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Ž . w xA vector measure m s m , . . . , m defined on a, b is oriented if for each1 n
Ž .k-tuple of disjoint measurable sets A , . . . , A such that A - ??? - A the1 k 1 k

determinant

m A ??? m AŽ . Ž .1 1 1 k
. . .. . .. . .

m A ??? m AŽ . Ž .k 1 k k

is positive. We study the range RR of an oriented measure:

R̊R s m E : x has n discontinuity points ,� 4Ž . E

­ RR s m E : x has less than n y 1 discontinuity points .� 4Ž . E

Q 1996 Academic Press, Inc.

1. INTRODUCTION

A theorem of Lyapunov states that the range RR of a non-atomic vector
w xmeasure m on a, b

w xRR s m A : A measurable subset of a, b� 4Ž .
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coincides with the convex set

b
r dm : 0 F r F 1 .H½ 5

a

However for a given r, 0 F r F 1, the usual proofs based on convexity-
w xextreme points arguments 4; 5 do not give any information about the

existence of a ‘‘nice’’ set E such that

b
m E s r dm.Ž . H

a

Ž .Consider, for instance, the two-dimensional vector measure m A s
Ž < < < < < <. w x < <A , A q 2 A l B where B is a borelian subset of a, b and denotes

Ž . Ž .the Lebesgue measure. For each set E, the equality m E s m B implies
B s E.

w xWhen the measure m admits a density f , Halkin 3 showed that if for
each vector p g R n the set

w xt g a, b : p ? f t ) 0� 4Ž .
Ž . Ž .where ? is the usual scalar product is a finite respectively countable

Žunion of intervals, then there exists a set E which is a finite resp.
.countable union of intervals.

w xIn our paper 2 , we introduced the stronger orientation condition D: we
w xsay that n real functions f , . . . , f verify condition D on an interval a, b1 n

� 4if for each k in 1, . . . , n the determinant

f x f x ??? f xŽ . Ž . Ž .1 1 1 2 1 k

f x f x ??? f xŽ . Ž . Ž .2 1 2 2 2 k
. . . .. . . .. . . .

f x f x ??? f xŽ . Ž . Ž .k 1 k 2 k k

w xis not equal to zero whenever the x ’s in a, b are distinct and its sign isi
Ž .constant on the k-tuples x , . . . , x such that a F x - x - ??? - x F b.1 k 1 2 k

We showed that if a measure m admits a density function whose
components are continuous and satisfy the orientation condition D then
the set E may be built in such a way that its characteristic function has at
most n discontinuity points. Moreover, if 0 - r - 1 there exist two such
sets E and E whose characteristic functions x and x have exactly n1 2 E E1 2

Ždiscontinuity points one set is a neighbourhood of a whereas the other is
.not .

Our proofs relied upon the fact that the map
a a2 4

a , . . . , a ¬ f x dx q f x dx q ???Ž . Ž . Ž .H H1 n
a a1 3
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is differentiable and has an invertible Jacobian whenever a - a - ??? -1
a - b.n

Ž .We also showed that whenever a function x satisfies x 0 s ??? s
Žny2.Ž . Žny1.Ž . Ž Žny1. .x 0 s 0 and x 0 s 1 then the n functions x , . . . , x9, x

verify D on a neighbourhood of 0. We applied these results to the study of
reachable sets of constrained bang-bang solutions and to non-convex
problems of the calculus of variations.

In this paper, we deal with measures which are not necessarily abso-
lutely continuous with respect to the Lebesgue measure.

w xOriented Measure. If A , . . . , A are k measurable sets of a, b , by1 k
Ž .A - ??? - A we mean that for all k-tuple x , . . . , x of A = ??? = A1 k 1 k 1 k

Ž .we have x - ??? - x . A measure m s m , . . . , m is said to be oriented1 k 1 n
if for each k-tuple of measurable sets A , . . . , A such that A - ??? - A1 k 1 k
the determinant

m A ??? m AŽ . Ž .1 1 1 k
. . .. . .. . .

m A ??? m AŽ . Ž .k 1 k k

is positive.
In this more general framework, we give a new proof of the results

w xstated in 2 .
We carry out a deep study of the range RR of the measure:

˚v for each point q of its interior RR there exist exactly two distinct
‘‘dual’’ sets E , E whose characteristic functions have n discontinuity1 2

Ž . Ž .points such that m E s q s m E ;1 2

˚v the set RR coincides with

b
r dm : 0 - r - 1H½ 5

a

so that the above set is open;

v the set RR is strictly convex;

v Ž .a point m E belongs to the boundary ­ RR of RR if and only if the
characteristic function of E has less than n y 1 discontinuity points;

v finally, we give a recursive decomposition of the boundary ­ RR.
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2. ORIENTED MEASURES

w xThroughout the paper, we will work with an interval a, b equipped with
the Lebesgue s-field LL . Measurable will mean measurable with respect to
this s-field. A negligible set is a measurable set of Lebesgue measure zero.

w xA vector measure on a, b is a countably additive set function defined on
the Lebesgue s-field with values in R n for some integer n.

w xNotation. If A , . . . , A are k measurable sets of a, b , by A - ??? -1 k 1
A we mean that A , . . . , A have non-zero Lebesgue measure and for allk 1 k

Ž .k-tuple x , . . . , x of A = ??? = A we have x - ??? - x .1 k 1 k 1 k
Ž . 1 Žw x.Let m s m , . . . , m be a vector measure. If r belongs to L a, b , we1 k m

note
b b

m r s r dm , m r s r dm s m r , . . . , m r .Ž . Ž . Ž . Ž .Ž .H Hi i 1 k
a a

Ž . w xDEFINITION 2.1. A vector measure m s m , . . . , m on a, b is said to1 n
w x � 4be oriented on a, b if it is non-atomic and if for each k in 1, . . . , n and

for each k-tuple of measurable sets A , . . . , A such that A - ??? - A1 k 1 k
the determinant

m A ??? m AŽ . Ž .1 1 1 k
. . .. . .. . .

m A ??? m AŽ . Ž .k 1 k k

is positive.

Remark. If m is oriented, then m is a positive measure which assigns1
positive values to sets of positive Lebesgue measure. In particular, if I is a

Ž .non-trivial interval, then m I is non-zero.

Remark. If m is oriented and I , . . . , I are n disjoint non-trivial1 n
Ž . Ž . nintervals, then the vectors m I , . . . , m I form a basis of R .1 n

A very important fact concerning oriented measures is that their charac-
teristic property carries on from sets to positive functions.

� Ž . 4Notation. If r is a function its support is the set supp r s x : r x / 0 .

Ž .THEOREM 2.2. Let m s m , . . . , m be an oriented measure. If1 n
r , . . . , r are n m-integrable non-negatï e functions such that supp r -1 n 1
??? - supp r , then the determinantn

m r ??? m rŽ . Ž .1 1 1 n
. . .. . .. . .

m r ??? m rŽ . Ž .n 1 n n

is positï e.
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Let us first state a preparatory lemma.

Ž .LEMMA 2.3. Let m s m , . . . , m be a ¨ector measure and r , . . . , r be1 n 1 n
n measurable m-integrable functions. The determinant

r dm ??? r dmH H1 1 n 1

. . .. . .. . .

r dm ??? r dmH H1 n n n

is equal to

??? r s ??? r s d e s m m ??? m m s , . . . , s .Ž . Ž . Ž . Ž .ÝH H 1 1 n n s Ž1. s Žn. 1 nž /
sgP n

Proof of Lemma 2.3. The identity is obviously true whenever r , . . . , r1 n
are characteristic functions. The monotone class theorem yields the result.

Proof of Theorem 2.2. We apply the lemma. The domain of integration
of the n-fold integral is reduced to supp r = ??? = supp r .1 n

Ž .We first prove that the measure m s Ý e s m m ??? m m isˆ s g P s Ž1. s Žn.n
Ž . Ž .positive on the product space supp r , LL = ??? = supp r , LL equipped1 n

Žwith the product s-field where LL denotes the one-dimensional Lebesgue
. mns-field . Notice that the product s-field LL does not coincide in general

Žwith the n-dimensional Lebesgue s-field i.e., the completion of the
.n-dimensional Borel s-field .

Consider first the case of a subset of supp r = ??? = supp r which is a1 n
Ž .product set A = ??? = A where the A ’s are measurable . Necessarily,1 n i

each A is a subset of supp r . If none of the A ’s is negligible, then wei i i
Ž . w Ž . Ž .xhave A - ??? - A and m A = ??? = A s det m A , . . . , m A isˆ1 n 1 n 1 n

positive by definition.
Suppose now some of the A ’s are negligible. For each index i, 1 F i F n,i

Ž i .there exists a decreasing sequence B of non-negligible measurablem mg N

Žsubsets of supp r having an empty intersection this is a consequence ofi
. 1the fact that supp r is not negligible . Now for each m we have A j Bi 1 m

n Ž 1 n .- ??? - A j B whence m A j B = ??? = A j B is positive. Byˆn m 1 m n m
the continuity of the measure m, we have

m A = ??? = A s lim m A j B1 = ??? = A j B nŽ .ˆ ˆ Ž .1 n 1 m n m
mª`

Ž .so that m A . . . A is non-negative. It follows that m is non-negative onˆ ˆ1 n
Ž .the boolean algebra of the finite disjoint union of product sets: its unique
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extension to the s-field LL mn generated by these products is also non-
negative.

Ž . Ž . Ž .The function s , . . . , s ¬ r s ??? r s is positive everywhere on1 n 1 1 n n
this set and is measurable with respect to the s-field LL mn: thus the

Ž . Ž . Ž .integral Hr s . . . r s dm s , . . . , s is positive.ˆ1 1 n n 1 n

Remark. If m is absolutely continuous with respect to the Lebesgue
measure, then Lyapunov theorem yields an alternative proof of Theorem
2.2. In fact,

� 4;k g 1, . . . , n 'E ; supp r m r s m E .Ž . Ž .k k k k

Ž . Ž .Necessarily m E is non-zero for each k see remark after definition 2.1k
and the absolute continuity hypothesis on m implies that the E ’s are notk
negligible.

w Ž . Ž .xIt follows that E - ??? - E and det m r , . . . , m r s1 n 1 n
w Ž . Ž .xdet m E , . . . , m E ) 0.1 n

We shall denote by G the subsetk

G s x , . . . , x g R k : a F x F ??? F x F b .Ž .� 4k 1 k 1 k

DEFINITION 2.4. The measure m is said to be locally oriented if for
each n-tuple x of G there exists a neighbourhood V s V = ??? = V ofn 1 n
x such that for k-tuple of measurable sets A - ??? - A satisfying1 k
A = ??? = A ; V = ??? = V , the determinant1 k 1 k

m A ??? m AŽ . Ž .1 1 1 k
. . .. . .. . .

m A ??? m AŽ . Ž .k 1 k k

is positive.
As a curiosity, we prove the following:

w xPROPOSITION 2.5. A locally oriented measure on a, b is oriented on
w xa, b .

Proof. Let m be a locally oriented measure. The compact set G can ben
Ž . i icovered by a finite family of open sets V where V s I = ??? = Ii ig F i 1 n

Ž i . w xand I are subintervals of a, b in such a way that for each k-tuplek ig F
1FkFn

of measurable sets A - ??? - A satisfying A = ??? = A ; V for some1 k 1 k i
i g F, the determinant formed with the first k components of the vectors
Ž . Ž .m A , . . . , m A is positive.1 k

Ž .Let J be the finite family of the atoms of the algebra generated byl l g S

Ž i . Žthe sets I , i g F, 1 F k F n thus the J ’s are exactly the sets of thek l
i w x.iform F I for some x g a, b . Let us remark that for eachi, k : x g I kk



ORIENTED MEASURES 931

Ž . kl , . . . , l in S , the product J = ??? = J is contained in some product1 k l l1 k

I i0 = ??? = I i0. In fact,1 k

J = ??? = J ; I i = ??? = I iDl l 1 k1 k
igF

so that there exits i such that J = ??? = J l I i0 = ??? = I i0 is not empty.0 l l 1 k1 k

It follows that J l I i0 / B, . . . , J l I i0 / B and by the very construc-l 1 l k1 k

tion of the sets J ’s we obtain J ; I i0 , . . . , J ; I i0. We denote by m theˆl l 1 l k k1 k
Ž . Ž .measure m s Ý e s m m ??? m m . Let A , . . . , A be a k-tu-ˆk s g P s Ž1. s Žk . 1 kk

ple of measurable sets such that A - ??? - A . The product A = ??? =1 k 1
Ž . Ž .A is the disjoint union of the sets A = ??? = A l J = ??? = Jk 1 k l l1 k

Ž . k Ž . kwhen l , . . . , l varies in S . Let now l , . . . , l belong to S . Either1 k 1 k
Ž . Ž . ŽA = ??? = A l J = ??? = J is empty and thus has a zero m mea-ˆ1 k l l k1 k

.sure or it is not empty and necessarily, J - ??? - J . Proceeding as inl l1 k

the proof of Theorem 2.2, we show that m is a positive measure on the setˆk
Ž . ŽŽ . Ž ..J = ??? = J whence m A = ??? = A l J = ??? = J is non-ˆl l k 1 k l l1 k 1 k

negative. Since the set A = ??? = A is not negligible, at least one of1 k
Ž . Ž .these sets is not negligible. Let A = ??? = A l J = ??? = J be such1 k l l1 k

Ž .a set. It is a subset of one of the V ’s and, moreover, A l J - ??? -i 1 l1
Ž . ŽŽ . Ž ..A l J whence m A l J = ??? = A l J is positive. Thusˆk l k 1 l k lk 1 k

Ž .m A = ??? = A is positive.ˆk 1 k

3. ORIENTED MEASURES WITH DENSITIES

Orientation Condition D. We say that n real functions f , . . . , f verify1 n
w x � 4condition D on an interval a, b if for each k in 1, . . . , n , the determi-

nant

f x ??? f xŽ . Ž .1 1 1 k

f x ??? f xŽ . Ž .2 1 2 k
. . .. . .. . .

f x ??? f xŽ . Ž .k 1 k k

w xis positive whenever the x ’s in a, b are such that a F x - x - ??? -i 1 2
x F b.k

w xRemark. In our previous paper 2 , we did not impose the sign of the
above determinant to be positive. When dealing with continuous functions,
a connectedness argument shows immediately that the sign is constant on

Ž .the set G . In our present framework at the measure level , we find itk
convenient to work with this slightly more restrictive condition.
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EXAMPLES. For n s 1, condition D states that the function f is1
positive; for n s 2, the functions f , f satisfy D if and only if f is positive1 2 1

Ž . iy1 Ž .and f rf is strictly increasing. The functions f t s t i G 1 satisfy2 1 i
Žcondition D on R the corresponding determinants are Vandermonde

.determinants .
1Žw x.PROPOSITION 3.1. Let f , . . . , f be n functions in L a, b satisfying the1 n

w x w xorientation condition D on a, b . Let m be the measure on a, b whosei
density with respect to the Lebesgue measure is f . Then the measure m si
Ž .m , . . . , m is oriented.1 n

w xProof. Let A - ??? - A be k measurable sets of a, b . Since the1 k
determinant is a multilinear continuous form, we can write

f ??? f f s ??? f sŽ . Ž .H H1 1 1 1 1 k
A A1 k f s ??? f sŽ . Ž .. . . 2 1 2 k. . . s ??? ds . . . ds .. . .H H 1 k. . . . . .. . .A = ??? =A1 k

f ??? f f s ??? f sH H Ž . Ž .k k k 1 k k
A A1 k

By condition D, the integrand is positive on A = ??? = A .1 k

ky1 w xIf f , . . . , f are of class CC on a, b , we will denote their Wronskian1 k
Ž .by W f , . . . , f . The following operational criterion for the fulfilment of1 k

w xthe orientation condition D has been used in 2 .
ny1Žw x.PROPOSITION 3.2. Let f , . . . , f in CC a, b be such that1 n

w x; t g a, b W f t ) 0, . . . , W f , . . . , f t ) 0.Ž . Ž . Ž . Ž .1 1 n

w xThen f , . . . , f satisfy the orientation condition D on a, b .1 n

4. NOTATIONS AND PRELIMINARY LEMMAS

Let us introduce some notations.
If u , . . . , u are vectors of R n, their determinant is sometimes denoted1 n

w xby det u , . . . , u . Let A be a n = n matrix with real coefficients; by det A1 n
< < � 4or A , we denote its determinant. For each i, j in 1, . . . , n , by A wei j

Ž . Ž .mean the n y 1 = n y 1 matrix obtained by removing the ith row and
the jth column from A. Surprisingly, the following simple algebraic trick
will play an essential role in the existence part of the proof of theorem 5.1.
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Ž .LEMMA 4.1. Let A s a be an n = n matrix with real coeffi-i j 1F i, jF n
cients. Let x , . . . , x be such that1 n

a x q ??? qa x qa x s 0¡ 1, 1 1 1, ny1 ny1 1, n n

a x q ??? qa x qa x s 02, 1 1 2, ny1 ny1 2, n n~ . . . .. . . .. . . .¢a x q ??? qa x q a x s 0ny1, 1 1 ny1, ny1 ny1 ny1, n n

If det A / 0, thennn

< <A
a x q ??? qa x s x .n1 1 nn n n< <Ann

Proof. Cramer’s rule applied to the above system yields

nq i < <y1 AŽ . ni� 4; i g 1, . . . , n y 1 x s xi n< <Ann

so that

nq in < < < <Ý y1 a A AŽ .is1 ni ni
a x q ??? qa x s x s xn1 1 nn n n n< < < <A Ann nn

n Ž .nq i < < < <since Ý y1 a A is the development of the determinant A alongis1 ni ni
the first row.

The next lemmas involve strongly the notion of oriented measure.

w xLEMMA 4.2. Let F and G be two distinct subsets of a, b which are the
union of l and m disjoint closed inter̈ als

l m

F s I , G s JD Di j
is1 js1

Ž . Ž . Ž .and let m s m , . . . , m be an oriented measure. Assume m F s m G .1 n
Then n - l q m; moreo¨er if ­ F l ­ G / B then n - l q m y 1.

Proof. Let us first remark that the symmetric difference

I j ??? j I D J j ??? j J s I j J I l JŽ . Ž . Ž . Ž .D D_1 l 1 m i j i jž / ž /
i , j i , j

is the union of at most l q m non-trivial intervals and that whenever at
least two intervals have a common boundary point then this number is
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smaller than l q m y 1. Since the intervals I , . . . , I are disjoint, as well1 l
as J , . . . , J , we have1 m

I j ??? j I j J j ??? j J _ I l JŽ . Ž . Ž .1 l 1 m 1 1

s I j J _ I l J j I j ??? j I j J j ??? j J .Ž . Ž . Ž . Ž .1 1 1 1 2 l 2 m

Ž . Ž .Now, the set I j ??? j I j J j ??? j J is a union of at most l q2 l 2 m
m y 2 disjoint intervals. Either I l J s B or I l J / B and I j J1 1 1 1 1 1

Ž . Ž .is an interval. In both cases, I j J _ I l J is the union of at most1 1 1 1
Ž .two intervals at most one if I and J have a boundary point in common .1 1

A straightforward induction gives the result.
Since the sets F and G are distinct, FDG is not empty. Let A - ??? -1

� 4A be the connected components of FDG. For k in 1, . . . , p , we havep

A s A l F j A l G ,Ž . Ž .k k k

A l F l A l G ; A l F l G ; FDG l F l G s B;Ž . Ž . Ž . Ž . Ž .k k k

the set A being connected, either A ; F _ G or A ; G _ F. Putk k k

q1 if A ; F _ Gk
l sk ½ y1 if A ; G _ Fk

Ž . Ž .so that the equality m F s m G can be rewritten as

¡l m A q ??? q l m A s 0Ž . Ž .1 1 1 p 1 p
. . .~ . . .. . .¢l m A q ??? q l m A s 0Ž . Ž .1 1 1 p n p

Suppose n G p; the first p equations imply that the determinant

m A ??? m AŽ . Ž .1 1 1 p
. . .. . .. . .

m A ??? m AŽ . Ž .p 1 p p

vanishes, which contradicts the fact that m is oriented.

The following notations will be used throughout the remainder of the
paper.

Notations 4.3. We shall denote by G the setk

G s g , . . . , g g R k : a F g F ??? F g F b .Ž .� 4k 1 k 1 k

Ž .To each k-tuple g s g , . . . , g belonging to G we associate the two sets1 k k

y w x q w xE s g , g , E s g , g ,D Dg i iq1 g i iq1
0FiFk 0FiFk

i odd i even

where by convention g s a, g s b.0 kq1
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Ž .LEMMA 4.4 Uniqueness . Let m be an n-dimensional oriented measure
w x Ž . Ž .on a, b . Assume the n-tuples g s g , . . . , g and d s d , . . . , d of G1 n 1 n n

Ž y. Ž y. Ž Ž q. Ž q.. y ysatisfy m E s m E respectï ely m E s m E . Then E s Eg d g d g d

Ž q q.resp. E s E .g d

y y Ž y. Ž y.Proof. Assume E , E are distinct and m E s m E .g d g d

Now, two possible cases may occur according to the parity of n.

v
y yIf n s 2 r, the sets E and E are the union of at most r intervals.g d

Lemma 4.2 implies n - r q r, which is absurd.

v
y yIf n s 2 r q 1, the sets E and E are the union of at most r q 1g d

intervals. However, b is a common boundary point. Lemma 4.2 implies
Ž . Ž . Ž q. Ž q.n - r q 1 q r q 1 y 1, which is absurd. The dual case m E s m Eg d

can be treated similarly.

The following essential lemma will be used repeatedly.

Ž .LEMMA 4.5. Let m s m , . . . , m be an oriented measure on the inter̈ al1 n
w x w xa, b and I - I - ??? - I be n q 1 subinter̈ als of a, b . Then, gï en a0 1 n
positï e e , there exist n q 1 positï e real numbers l , . . . , l such that0 n

n
l� 4; l g 0, . . . , n 0 - l - e and y1 l m I s 0.Ž . Ž .Ýl l l

ls0

Proof. Consider the n = n linear system
ny1 ny1

l m I y l m I q ??? q y1 l m I s y1 l m I ,Ž . Ž . Ž . Ž . Ž . Ž .0 0 1 1 ny1 ny1 n n

where l is a parameter. The determinant of the system isn

Ž .n ny1 r2
v s y1 det m I , . . . , m I .Ž . Ž . Ž .n 0 ny1

The measure m being oriented, v is not zero. Moreover, for each i inn
� 40, . . . , n y 1 ,

iy2 ny1
m I ??? y1 m I y1 m IŽ . Ž . Ž . Ž . Ž .1 0 1 iy2 1 n

iy2 ny1
m I ??? y1 m I y1 m IŽ . Ž . Ž . Ž . Ž .2 0 2 iy2 2 n

v s . . . .i . . . .. . . .
iy2 ny1

m I ??? y1 m I y1 m IŽ . Ž . Ž . Ž . Ž .n 0 n iy2 n n

i ny1y1 m I ??? y1 m IŽ . Ž . Ž . Ž .1 i 1 ny1

i ny1y1 m I ??? y1 m IŽ . Ž . Ž . Ž .2 i 2 ny1 ,. . .. . .. . .
i ny1y1 m I ??? y1 m IŽ . Ž . Ž . Ž .n i n ny1
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i.e.,
Ž .n ny1 r2

v s y1 det m I , . . . , m I , m I , . . . , m I .Ž . Ž . Ž . Ž . Ž .i 0 iy2 i n

By Cramer’s formula, l equals l v rv . The measure m being ori-i n i n
ented v and v have the same sign so that l is positive whenever l isi n i n
positive. Choosing l such thatn

v vn n
0 - l - min e , . . . , e , en ž /v v0 ny1

Ž .we obtain an n q 1 -tuple which solves the problem.

5. MAIN RESULT

The statement of the main result involves Notations 4.3.

w xTHEOREM 5.1. Let m be an oriented measure on a, b and let r be a
w x w xmeasurable function defined on a, b with ¨alues in 0, 1 .
Ž . Ž .There exist two n-tuples a s a , . . . , a and b s b , . . . , b in G1 n 1 n n

such that
by qm E s r dm s m E . )Ž .Ž . Ž .Ha b

a

Ž .If in addition 0 - r - 1, then a and b in G satisfying ) are unique andn
¨erify

a - a - ??? - a - b , a - b - ??? - b - b.1 n 1 n

Remark. The measure m being non-atomic we do not care about
Ž .boundary points of intervals and we might write m a , b for the measure

Žw x.of the interval m a , b .

Proof. We consider first the case 0 - r - 1 and we prove the result by
induction on n.

v w xn s 1. The measure m being oriented on a, b , the maps a ¬
Žw x. Žw x.m a , b and b ¬ m a, b are continuous and strictly monotonic on

w xa, b . It follows that there exist unique real numbers a and b such that1 1

bw x w xm a , b s r dm s m a, b .Ž . Ž .H1 1
a

v Assume the result is true at rank n y 1. We deal only with the
n-tuple b : existence of the n-tuple a corresponding to r at rank n follows
from the fact that it coincides with the n-tuple b corresponding to 1 y r.
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� 4Define for each k in 1, . . . , n

b
m r s r dmŽ . Hk k

a

and for each n-tuple b in Gn

u b s m Eq .Ž . Ž .k k b

Ž .The inductive assumption yields the existence of two n y 1 -tuples a s
Ž . Ž .a , . . . , a and b s b , . . . , b such that1 ny1 1 ny1

a - a - ??? - a - b , a - b - ??? - b - b1 ny1 1 ny1

� 4and for each k in 1, . . . , n y 1

u a, a , . . . , a s m a , a s m r ,Ž .Ž . Ž .Ýk 1 ny1 k i iq1 k
0FiFny1

i odd
))Ž .

u b , . . . , b , b s m b , b s m r .Ž .Ž . Ž .Ýk 1 ny1 k i iq1 k
0FiFny1

i even

Put

SS s b s b , . . . , b g G : b F b ,Ž .� 1 n n 1 1

� 4;k g 1, . . . , n y 1 u b s m r .Ž . Ž . 4k k

Ž . Ž .Since b , . . . , b , b and a, a , . . . , a belong to SS , the set SS is not1 ny1 1 ny1
empty.

We show now that either

u b , . . . , b , b - m r - u a, a , . . . , aŽ . Ž .Ž .n 1 ny1 n n 1 ny1

or

u a, a , . . . , a - m r - u b , . . . , b , b .Ž .Ž . Ž .n 1 ny1 n n 1 ny1

Ž . � 4The equalities )) yield for each k in 1, . . . , n y 1

b biq1 iq11 y r dm y r dm s 0.Ž .Ý ÝH Hk k
b bi i0FiFny1 0FiFny1

i even i odd

� 4Put for k, j in 1, . . . , n

bjq1 jb b b b bx s y1 , a s r dm , A s a ,Ž . Ž .Hj k j j k k j 1Fk , jFn
bjy1
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where

r if j is even,
br sj ½ 1 y r if j is odd.

With these notations the above equalities become
n

b b� 4;k g 1, . . . , n y 1 a x s 0.Ý k j j
js1

< b <Since the measure m is oriented then the determinant A does notnn
vanish by Theorem 2.2.

We are thus in the position to apply Lemma 4.1:

n b< <A nq1b bu b , . . . , b , b y m r s a x s y1 .Ž . Ž .Ž . Ýn 1 ny1 n n j j b< <Annjs1

� 4Similarly, if we define for k, j in 1, . . . , n

a jja a a a ax s y1 , a s r dm , A s a ,Ž . Ž .Hj k j j k k j 1Fk , jFn
a jy1

where

r if j is odd,
ar sj ½ 1 y r if j is even,

we have

< a <A n
u a, a , . . . , a y m r s y1 .Ž . Ž .Ž .n 1 ny1 n a< <Ann

< a < < b <The measure m being oriented, the determinants A and A have the
a b< < < < Ž .same sign, as do A and A . It follows that u b , . . . , b , b ynn nn n 1 ny1

Ž . Ž . Ž .m r and u a, a , . . . , a y m r have opposite signs.n n 1 ny1 n
At this stage, we prove that the set SS is the graph of a continuous

function; this will imply that SS is connected.
w x Ž .Let b belong to a, b . We are looking for an n y 1 -tuple1 1

Ž . � 4b , . . . , b satisfying for each k in 1, . . . , n y 12 n

m a, b q m b , bŽ . Ž .Ýk 1 k i iq1
2FiFn
i even

s m r s m a, b q m b , bŽ . Ž . Ž .Ýk k 1 k i iq1
2FiFny1

i even
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or equivalently

� 4;k g 1, . . . , n y 1 m b , b s m b , bŽ . Ž .Ý k i iq1 k 1 1
2FiFn
i even

q m b , b .Ž .Ý k i iq1
2FiFny1

i even

Suppose first b s b . The above equations become1 1

� 4;k g 1, . . . , n y 1 m b , b s m b , b .Ž . Ž .Ý Ýk i iq1 k i iq1
2FiFn 2FiFny1
i even i even

ˆŽ . Ž .We put b s b , . . . , b , b and b s b , . . . , b , b .2 ny1 n 2 ny1
If n is odd, then

y yw x w xE s b , b j ??? j b , b , E s b , b j ??? j b , b ;ˆb 2 3 ny1 n b 2 3 ny1

if n is even, then

y yw x w xE s b , b j ??? j b , b , E s b , b j ??? j b , b .ˆb 2 3 n b 2 3 ny2 ny1

In both cases, the preceding formulae can be rewritten as

� 4 y y;k g 1, . . . , n y 1 m E s m E ;Ž . Ž .ˆk b k b

y yLemma 4.4 implies that E s E . Since in addition b - ??? - b - b,ˆb b 2 ny1
then necessarily b s b , . . . , b s b , b s b.2 2 ny1 ny1 n

Suppose now b - b . Since b - b - ??? - b - b, then Lemma1 1 1 1 ny1
x w4.5 yields the existence of n real numbers l , . . . , l in 0, 1r2 such that1 n

� 4for each k in 1, . . . , n y 1

iq1yl m b , b q y1 l m b , b s 0.Ž .Ž . Ž .Ý1 k 1 1 iq1 k i iq1
1FiFny1

The function

r s 1 y l x q l xŽ .˜ Ý1 w b , b x iq1 w b , b x1 1 i iq1
1FiFny1

i odd

q 1 y l xŽ .Ý iq1 w b , b xi iq1
2FiFny1

i even
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w x � 4satisfies 0 - r - 1 on b , b and for each k in 1, . . . , n y 1˜ 1

b
r dm s m b , b q m b , b .˜ Ž . Ž .ÝH k k 1 1 k i iq1

b1 2FiFny1
i even

Ž . Ž . Ž .We are thus led to find an n y 1 -tuple b , . . . , b such that b F2 n 1
Ž . � 4b F ??? F b F b and for each k in 1, . . . , n y 12 n

b
m b , b s r dm ,Ž . ˜Ý Hk i iq1 k

b12FiFn
i even

˜ Ž .or equivalently, if we put b s b , . . . , b ,2 n

by� 4;k g 1, . . . , n y 1 m E s r dm .˜Ž .˜ Hk b k
b1

˜Existence and uniqueness of b follow from the inductive assumption at
rank n y 1.

w xIn addition, since 0 - r - 1 on b , b , we have b - b - ??? -˜ 1 1 2
b - b.n

ny1w xWe can thus define a map c : a, b ª R such that for all n-tuple1
Ž .b , . . . , b in G1 n n

b , . . . , b g SS m b , . . . , b s c b .Ž . Ž . Ž .1 n 2 n 1

Thus SS is the graph of c .
By the continuity of the measure m, the maps u , 1 F k F n y 1, arek

continuous so that the set SS is closed; moreover, the function c takes its
w xny1values in the compact set a, b . It follows that c is continuous.

Henceforth SS is connected. As a consequence, the map u , being continu-n
Ž .ous on SS , reaches all the values between u b , . . . , b , b andn 1 ny1

Ž .u a, a , . . . , a . In particular, there exists an n-tuple b in SS such thatn 1 ny1
Ž . Ž .u b s m r . This n-tuple b solves the problem.n n

Ž . Ž . Ž . Ž .Since u a, a , . . . , a / m r and u b , . . . , b , b / m r thenn 1 ny1 n n 1 ny1 n
a - b - b so that a - b - b - ??? - b - b. Uniqueness of b fol-1 1 1 2 n
lows from Lemma 4.4.

Ž .Consider now the case 0 F r F 1. Let r be a sequence ofm mg N

measurable functions such that 0 - r - 1 and r converges to r inm m
1 Žw x. mL a, b . For each function r there exists a unique n-tuple b suchm m

that
bq

mm E s r dm.Ž . Hb m
a

By compactness, we may assume that b m converges to some n-tuple b of
qŽ . Ž .G . Passing to the limit, we obtain m E s m r .n b
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6. THE RANGE OF AN ORIENTED MEASURE

w xLet m be an oriented measure on a, b . We denote by RR the range of
m, i.e.,

w xRR s m A : A measurable subset of a, b .� 4Ž .

w xLEMMA 6.1. Let r be a measurable function on a, b , 0 F r F 1. Sup-
w xpose there exist a non-trï ial inter̈ al I of a, b and a positï e real number e

such that e F r F 1 y e on I. Then the set

b 1 < <r dm : r s nx q r , n g L I , n - eŽ .H I m½ 5
a

b nis a neighbourhood of H r dm in R .a

Proof. Let I - ??? - I be n non-trivial subintervals of I. The mea-1 n
Ž . Ž . nsure m being oriented, the vectors m I , . . . , m I form a basis of R . The1 n

map

L : l , . . . , l g R n ¬ l m I g R nŽ . Ž .Ý1 n i i
1FiFn

is a linear isomorphism and is thus open. Let

< <V s l , . . . , l : max l - e .Ž .½ 5e 1 n i
1FiFn

Ž .Since L V is a neighbourhood of the origin and is contained in the sete

1 < <n dm : n g L I , n - e ,Ž .H m½ 5
I

the conclusion follows.

Ž .Remark. The hypothesis e F r F 1 y e implies that m r belongs to
the interior of RR.

Remark. The conclusion of Lemma 6.1 does not hold for an arbitrary
vector measure: consider, for instance, the n-dimensional Lebesgue
measure.

Ž . Ž y.Let u : G ª RR be the function defined by u g s m E .n g
˚ n�Ž .The interior of G is the set G s g , . . . , g g R : a - g - ??? -n n 1 n 1

4g - b .n

˚ ˚Ž .COROLLARY 6.2. The set u G is contained in RR.n
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˚Ž .LEMMA 6.3. The set u G coincides with the setn

b
F s r dm : 0 - r - 1 .H½ 5

a

Proof. The existence part of Theorem 5.1 implies that F is contained
˚Ž .in u G .n

˚Ž .Conversely, let g s g , . . . , g belong to G ; applying Lemma 4.5 to m,1 n n
Ž . Ž .g and e - 1r2, we obtain an n q 1 -tuple l , . . . , l such that0 n

n
i� 4; i g 0, . . . , n 0 - l - e and y1 l m g , g s 0.Ž . Ž .Ýi i i iq1

is0

Put

r s l x q 1 y l x .Ž .Ý Ýi wg , g x i wg , g xi iq1 i iq1
0FiFn 0FiFn
i even i odd

By construction, we have 0 - r - 1 and

b yr dm s m E s u gŽ .Ž .H g
a

Ž .so that u g belongs to F.

We have the following:

THEOREM 6.4. The range of u coincides with RR; the map u induces a
˚ ˚homeomorphism from G onto RR and maps ­ G onto ­ RR.n n

Proof. The surjectivity of u follows directly from Theorem 5.1. Injectiv-
˚ity of the restriction of u of G is a consequence of the uniqueness part ofn

˚Ž .Theorem 5.1 together with Lemma 6.3. We claim that u G is open. Let gn
˚belong to G . Lemma 4.5 allows as usual to find a piecewise constantn

Ž . Ž .function r such that 0 - r - 1 and m r s u g . Clearly there exist a
w xpositive e and a subinterval I of a, b on which e F r F 1 y e . Put

I , e 1 < <V s nx q r : n g L I , n - e .Ž .� 4r I m

Lemma 6.1 implies that the set

bI , e I , em V s r dm : r g VHž /r r½ 5
a

n I, eŽ .is a neighbourhood of m r in R . Since each element r of V satisfiesr
I, eŽ .0 - r - 1, then m V is entirely contained in F. Moreover, F coincidesr

˚ ˚Ž . Ž . Ž .with u G and thus u G is a neighbourhood of u g .n n
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Now each open convex set in R n is the interior of its closure; by Lemma
˚ ˚ ˚Ž . Ž .6.3, the set u G is convex and its closure is RR, whence u G s RR.n n

ŽFinally, we show that the map u is proper i.e., that the inverse image of
.a compact subset is compact . Let K be a compact subset of F and

Ž m. y1Ž . Ž m. Ž .g be a sequence in u K such that u g converges to m r formg N

Ž m.some r, 0 - r - 1. Since the sequence g is contained in G , bymg N n
compactness, we may assume that g m converges to g in G . By then
continuity of u , we have

byu g s m E s r dm.Ž . Ž . Hg
a

˚The uniqueness part of Theorem 5.1 implies that g belongs to G .n
The map u is proper and thus closed. It follows that its inverse uy1 is

continuous.
˚ ˚Ž . Ž .The equality u ­ G s ­ RR is a consequence of the inclusion u G ; RRn n

and the fact that u is one to one.

w xWe refer to 7 for the definitions of classical notions associated with
convex sets. We have the following:

THEOREM 6.5. The range RR of an oriented measure is strictly con¨ex.

Ž . Ž .Proof. Let m E , m F be two distinct points of RR. By Theorem 5.1, we
may assume that the sets E and F are finite unions of closed intervals. Let

x w Ž .l g 0, 1 and put r s lx q 1 y l x . Assume, for instance, E _ F / B.E F
Then there exists a non-trivial interval I such that

; x g I r x s lx x q 1 y l x x s l.Ž . Ž . Ž . Ž .E F

Ž . Ž .Put e s min l, 1 y l . Lemma 6.1 applied to r, I, e shows that m r
˚belongs to RR.

w x Ž .COROLLARY 6.6. Let E be a measurable subset of a, b . Then m E
belongs to the boundary of RR if and only if there exists a set F which is a finite
union of inter̈ als such that x has less than n y 1 discontinuity points andF

Ž .ED F is m-negligible such a set has also a zero Lebesgue measure .

Proof. We first remark that the family of the sets which are a finite
union of intervals and whose characteristic function has less than n y 1

� y 4 � qdiscontinuity points coincides with the family E : g g ­ G j E : g gg n g

4d G .n
Ž . yTheorem 6.4 shows that m F belongs to ­ RR whenever F s E org

F s Eq for some g g ­ G .g n
Ž .Conversely let E be such that m E belongs to ­ RR. Theorem 6.4 yields

Ž y. Ž .the existence of an n-tuple g belonging to ­ G such that m E s m E ;n g

Ž .a consequence of Theorem 6.5 is that m E is an extreme point of RR. The
yw xOlech Theorem 5, Th. 1 implies that ED E is m-negligible.g
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Our approach discloses the recursive structure of the boundary of the
� 4range of an oriented measure. For k belonging to 0, . . . , n let

RRy s m Ey : g g G , RRq s m Eq : g g G .� 4 � 4Ž . Ž .k g k k g k

y � 4 q � Ž .4Notice that G s B, RR s 0 , RR s m a, b .0 0 0

˚ y yŽ . ŽPROPOSITION 6.7. The function g g G ¬ m E g RR resp. g gk g k
˚ q q ˚Ž . .G ¬ m E g RR is a homeomorphism from G onto its range whichk g k k

ẙ q̊Ž .coincides with RR resp. RR .k k

Proof. Injectivity follows directly from Corollary 6.6. The rest of the
proof uses the techniques of the proof of Theorem 6.4.

� 4Remark. For each k in 1, . . . , n y 1 , the set RR _ RR is partitionedk ky1
ẙ q̊ y qinto two connected components RR , RR . However, for k s n, RR s RRk k n n

s RR.
These results yield the following:

PROPOSITION 6.8. The boundary of the range RR of an oriented n-dimen-
sional measure admits the decomposition

ẙ ẙ q̊ q̊� 4­ RR s RR j ??? j RR j 0 j m a, b j RR j ??? j RR .� 4Ž .ny1 1 1 ny1

Ž . ŽLet T be the symmetry with respect to m a, b r2 so that for each measurable
w x Ž Ž .. Žw x ..subset A of a, b , T m A s m a, b _ A . Then for each k belonging to

� 40, . . . , n , we ha¨e

ẙ q̊T RR s RR , T RR s RR .Ž .Ž .k k k k
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