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Abstract. Let M be a real analytic manifold, X a complexification of M , Ω an

open subset of M with N∗
x0

(Ω) 6= T ∗
x0

M , x0 ∈ ∂Ω. Let γ (resp γ′) be an open

set of Ω ×M TM X with convex conic fibers and with Ω ×M γ ⊃ Ω ×M TM X (resp

γ′ = Ω×M TM X); denote by U (resp W) the Ω-tuboids in X with profile γ (resp γ ′)
(cf [Z]) and by S the neighborhoods of x0.

Let P = P (x,D) be a differential operator at x0 with Cω-coefficients which is

microhyperbolic to each −θ ∈ N∗
x0

(Ω)a in γ∗a
x0

relative to Ω (in the sense of (2.3)).

We prove that for every U, W,S there exist W ′, S′ such that

f ∈ OX (U ∩ S), P f ∈ OX (W ∩ S) implies f ∈ OX (W ′ ∩ S′).

A similar result is obtained for Ω-microhyperbolic operators in the sense of [S-Z] and

for semihyperbolic operators in the sense of [Kan], [Kat].

We aim to refine the above conclusions and show (cf [D’A-Z]) that in the preceding
hypotheses P is an isomorphism of the sheaf (CΩ|X)T∗

M
X (cf [S]) at any p ∈ γ∗a

x0
.

1. Preliminaries. Let X be a complex manifold, P a differential operator with
holomorphic coefficients, and let σ(P ) be the principal symbol of P . First we
introduce a lemma which will be our main tool in proving propagation theorems.

Lemma 1.1. Let {Vα}α (0 ≤ α ≤ 1) and V be open sets in X such that:

(i) V0 ⊂ V , Vα ⊂ Vβ, for β > α,

(ii) Vα =
⋃

β<α

Vβ, V α =
⋂

β′>α

Vβ′ ,

(iii) ∂Vα ∩ V1 \ V ⊂⊂ V1,

(iv) N∗
x (Vα) 6= T ∗

x X for every x ∈ ∂Vα ∩ V1 \ V ,

(v) σ(P )(z, ζ) 6= 0 for every z ∈ ∂Vα ∩ V1 \ V and for every ζ conormal to Vα

at z (cf. par. 1).

Then:

(1.2) f ∈ OX (V ), Pf ∈ OX(V ∪ V1) implies f ∈ OX(V ∪ V1).

Proof. For f as in the left hand side of (1.2) set V = {V ∪ Vα; f ∈ OX(V ∪ Vα)},
endowed with the natural order relation; this is an inductive family. Let V ∪ Vα0

be a maximal element for V and suppose by absurd that α0 < 1.
Note that f ∈ OX(Vα0

) and, by (iii), Pf ∈ (OX)z ∀z ∈ ∂Vα0
∩ V1 \ V . Using (iv)

and the refined version of the theorem of Cauchy-Kowalevsky-Leray given in [B-S
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1], we conclude that f extends holomorphically to a neighborhood of ∂Vα0
∩V1 \ V .

By (iii) (V1 \ V ) ∩ V α ⊂⊂ V1 \ V , hence from (ii) we get that, in V1 \ V , {Vβ}β
(β > α0) is a fundamental system of neighborhood of V α; it follows that each open

set containing (∂Vα0
∩ V1 \ V ) ∪ (V ∪ Vα0

) contains also V ∪ Vβ for some β > α0.
Hence f ∈ OX(V ∪ Vβ) which is a contradiction. �

Remark 1.3. This result is a variant of a wider principle by Kashiwara concerning
the “propagation of cohomology of a complex” (cf. [K-S 1,theorem 1.4.3]).

2. Statement of the results. Let M be a Cω-manifold, X a complexification
of M . We denote by T ∗M, T ∗X the cotangent bundles to M, X, and T ∗

MX the
conormal bundle to M in X; in particular we denote by T ∗

XX the zero section of

T ∗X. We set Ṫ ∗X = T ∗X \ T ∗
XX.

For subsets S, V ⊂ X one denotes by C(S, V ) the normal cone to S along V (cf
[K-S 1]) and by N(S) the normal cone to S in X; these are objects of TX . The
same notation will be used to denote the normal cone to a subset S of the manifold
M , which is, of course, an object of TM .

Let Ω ⊂M be an open set verifying for a fixed x0 ∈ ∂Ω

(2.1) N∗
x0

(Ω) 6= T ∗
x0

M.

Let γ be an open set of Ω×M TMX with convex conic fiber. A domain U ⊂ X is
said to be an Ω-tuboid with profile γ iff C(X \ U, Ω) ∩ γ1 = ∅ for some open set
γ1 ⊂ TX with convex conic fiber such that γ1 ⊃ σ(N(Ω)), ρ(γ1) ⊃ γ (cf [Z]).
Here

TMX
ρ←−M ×X TX

σ←− TM

are the canonical maps.

Remark 2.2. Let X ∼= Rn +
√
−1Rn 3 x +

√
−1 y, M ∼= Rn 3 x. We recall that

U is an Ω-tuboid with profile γ iff ∀γ ′ ⊂⊂ γ, ∃ε = εγ′ such that U ⊃ {(x, y) ∈
Ω×M γ′ : |y| < ε(dist(x, ∂Ω) ∧ 1)}.

Let q ∈ ∂Ω×M Ṫ ∗
MX, set x0 = π(q) (where π is the projection T ∗X −→ X) and

let P be a differential operator with holomorphic coefficients in a neighborhood of
x0.

Choose a system of coordinates (x;
√
−1 η) ∈ T ∗

MX and (z, ζ) ∈ T ∗X (z =
x +
√
−1 y, ζ = ξ +

√
−1 η), and assume that

σ(P )(z, ζ) 6= 0 for

− c1|η| < 〈ξ, θ〉 < −c2[|y||η|+ |ξ − 〈ξ, θ〉θ|]
∀(x,
√
−1 η) ∈ (Ω ∩ S)×

√
−1 Λ, ∀θ ∈ Ṅ∗

x0
(Ω),

(2.3)

where Λ is a closed cone of Ṙ
n

and c1, c2 are constants independent of x, η, θ.

Remark 2.4. Since condition (2.3) is not C1-coordinate-invariant, no propagation
theorem involving the notion of micro-support of a sheaf (as in [K-S 1]) could be
applied.
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Remark 2.5. It is obvious that if (2.3) is satisfied by θ then it is even satisfied by

any θ′ in a neighborhood of θ. It follows that we can replace Ṅ∗
x0

(Ω) of (2.3) by

(Ṅ∗
x0

(Ω))ε for a suitable ε. Here, for a cone A ⊂ Ṙ
n
, we denote by Aε the conic

ε-neighborhood of A:

Aε = {θ ∈ Ṙ
n

: sup
η∈A

〈 θ

|θ| ,
η

|η| 〉 > 1− ε}.

We shall now introduce a slight modification of condition (2.3) which is coordi-
nate invariant.

Assume that

(2.6) θ /∈ Cq′(char(P ), Ω×M T ∗
MX) ∀q′ ∈ λ, ∀θ ∈ Ṅ∗

x0
(Ω)a,

where char(P ) is the characteristic variety of P , λ is a closed neighborhood of q
with conic fiber and where the exponent a denotes the antipodal map. Finally note
that we have used the identification

T ∗
x0

M ↪→
j

T ∗
x0

X ↪→
π∗

T ∗
q T ∗X

∼→
−H

TqT
∗X,

where j is due to the complex structure of X, π∗ is the map associated to the
projection π : T ∗X → X, and H denotes the Hamiltonian isomorphism.

As in [S-Z], we shall refer to (2.6) as the condition of Ω-micro-hyperbolicity in λ

with respect to each θ ∈ Ṅ∗
x0

(Ω)a; this is a weaker condition then microhyperbolic-
ity.

Remark 2.7. Note that one proves that if Λ ⊂⊂ (int λ)x0
then (2.6) implies (2.3).

(Here, for A, B cones in Ṙ
n
, one says that A is a proper subcone of B, and writes

A ⊂⊂ B, whenever A ∩ {y : |y| = 1} ⊂⊂ int B.)

Theorem 2.8. Let Ω verify (2.1), take q ∈ ∂Ω×M Ṫ ∗
MX, and let P be a differential

operator at x0 = π(q) which verifies (2.3) in some system of coordinates (resp
(2.6)). Denote by U the family of tuboids whose profile γ verifies:

(2.9) Ω×M γ ⊃ Ω×M TMX, γ∗a
x0
⊂ Λ

(resp

(2.9)’ γ∗a
x0
⊂ (int λ)x0

),

and by W those with profile γ ′ verifying

(2.10) γ′ ⊃ Ω×M TMX

(where the exponent ∗ denotes the polar). Let S be the family of neighborhoods of
x0. Then:

f ∈ lim−→
U∈U,S∈S

Γ(U ∩ S,OX),

Pf ∈ lim−→
W∈W,S∈S

Γ(W ∩ S,OX) implies

f ∈ lim−→
W∈W,S∈S

Γ(W ∩ S,OX).
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Remark 2.11. Let Γ be an open convex cone of Ṙ
n

with Γ∗a ⊂ Λ, fix η ∈ Ṙ
n

and
let:

γ = (Ω× Γ) ∪ (Ω× c.h.(Γ, {−η}),
γ′ = Ω× c.h.(γ, {−η}).

Then the same conclusion of Theorem 2.8 holds. (here c.h. denotes the convex
hull.)
In fact in subsequent Theorem 2.15 the assumption η ∈ intΓ∗ ∩ Γ is unessential.

(It is only used in the conclusion to get c.h.(Γ, {−η}) = Ṙ
n
.)

Theorem 2.12. Let Ω = {x = (x1, x
′) : x1 > 0} and assume that

σ(P )(z, ζ) 6= 0 when (z, ζ) satisfies the conditions in (2.3) with Λ = R×Λ′ (Λ′ ⊂
Ṙ

n−1
), and when in addition y1 = 0. Then the conclusion of Theorem 2.8 still

holds.

Note by the way that the condition for P expressed in this statement is a refine-
ment of the hypothesis of semi-hyperbolicity in the sense of [Kan].

For example in T ∗X 3 (z, ζ), z = (z1, z
′) consider σ(P )(z, ζ) = ζ2

1 − z1ζ
2
2 −

Q(z, ζ ′), Q homogeneous of degree 2 and Q|T∗

M
X ≤ 0. This is semihyperbolic but

neither Ω-hyperbolic nor it satisfies (2.3).
The proof of Theorems 2.8, 2.12 will be given in the next section; it will follow

from a statement which fully describes the shape of the sets U and V .

Let Ω ⊂ M be an open set verifying (2.1). Then we can write Ω on S, neigh-
borhood of x0, as Ω = {x : x1 > ϕ(x′)} for a Lipschitz-continuous function ϕ. We
set

ρ(x) = x1 − ϕ(x′)

and remark that for suitable constants k′, k′′ > 0 we have:

(2.13) k′ dist(x, ∂Ω) < ρ(x) < k′′ dist(x, ∂Ω), x ∈ Ω;

hence we will use the function ρ as a substitute of the distance to ∂Ω in our
arguments. Moreover, we can find l′, l′′ > 0 so that on S:

(2.14) |ρ(x̃)− ρ(x)| ≤ l′′|x̃− x|,

(2.14)’ inf
{v∈(N∗

x0
(Ω))ε:|v|=1}

|ρ(x + av)− ρ(x)| ≥ l′a, 0 < a << 1.

(As for (2.14)’ we have to notice that we can choose coordinates at x0 so that

Ṅ∗
x0

(Ω) ⊂⊂ Nx0
(Ω); here we identify Tx0

M ∼= T ∗
x0

M ∼= M ∼= Rn.)

Let Λ, Γ be open convex cones of Ṙ
n

with Λ ⊃⊃ Γ∗a and take η ∈ int Γ∗ ∩ Γ.

Theorem 2.15. Let P verify (2.3). Let

U =

[
(Ω +

√
−1 Γ) ∪

{
z : t′ < ρ(x) < t, y ∈ r

ρ(x)− t′

t− t′
η + Γ

}]
∩

∩ {z : |y| < δ

t
ρ(x)} ∩ S,

(2.16)
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where δ ≥ r and S is a suitable neighborhood of x0. Then for every convex cone
Γ′ ⊂⊂ Γ (Γ′ 3 η, Γ′∗a ⊂ Λ), there exists k = kΓ′ < 1 such that if t verifies

(2.17) t < kc−1
2 l′

and if c verifies

(2.18)
crl′′

t− t′
< c1, crk−1 < δ, c < 1

(l′, l′′ being the constants of (2.14)), it follows that setting

(2.19) V = {z : 0 < ρ(x) < t, y ∈ −crρ(x) η + Γ′} ∩ {z : |y| < δ

t
ρ(x)} ∩ S,

then for a suitable S ′ ⊂ S, depending on t, l′, l′′ and the ε of Remark 2.5, the
following holds:

f ∈ OX(U), Pf ∈ OX(V ) implies f ∈ OX(V ∩ S′).

Remark 2.20. Since η ∈ Γ′ then for a suitable c′ = c′Γ′,η : V ⊃ {z : ρ(x) < t, |y| <
c′crρ(x)} ∩ S′.

To handle also the case when Pf does not extend to a convex set we introduce
the following

Theorem 2.21. Let P verify (2.3) and let c, t verify (2.17), (2.18), let U be defined
by (2.16). For every g1(x) > 0 with inf

{x;ρ(x)=t}

g1(x) = r, there exists h(s), s ∈ R

with h(0) = 0, h(t) = c r, h′ increasing and 0 < h′ ≤ cr/(t − t′) for s > 0, such
that if we set g2(x) = h(ρ(x)) and

V1 = {z : y ∈ −g1(x) η + Γ, |y| < δ

t
ρ(x), 0 < ρ(x) < t},

(resp

V2 = {z : y ∈ −g2(x) η + Γ′, |y| < δ

t
ρ(x), 0 < ρ(x) < t}),

we get

f ∈ OX(U), Pf ∈ OX(V1 ∩ S) implies f ∈ OX(V2 ∩ S′).

Remark 2.22. Let g1(x) = h1(ρ(x)) for a C1-function h1 with h′
1 increasing. Then

one can show that the function h of Theorem 2.21 verifies h′
1∧cr/t ≤ h′ ≤ cr/(t−t′).

In particular for g1(x) = r ρ(x) one recovers Theorem 2.15.

3. Proofs. We will divide the proof of the theorems in some lemmas.
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Lemma 3.1. Let U be as in (2.16). For every open convex cone Γ′ ⊂⊂ Γ, Γ′ 3 η,
there exists k = kΓ′ < 1 such that if one sets for 0 ≤ α ≤ 1 and for ρ(x) < t:

(3.2) Φα(x) =
cr

t− t′(1− α)
(ρ(x)− t′(1− α)),

and

(3.3) Uα = {z : ρ(x) < t, y ∈ −Φα(x) η + Γ′} ∩ {z : |y| < δ

t
ρ(x)} ∩ S,

then:

(3.4) U0 ⊂ U,

(3.5) ∅ 6= (Uα)x ∩ {y : k−1Φα(x) < |y| < δ′

t
ρ(x)} ⊂⊂ Γ, ∀δ′ < δ,

and moreover the following holds. Whenever

(3.6)

{
z ∈ ∂Uα ∩ {z : t′(1− α) ≤ ρ(x) < t, |y| < k−1Φα(x)}
ζ ∈ N∗

z (Uα),

we have

(i) ξ ∈ (N∗
x0

(Ω)a)ε

(ii)
|ξ|
|η| < c1

(iii)
|ξ|
|η||y| > c2

(iv) η ∈ Γ′∗a.

Proof. The relation in (3.4) is obvious.

For proving (3.5) let us first remark that there exists k = kΓ′ such that for a ∈ R:

(3.7) (−aη + Γ′) ∩ {y : k−1a < |y| < d} ⊂⊂ Γ ∀d > 0.

Putting a = Φα(x) in (3.7) and observing that we have

Φα(x) ≤ cr

t
ρ(x) <

δ

t
ρ(x)

(owing to the second inequality of (2.18) ) (3.5) follows.

As for (3.6), the point (i) is an easy consequence of the upper semicontinuity of
the map x 7→ N∗

x (Ω).
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As for (ii),(iii) we first note that, on account of (2.14), Φα(x) is a Lipschitz-
continuous function with:

|Φα(x̃)− Φα(x)| ≤ l′′
cr

t
|x̃− x|,

inf
{v∈(N∗

x0
(Ω))ε:|v|=1}

|Φα(x + av)− Φα(x)| ≥ l′
cr

t
a 0 < a << 1.

(ii) is then a consequence of the first inequality of (2.18). As for (iii) we have, if
|y| < k−1Φα(x) and ρ(x) < t, then clearly |y| < k−1cr and therefore

|ξ|
|η||y| >

l′cr

t

1

k−1cr
> c2

(due to (2.17) ).

Last, (iv) is obvious. �

The family {Uα}α can be modified as follows. Let T ′ = R×{x′ : |x′| < σ}, T ′′ =

R× {x′ : |x′| < σ + σ′}, let Ñ be an open cone in Ṙ
n
, and set

Ω̃ = Ω̃ eN,T ′,T ′′ =
⋃

x∈∂Ω∩T ′

(x + Ñ) ∩ T ′′.

For a suitable choice of Ñ , T ′, T ′′ we have

(i) Ω̃ ∩ S ⊂ Ω, ∂Ω̃ ∩ T ′ = ∂Ω ∩ T ′,

(ii) ∅ 6= Ω̃ ∩ {x : ρ(x) = t} ⊂⊂ T ′′,

(iii) N∗
x (Ω̃) ⊂ (N∗

x0
(Ω̃))ε, ∀x ∈ ∂Ω̃ ∩ T ′′.

(3.8)

Similarly to Ω, such an Ω̃ can be represented as Ω̃ = {x : x1 > ϕ̃(x′)} for a
Lipschitz-continuous function ϕ̃ so that the corresponding conditions to (i)-(iii)’s
of (3.8) hold, i.e.:

(i)’ ϕ̃(x′) ≤ ϕ(x′) and ϕ̃(x′) = ϕ(x′), for |x′| < σ,

(ii)’ ϕ̃(x′) < ϕ(x′) + t, for x′ ≥ σ + σ′

(iii)’ -the same as in (iii)-.

(3.8)’

Let ρ̃(x) = x1 − ϕ̃(x′) and observe that we could choose ϕ̃ so that ρ̃ still verifies
the assumptions (2.14) with new constants l′, l′′. Let U be as in (2.16) on T ′′, let
Γ′ ⊂⊂ Γ, let t, c verify (2.17),(2.18). Define

Φ̃α(x) = cr
ρ̃(x)− t′(1− α)

ρ̃(x)− ρ(x) + t− t′(1− α)
,

and

(3.9) Ũα = {z : ρ(x) < t, y ∈ −Φ̃α(x) η + Γ′} ∩ {z : |y| < δ′

t
ρ(x)} ∩ S

for some k−1cr < δ′ < δ.
We then have the following
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Lemma 3.10. For a P verifying (2.3) the sets {Ũα}α and U verify the hypotheses
of Lemma 1.1.

Proof. (i) and (ii) of Lemma 1.1 are obvious. As for (iii) it is enough to show that

for every x ∈ π(Ũα)
(
= π

(
Ũα

))
we have (Ũα)x ⊂ Ux ∪ (Ũ1)x. To prove it, we will

distinguish three cases.

If ρ̃(x) < t′(1 − α) we get, for some a > 0, (Ũα)x = (
√
−1 aη +

√
−1 Γ′) ∩ {z :

|y| ≤ δ′/t ρ(x)} ⊂⊂ Ux.

If ρ̃(x) = t′(1− α) then (Ũα)x =
√
−1 Γ′ ∩ {z : |y| ≤ δ′/t ρ(x)} ⊂⊂ (Ũ1)x ∪ Ux.

If ρ̃(x) > t′(1− α), since Φ̃α(x) ≤ Φα(x) we have Ũα ⊂ Uα and (3.5) holds with

Uα replaced by Ũα, hence

∅ 6= (Ũα)x ∩ {z : |y| ≥ k−1Φα(x)} ⊂⊂ Ux,

and moreover it is easily seen that

(Ũα)x ∩ {z : |y| < k−1Φα(x)} ⊂⊂ (U1)x.

Last, for ρ(x) near t we have

(Ũα)x ⊂ −cr η +
√
−1 Γ′ ∩ {z : |y| ≤ δ′} ⊂⊂ Ux,

since c < 1 and Γ′ ⊂⊂ Γ (in the sense of Remark 2.7).

Concerning (iv), first note that for every z ∈ ∂Ũα ∩ Ũ1 \ U we have

{
|y| < k−1Φ̃α(x) ≤ k−1Φ1(x)

-the solution of Φ̃α(u) = 0 for u′ = x′ verifies ρ̃(u) < t′-.

If one follows the lines of the proof of Lemma 3.1 it is easy to check that for such

z and for ζ ∈ N∗
z (Ũα) we have

|ξ|
|η| < c1,

|ξ|
|η||y| > c2.

It is clear that η ∈ Γ′∗a and ξ ∈ (N∗
x0

(Ω))ε due to (3.8)-(iii). Since σ(P ) verifies

(2.3) (even replacing Ṅ∗
x0

(Ω) by (Ṅ∗
x0

(Ω))ε according to Remark 2.5), (i)-(iv) imply
σ(P )(z, ζ) 6= 0. �

Proof of Theorem 2.15. Let be given f ∈ OX(U), Pf ∈ OX(V ) as in the statement.

The family {Ũα}α of (3.9) has been so defined that one can find S ′, depending on
T ′ of (3.8)-(i), with

Ũ1 ∩ S′ = V ∩ S′.

Using Lemma 3.10, the proof of the theorem follows immediately from Lemma
1.1. �
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Proof of Theorem 2.21. The proof is the the same as the one of Theorem 2.15.

One only needs to replace in the definition of Ũα the functions φ̃α by kα φ̃α with

kα so chosen that kα φ̃α < g1(x). Note that it is not restrictive to assume the

map α → kα to be a continuous one. Thus the family Vα =
⋃

β<α

Ũβ satisfies the

conditions of Lemma 1.1 and hence f extends to
⋃
α

Vα. Note that, on a small

S′ ⊂ S, the function sup
α

kα φ̃α is in the form h(s) (s = ρ(x)) for a C1-function h

satisfying all requirements in the statement. �

Proof of Theorem 2.8. Let f ∈ OX(U ∩ S) and Pf ∈ OX(W ∩ S) where U (resp
W ) is a tuboid whose fiber verifies (2.9) (resp (2.9)’), (2.10). Then for every t, t′

and for suitable δ and r = rt,t′ , we can write U ∩ S as in (2.16) (possibly with
a new S). Moreover for a suitable c, (W ∪ U) ∩ S contains a set V as in (2.19).
Applying Theorem 2.15, we get f ∈ OX(V ∩ S′); then the conclusion follows from
Remark 2.20. �

Proof of Theorem 2.12. As in the proof of Theorem 2.8 we can assume that f is
analytic in U ∩ S and Pf in V ∩ S, where U, V are defined by (2.16) and (2.19)
respectively. On account of (2.3), z1 = 0 is non characteristic for σ(P ) at x0 and
then there exist C so that:

(3.11) σ(P ) 6= 0 if |ζ1| > C|ζ ′|.

We then set

˜̃Uα = {z ∈ X : |z′ − z̃′| < C|z1 − z̃1|, x1 = x̃1 ⇒ z̃ ∈ Ũα∩
{z : y1 = 0} ∩ S}.

According to (3.11) we get

f ∈ OX(Ũα ∩ {z : y1 = 0} ∩ S), Pf ∈ OX( ˜̃Uα)

implies f ∈ OX( ˜̃Uα).

(3.12)

On the other hand we have

σ(P )(z, ζ) 6= 0 for

{
z ∈ ∂Ũα ∩ Ũ1 \ U ∩ S ∩ {z : y1 = 0}
ζ ∈ N∗

z ( ˜̃Uα)

and then

f ∈ OX( ˜̃Uα ∩ S), Pf ∈ (OX)z implies f ∈ (OX)z.

The conclusion then follows from (3.11),(3.12), via Lemma 1.1, in the same way as
it was for Theorem 2.8. �
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