measure. In particular, if [ is a
non-trivial interval, then w(I) is non-zero.

Remark. 1f p is oriented and I,,...,I, are n disjoint non-trivial
intervals, then the vectors w([)),..., u(l,) form a basis of R".

A very important fact concerning oriented measures is that their charac-
teristic property carries on from sets to positive functions.

Notation. 1f p is a function its support is the set supp p = {x: p(x) # 0}.

THEOREM 2.2. Let w=(py,...,n,) be an oriented measure. If
Pis---» P, are n up-integrable non-negative functions such that supp p, <
- < supp p,, then the determinant

/“Ll( P1) M1( Pn)

/‘Ln( pl) M’n( pn)
is positive.
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Let us first state a preparatory lemma.

LEMMA 2.3. Let p = (uy,..., u,) be a vector measure and py, ..., p, be
n measurable p-integrable functions. The determinant

/91 du; - fpn dpy

fpl dp, fpn d,

is equal to

[ ot pis)d| T (0 hoa © 8 by (s1v--225,).

oell,

Proof of Lemma 2.3. 'The identity is obviously true whenever p,, ..., p,
are characteristic functions. The monotone class theorem yields the result.

Proof of Theorem 2.2. We apply the lemma. The domain of integration
of the n-fold integral is reduced to supp p; X - X supp p,,.

We first prove that the measure i =X, o €(0)pt, ) ® = ® fy(, IS
positive on the product space (supp p;, %) X -+ X (supp p,,-¥) equipped
with the product o-field (where % denotes the one-dimensional Lebesgue
o-field). Notice that the product o-field #®" does not coincide in general
with the n-dimensional Lebesgue o-field (i.e., the completion of the
n-dimensional Borel o-field).

Consider first the case of a subset of supp p, X -+ X supp p, which is a
product set A; X --- X A, (where the A4,’s are measurable). Necessarily,
each A; is a subset of supp p,. If none of the A,’s is negligible, then we
have A, < -+ <A, and (A, X -+ X A,) = det[ w(A,),..., u(A4,)] is
positive by definition.

Suppose now some of the A;’s are negligible. For each index i,1 <i < n,
there exists a decreasing sequence (B,),, . of non-negligible measurable
subsets of supp p; having an empty intersection (this is a consequence of
the fact that supp p; is not negligible). Now for each m we have 4, U B!,
< -+ <A,UB" whence (A, UB}) XX A, UB") is positive. By
the continuity of the measure u, we have

(A, X - xA,) = lim (A, UB,, X XA, UB)
m-— o

so that 4(A, ... A,) is non-negative. It follows that j is non-negative on
the boolean algebra of the finite (disjoint) union of product sets: its unique
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extension to the o-field #®" generated by these products is also non-
negative.

The function (s,...,s,) = p,(s;) - p,(s,) is positive everywhere on
this set and is measurable with respect to the o-field Z#®": thus the
integral [p,(s))...p,(s,)di(sy,...,s,) is positive. |

Remark. 1f p is absolutely continuous with respect to the Lebesgue
measure, then Lyapunov theorem yields an alternative proof of Theorem
2.2. In fact,

Vk € {1,...,n} 3E, C supp p, r(pi) = n(Ep).

Necessarily w(E,) is non-zero for each k (see remark after definition 2.1)
and the absolute continuity hypothesis on w implies that the E,’s are not
negligible.

It follows that E, < -+ < E, and detfu(p,), ..., u(p)] =
detl w(E)), ..., u(E)] > 0.

We shall denote by I', the subset

o= {(x,....,x) €RFia <x; < - <x,<b}.

DEeFINITION 2.4. The measure w is said to be locally oriented if for
each n-tuple x of I, there exists a neighbourhood V' =V, X -+ X V, of
x such that for k-tuple of measurable sets A4, < -+ <A, satisfying
Ay X - XA, CV; X+ XV, the determinant

Ml(Al) :U~1(Ak)

m(Ay) o m(Ay)
is positive.
As a curiosity, we prove the following:

PROPOSITION 2.5. A locally oriented measure on [a,b] is oriented on
[a, b].

Proof.  Let u be a locally oriented measure. The compact set T}, can be
covered by a finite family of open sets (V));c o where V, =1} X -+ X I,
and (I}) _. are subintervals of [a, b] in such a way that for each k-tuple

l<k<n

of measurable sets 4, < -+ < A4, satisfying A, X -+ X 4, C V; for some
i € T, the determinant formed with the first k components of the vectors
w(A), ..., u(A,) is positive.

Let (J)),c s be the finite family of the atoms of the algebra generated by
the sets (I}, i € T, 1 < k < n) (thus the J;’s are exactly the sets of the
form N, .oy li for some x € [a,b]). Let us remark that for each
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a,.. lk) in 3%, the product J;, X -+ X J, is contained in some product
I X oo X T, Tn fact,

Ty X x ¢ J I x e X
ieT

so that there exits i, such that J, X - X J, N[ lo X -+ X I}o is not empty.
It follows that J, NI o+ &, J, N Ik0 £ and by the very construc-
tion of the sets J, s we obtain J, - 11’0, s d C Ij». We denote by fi, the
measure f; = X, e €(0) i,y ® -+ ® p, ). Let (Ay,..., 4;) be a k-tu-
ple of measurable sets such that 4, < --- <A,. The product A X o X
Ay is the disjoint union of the sets (A; X - XA ) N, X- ><J,)
when (I,,...,1,) varies in 3. Let now (ll,.. lk) belong to 3. Either
(A; X - X Ak) N (J;, X = X J, ) is empty (and thus has a zero [, mea-
sure) or it is not empty and necessarily, J, < --- </J, . Proceeding as in
the proof of Theorem 2.2, we show that [, is a positive measure on the set
(J;, X -+ X J,) whence [, ((A; X - XA) N, X XJ)) is non-
negative. Since the set A4; X -+ X A, is not negligible, at least one of
these sets is not negligible. Let (4, X -+ X A,) N (J; X --- X J, ) be such
a set. It is a subset of one of the Vs and, moreover, (4; NJ;) < =+ <
(A, NJ, ) whence (A4, NJ;) X - X (A, NJ,)) is positive. Thus
(A, X -+ X A,;) is positive. 1

3. ORIENTED MEASURES WITH DENSITIES

Orientation Condition A. We say that n real functions f,,..., f, verify
condition A on an interval [a, b] if for each k in {1,..., n}, the determi-
nant

filx) o filxg)

L(x) 0 falxe)

fx) o f(x)

is positive whenever the x,’s in [a, b] are such that a <x; <x, < -+ <
x, <b.

Remark. 1In our previous paper [2], we did not impose the sign of the
above determinant to be positive. When dealing with continuous functions,
a connectedness argument shows immediately that the sign is constant on
the set T,. In our present framework (at the measure level), we find it
convenient to work with this slightly more restrictive condition.
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ExamMpLES. For n =1, condition A states that the function f, is
positive; for n = 2, the functions f, f, satisfy A if and only if f, is positive
and f,/f, is strictly increasing. The functions f(¢) ="' (i > 1) satisfy
condition A on R (the corresponding determinants are Vandermonde
determinants).

PROPOSITION 3.1.  Let f,,..., f, be n functions in L'([a, b)) satisfying the
orientation condition A on [a,b]. Let u, be the measure on [a, b] whose
density with respect to the Lebesgue measure is f,. Then the measure p =
(ys-..y ) is oriented.

Proof. Let A, < -+ <A, be k measurable sets of [a, b]. Since the
determinant is a multilinear continuous form, we can write

ffl ffl fi(sy) o fi(se)
- - fo(s) = (s
' C|= = . o ds,...ds,.
AX e XAy . . .
'/:41fk fAkfk fi(s)) = filse)

By condition A, the integrand is positive on 4, X -+ X A,. |

If f,,...,f, are of class ! on [a, b], we will denote their Wronskian
by W(f,,..., fi)- The following operational criterion for the fulfilment of
the orientation condition A has been used in [2].

PROPOSITION 3.2. Let f,,...,f, in "~ '([a, b]) be such that

Vt e [a,b] W(f)(t) >0,....W(f,....,f,)(t) > 0.

Then f,,..., f, satisfy the orientation condition A on [a, b].

4. NOTATIONS AND PRELIMINARY LEMMAS

Let us introduce some notations.

If uy,...,u, are vectors of R”, their determinant is sometimes denoted
by detl[u,,...,u,]. Let A be a n X n matrix with real coefficients; by det A
or |Al|, we denote its determinant. For each i,j in {1,...,n}, by A, we
mean the (n — 1) X (n — 1) matrix obtained by removing the ith row and
the jth column from A. Surprisingly, the following simple algebraic trick
will play an essential role in the existence part of the proof of theorem 5.1.
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LEMMA 4.1. Let A =(a;),_; j., be an n X n matrix with real coeffi-
cients. Let x4, ..., x, be such that

=0

a, %y + - tay, x,.;  +ay,x,=0

ay Xy tetay 0%, tag,x,

anfl,lxl + +an71,n71xn71 + anfl,nxn = 0

If det A, # 0, then
| ]

a,x, + - t+a,x, = mxn.
nn

Proof. Cramer’s rule applied to the above system yields

. (=114,
VlE{l,...,n—l} X, = ——(—— X,
14,,]
so that
Z?:1(_1)n+iani|Ani| Al
anlxl + o +ann‘xn = |A | xn = mxn

since ©7_ (—1)""'a, ;| A, is the development of the determinant | 4| along
the first row. |}

The next lemmas involve strongly the notion of oriented measure.

LEMMA 4.2. Let F and G be two distinct subsets of [a, b] which are the
union of | and m disjoint closed intervals

andlet p = (py,..., 1) be an oriented measure. Assume u(F) = p(G).
Then n <1 + m; moreover if F N dG # Jthenn <l +m — 1.

Proof. Let us first remark that the symmetric difference

(LU~ UL)A(J, U UJ,) = ( U (7 qu)) \ ( U (& mJ,))

i,J i,

is the union of at most / + m non-trivial intervals and that whenever at
least two intervals have a common boundary point then this number is
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smaller than / + m — 1. Since the intervals [,,..., I, are disjoint, as well
as J,,...,J,,, we have
(LLuu-UL) V(U UL\ N
=(LUIH)D\N ([ NT)U(LU--UL)U(J,U--UJ,).

Now, the set (I, U --- U ) U (J, U - UJ )is a union of at most ! +
m — 2 disjoint intervals. Either I, N J, = or I, NJ, # J and I, U J,
is an interval. In both cases, (I; U J,)\ (I; N J,) is the union of at most
two intervals (at most one if I, and J; have a boundary point in common).
A straightforward induction gives the result.

Since the sets F and G are distinct, FAG is not empty. Let 4, < -+ <
A, be the connected components of FAG. For k in {1,..., p}, we have

A, =(A,NF)U (A4, NG),
(A,NF)YNn(A,NG)cA, N (FNG)C(FAG) N (FNG) =y,
the set A4, being connected, either 4, C F\ G or 4, € G\ F. Put
o= +1 if A, cF\G
k -1 if A, cG\F
so that the equality u(F) = u(G) can be rewritten as
AMp(A4) 4+t Ap,u,l(Ap) =0

Apg(A) A+t ’\p'U‘n(Ap) =0
Suppose n > p; the first p equations imply that the determinant
Ml(Al) M(Ap)

Mp(Al) 'U‘p(Ap)
vanishes, which contradicts the fact that w is oriented. |
The following notations will be used throughout the remainder of the
paper.
Notations 4.3.  We shall denote by I the set
Lo={(vis--» %) ERFra <y, < - <y, <b}.
To each k-tuple y = (y,...,v,) belonging to T, we associate the two sets

E«;= U [7i?7i+1]> E;= U [7i77i+1]>

O<i<k O<i<k
i odd i even

where by convention y, = a, y,,, = b.
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LEmMMA 4.4 (Uniqueness). Let w be an n-dimensional oriented measure
on [a,b]. Assume the n-tuples y = (y,,...,v,) and 6 =(5,...,9,) of T,
satisfy w(E)) = w(Ey) (respectively p(E)) = w(ES)). Then E; = E;
(resp. E] = EJ).

Proof. Assume E_, E;5 are distinct and w(E)) = u(E;).
Now, two possible cases may occur according to the parity of n.

e If n = 2r, the sets E and Ej are the union of at most r intervals.
Lemma 4.2 implies n < r + r, which is absurd.

e If n=2r + 1, the sets E and E; are the union of at most r + 1
intervals. However, b is a common boundary point. Lemma 4.2 implies
n<(r+ 1+ (r+1 — 1,which is absurd. The dual case u(E;) = u(E;)
can be treated similarly. |

The following essential lemma will be used repeatedly.

LEMMA 4.5. Let w = (..., m,) be an oriented measure on the interval
la,bland I, < I, < -+ < I, be n + 1 subintervals of [a, b]. Then, given a
positive e, there exist n + 1 positive real numbers A, ..., A, such that

Vie{0,...,n} 0<X<e and Y (=1)'Au(l)=0.
1=0

Proof. Consider the n X n linear system
n—1 n—1
Au(lp) = Ap(ly) + -+ (=17 A pw(], ) = (=17 A, u(l,),
where A, is a parameter. The determinant of the system is
n(n—
0, = (=1)"""2det] p(Ly), -, n(1,-1)]-

The measure w being oriented, w, is not zero. Moreover, for each i in
{0,...,n — 1},

wm(l) - (=D (L) (=) e(T,)

_ Mz(lo) (_1)i_2Mz(1i—2) (_1)n_1.U«2(In)

ma(l) o (=D (L) (—D)" (1)
(_1)iM1(Ii) (_1)’171,“1(1,,71)

(_1)iMz(Ii) (_1)’171#@(1”71)

(~D'm(L) = (D" (1,)
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w; = (= 1)""" Vet w(1y), ..., (L), w(L), ..., u(1,)].

By Cramer’s formula, A; equals A,w;/w,. The measure w being ori-
ented w; and w, have the same sign so that A; is positive whenever A, is
positive. Choosing A, such that

w,

. wn
0 <A, <min|—e,...,
w, )

€, €
n—1

we obtain an (n + 1)-tuple which solves the problem. |

5. MAIN RESULT

The statement of the main result involves Notations 4.3.

THEOREM 5.1. Let u be an oriented measure on [a, b] and let p be a
measurable function defined on [a, b] with values in [0, 1].

There exist two n-tuples o = (ay,...,a,) and B=(B,...,B,) in T,
such that

w(ED) = ["odu = u(E;). (*)

If in addition 0 < p < 1, then « and B in T, satisfying (*) are unique and
verify

a<a < - <a,<b, a<p < <pB,<b.

Remark. The measure p being non-atomic we do not care about
boundary points of intervals and we might write u(«, 8) for the measure
of the interval u((a, B).

Proof. We consider first the case 0 < p < 1 and we prove the result by
induction on n.

e n = 1. The measure u being oriented on [a, b], the maps a —
wla,b]) and B+— w(a, B] are continuous and strictly monotonic on
[a, b]. Tt follows that there exist unique real numbers «, and B, such that

w(larb]) = [‘pdn=w(la. Bi)).

e Assume the result is true at rank n — 1. We deal only with the
n-tuple B: existence of the n-tuple a corresponding to p at rank n follows
from the fact that it coincides with the n-tuple 8 corresponding to 1 — p.
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Define for each k in{1,...,n}
b
me(p) = f pduy
a
and for each n-tuple B in I,

Gk( ,3) = Mk(EBJr)'

The inductive assumption yields the existence of two (n — 1)-tuples @ =
(@,...,@, ) and B=(B,,...,B,_,) such that

a<@ < <@_,<b,a<B < <B,_,<b
and for each k in{1,...,n — 1}

O(a,ay,....a,_ )= 2 m(@,a,,)=m(p),
| 1

(%)

ek(BD""Enfl’b): Z /“Lk(BhEiJrl):/J“k(p)'

Put

IA

y={B:(Bla""Bn)EFn:BI Bl’
Vke{l,....n =1} 6,(B) = m(p)}.

Since (B, ..., B,_1,b) and (a, @,,..., @,_,) belong to .7, the set . is not
empty.
We show now that either

0,( B> Biisb) < my(p) < 6,(a,@,....a,_,)
or
0(a, @, @) < p,(p) < 6,(Bis---s Bioisb).

The equalities (#*) yield for each k in {1,...,n — 1}

fﬁ’“(l —p)du — fﬁ’“p du, = 0.

0<1<n—1 Os;gn
i even i odd

Put for k,j in {1,...,n}

i+1 ;
ij =(-n", akﬁj =) pjﬁ dpy s AP = (a/gj)lsk,jsn’
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where
8 p if j is even,
p. = . ..
J 1—-p if j is odd.

With these notations the above equalities become
n
— ByB =
Vke{l,...,n -1} ~Z1aijj = 0.
j=

Since the measure w is oriented then the determinant |42 | does not
vanish by Theorem 2.2.
We are thus in the position to apply Lemma 4.1:

_ _ " | AP
On(Blﬂ"Wanl’b)_Mn(p): Za;fjxjﬁz |AB|
j=1 nn

( _ 1)n+ 1‘
Similarly, if we define for &, j in {1,..., n}

. @
xt=(-0"  a= f_] e, A% =(a8) g e
a;_ g

where
. p if j is odd,
= 1-p if j is even,
we have
3 B | A% "
en(aaala'naan—l) - lu’n( p) = |Aa |(_1) °

The measure w being oriented, the determinants |A4%| and IAB_I have the
same sign, as do [A4%,| and |Af | It follows that 6,(B,,...,B,_1,b) —
w,(p) and 6,(a, @y,...,a,_,) — u,(p) have opposite signs.

At this stage, we prove that the set . is the graph of a continuous
function; this will imply that . is connected.

Let B, belong to [a,B,;]. We are looking for an (n — 1)-tuple
(B,,..., B,) satisfying for each k in{1,...,n — 1}

we(a, B) + 2 m( B Bisy)

2<i<n
i even

= m(p) = Mk(ﬁh [_31) + ) Mk( En Ei+1)
2<i<n-—1
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or equivalently

Vke{l,...,n -1} by Mk(BisB[+1):ﬁLk(BpE1)

2<i<n
i even

Suppose first 8, = B,. The above equations become

Vke{l,....n -1} ) (B> Bis1) = )y :U«k(_i’ﬁiﬂ)-

2<i<n 2<i<n-—1
reven 1 even
We put 8=(8,,...,8,-1, 8, and B=(B,,...,8,_1,b).

If n is odd, then

Ep; = [Bz>ﬁ3] U--u [Bn—la.Bn]a EE = [[_327[_33] U U [En—l’b]§

if n is even, then

Eg =[By, Bl U U[B,,b], Ej = [Ezaﬁs] UV [En—Z’En—l]‘

In both cases, the preceding formulae can be rewritten as
Viee{l,....,n -1}  w(E;)=mw(E;z);

Lemma 4.4 implies that E; = Ej . Since in addition B, < =+ <B,_, <b,
then necessarily 8, = B,,..., 8,1 = B,_1, B, = b.

Suppose now B, < B,. Since B, < B, < =+ < B,_, <b, then Lemma
4.5 yields the existence of n real numbers A,..., A, in ]10,1/2[ such that
foreach kin{1,...,n — 1}

_Alﬂk(ﬁla31)+ )y (_1)i+1/\i+1l-’“k(ﬁi7§i+l):0'

l<i<n-—1

The function
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satisfies 0 < p < 1 on [ B;, b] and for each k in {1,...,n — 1}

b — _
/ pdm = m(BiB) + X Mk(BiaBi+1)'
Bi 2<i<n—1
We are thus led to find an (n — 1)-tuple (B,,..., 8,) such that (B, <)
B, < -+ < B,(<b)and for each k in{1,...,n — 1}

Z :U’k( Bi> Bi+1) = j;gbﬁdﬂk’

2<i<n
L even

or equivalently, if we put B8 =(B,,..., B,
b
Vke{l,...,n— 1} ,LLk(E[;_)=/de,uk.

Existence and uniqueness of 3 follow from the inductive assumption at
rank n — 1.

In addition, since 0 <p<1 on [B,b], we have B, < B, < -+ <
B, <b. B

We can thus define a map #: [a, 8;] > R"~ ! such that for all n-tuple

(By,...,B)in T,
(B, By) €5 (Bayeos By) = ¥(By)-

Thus & is the graph of .

By the continuity of the measure w, the maps 6,, 1 <k <n — 1, are
continuous so that the set % is closed; moreover, the function ¢ takes its
values in the compact set [a,b]"~!. It follows that ¢ is continuous.
Henceforth .% is connected. As a consequence, the map 6,, being continu-
ous on .#, reaches all the values between 6(f,,...,8,_,,b) and
6,(a, ay,..., a,_,). In particular, there exists an n-tuple B in .~ such that
6,(B) = w,(p). This n-tuple B solves the problem.

Since 6,(a, @,,...,a, ) # w,(p)and 6,(B,,...,B,_;,b) # u,(p) then
a<pB < ,[_31 so that a < B, < B, < -+ < B, < b. Uniqueness of B fol-
lows from Lemma 4.4.

Consider now the case 0 < p < 1. Let (p,), cn be a sequence of
measurable functions such that 0 < p,, <1 and p,, converges to p in
L,([a, b]. For each function p, there exists a unique n-tuple B” such
that

b
w(Egn) = [ b dn.

By compactness, we may assume that 8” converges to some n-tuple 8 of
[,. Passing to the limit, we obtain w(Eg) = u(p). 1
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6. THE RANGE OF AN ORIENTED MEASURE

Let p be an oriented measure on [a, b]. We denote by % the range of
K, i.e.,

# = { n(A): A measurable subset of [a, b]}.

LEMMA 6.1. Let p be a measurable function on [a, bl, 0 < p < 1. Sup-
pose there exist a non-trivial interval I of [a, b] and a positive real number €
such that e < p <1 — € on I. Then the set

b
{f pdu:p= VX,+[_),V€LL(1),|V|< e}
a

is a neighbourhood of [*p du in R".

Proof. Let I, < --- <1, be n non-trivial subintervals of I. The mea-
sure u being oriented, the vectors u([,),..., u(I,) form a basis of R”. The
map

Ai(A,A) €R > Y () €R”

l<i<n

is a linear isomorphism and is thus open. Let

V.= {()\1,...,/\"): max |\ < e}.

1<i<n

Since A(V)) is a neighbourhood of the origin and is contained in the set

{flvdp,:VELL(l),hA < 6},

the conclusion follows. ||

Remark. The hypothesis € < p <1 — € implies that u(p) belongs to
the interior of %.

Remark. The conclusion of Lemma 6.1 does not hold for an arbitrary
vector measure: consider, for instance, the n-dimensional Lebesgue
measure.

Let 6: T, >% be the function_defined by 6(y) = w(E, ).
The interior of T, is the set I, = {(y,...,y) €R":a <y, < -+ <
vy, < b}

COROLLARY 6.2. The set 0(F) is contained in %.



942 CERF AND MARICONDA

LEMMA 6.3. The set 0(T,) coincides with the set

F= {/bpdu:0<p<1}.

a

Proof.  The existence part of Theorem 5.1 implies that F is contained
in 6(T). .
Conversely, let y = (y4,...,v,) belong to T',; applying Lemma 4.5 to wu,
v and € < 1/2, we obtain an (n + 1)-tuple (A,..., A,) such that
Vie{0,....,n) 0<A<e and Y (=D'Au(y,v,,) =0
i=0

Put
P= X AXyynt X (1= A) Xy
O<i<n O<i<n
i even i odd

By construction, we have 0 < p < 1 and
b -
f pdp=p(E;)=06(y)
a

so that 6(y) belongs to F. |
We have the following:

THEOREM 6.4. The range of 0 coincides with #; the map 0 induces a
homeomorphism from F onto # and maps JT, onto 0.%.

Proof.  The surjectivity of ¢ follows directly from Theorem 5.1. Injectiv-
ity of the restriction of 6 of F is a consequence of the uniqueness part of
Theorem 5.1 together with Lemma 6.3. We claim that o(f") is open. Let y
belong to F Lemma 4.5 allows as usual to find a piecewise constant
function p such that 0 < p <1 and u(p)= 6(y). Clearly there exist a
positive € and a subinterval I of [a, b] on which e < p <1 — €. Put

VI-)I’E = {V)(, +p:ve LL([),|V| < E}.
Lemma 6.1 implies that the set
b
/-L(I/f)l’e) — {/ de p = Vﬁl,e}
a
is a neighbourhood of u(p) in R”. Since each element p of V’ ¢ satisfies

0 < p <1, then M(Vp’ €) is entirely contained in F. Moreover, F coincides
with O(I‘ ) and thus H(F ) is a neighbourhood of 6(+y).
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Now each open convex set in R" is the interior of its closure; by !;emma
6.3, the set H(F ) is convex and its closure is %, whence G(F ) =

Finally, we show that the map 6 is proper (i.e., that the inverse 1mage of
a compact subset is compact). Let K be a compact subset of F and
(y™),, < be a sequence in 6~ '(K) such that 8(y™) converges to u( p) for
some p, 0 < p < 1. Since the sequence (y™),, < is contained in T, by
compactness, we may assume that y™ converges to y in I,. By the
continuity of 6, we have

0(y) = n(E fpdu

The uniqueness part of Theorem 5.1 implies that y belongs to lo",,.
The map 6 is proper and thus closed. It follows that its inverse 6~ is
continuous. R R
The equality 6(T,) = 9% is a consequence of the inclusion 6(I,) Cc.%
and the fact that 6 is one to one. |

We refer to [7] for the definitions of classical notions associated with
convex sets. We have the following:

THEOREM 6.5. The range Z of an oriented measure is strictly convex.

Proof.  Let u(E), w(F) be two distinct points of #%. By Theorem 5.1, we
may assume that the sets £ and F are finite unions of closed intervals. Let
A €]0,1[ and put p = Ayx; + (1 — A) xp. Assume, for instance, E\ F # .
Then there exists a non-trivial interval I such that

Vxel p(x) = Axp(x) + (1 = A) xp(x) = A.

Put € = min(A,1 — A). Lemma 6.1 applied to p, I, e shows that wu(p)
belongs to #. |

COROLLARY 6.6. Let E be a measurable subset of [a,bl. Then u(E)
belongs to the boundary of % if and only if there exists a set F which is a finite
union of intervals such that xy has less than n — 1 discontinuity points and
EAF is u-negligible (such a set has also a zero Lebesgue measure).

Proof. We first remark that the family of the sets which are a finite
union of intervals and whose characteristic function has less than n — 1
discontinuity points coincides with the family {E; :y € dI,} U{E] :y €
5T}

Theorem 6.4 shows that u(F) belongs to 9% whenever F = E or
F =E] forsome y € dT,.

Conversely let E be such that w(E) belongs to d.%. Theorem 6.4 yields
the existence of an n-tuple y belonging to dI’, such that u(E)) = w(E);
a consequence of Theorem 6.5 is that w(E) is an extreme point of %. The
Olech Theorem [5, Th. 1] implies that EAE_ is u-negligible. |
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Our approach discloses the recursive structure of the boundary of the
range of an oriented measure. For k belonging to {0,..., n} let

‘%’:={“(Ev_)37’erk}, %Z={M(E;):yefk}.
Notice that Ty = &, %, = {0}, 2] = {u(a, b)}.

. PROPOSITION 6.7 The function y € Fk = w(E) €% (resp. v €
Uy = w(E)) €2) is a homeomorphism from Fk onto its range which
comczdes with %’k (resp. (%’k ).

Proof. Injectivity follows directly from Corollary 6.6. The rest of the
proof uses the techniques of the proof of Theorem 6.4. ||

Remark. For each k in {1,...,n — 1}, the set %, \ %, _, is partitioned
into two connected components 9?,( ,%k However, for k = n, #, =%
=4%.

These results yield the following:

PROPOSITION 6.8. The boundary of the range %# of an oriented n-dimen-
sional measure admits the decomposition

OFR =% U UZ% U0} U{p(a,b)usk u-uU

n—l

Let T be the symmetry with respect to ua, b) /2 (so that for each measurable
subset A of [a,bl, T(u(A)) = u(a, b1\ A)). Then for each k belonging to
{0,..., n}, we have

(%) =%, T(R) =%,
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