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Abstract: We present a Finite Element Method (FEM) to calculate the 

complex valued k(ω) dispersion curves of a photonic crystal slab in 

presence of both dispersive and lossy materials. In particular the method 

can be exploited to study plasmonic crystal slabs. We adopt Perfectly 

Matched Layers (PMLs) in order to truncate the open boundaries of the 

model, including their related anisotropic permittivity and permeability 

tensors in the weak form of Helmholtz's eigenvalue equation. Results of the 

model are presented in the interesting case of a holey metal film enabling to 

study the observed extraordinary optical transmission properties in term of 

the plasmonic Bloch modes of the structure. 
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1. Introduction 

Periodic metallic nanostructures have received great attention in recent years due to their 

surprising optical properties. The interaction of electromagnetic fields with the free electron 

gas of metals gives rise to particular electromagnetic field waves which are known as Surface 

Plasmon Polaritons (SPPs) [1]. Due to their properties of extreme light confinement and 

sensitivity to the dielectric environment, SPPs have found lots of interesting application in 

the fields of sensing [2], thin film photovoltaics [3], near field imaging [4], subwavelength 

waveguides [5] etc. 

In particular, periodically nanostructured metal-dielectric interfaces have been subject of 

many researches [1,4] due to their unexpected optical properties such as Extraordinary 

Optical Transmission [6–10] and negative refraction [11]. Surface Plasmons propagation 

across such structures exhibits analogous properties of light propagation in dielectric 

photonic crystals [4]. A complicated system of band gaps has indeed been calculated and 

measured using different metallic gratings [4]. Shallow surface features can be assigned an 

effective refractive index describing their interaction with SPPs, thus enabling a complete 

analogy with 2D photonic crystals. The description of plasmonic Bloch waves propagating in 

a plasmonic crystal slab, however, is a much more challenging task with respect to the 

description of photonic Bloch waves in fully periodic dielectric systems. 

First of all, in photonic crystals analyses, typically transparent non dispersive materials 

are considered [12]. In these cases the Helmholtz eigenvalue equation reduces to a 

generalized linear eigenvalue equation, which is readily numerically treated with standard 

linear solvers. The band structure of the photonic crystal, ω(k), is then obtained as a function 

of the crystal momentum k. However, when material dispersion plays a crucial role, as in the 

case of plasmonic crystals, the resulting eigenvalue equation is nonlinear [13]. Besides time 

consuming methods involving non-linear iterative solvers [14], other methods have been 

proposed to solve such kind of problems, which are based on the solution of Helmholtz’s 

equation considering as eigenvalue the wave vector instead of the frequency (obtaining 
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therefore the bands as k(ω)) [15–19]. Generally these methods end up with a much more 

tractable quadratic eigenvalue equation in k, which can be solved by proper linearization 

procedures [17]. Moreover the imaginary part of k as well as the real one is naturally 

retrieved. In a recent work Fietz et al. [18] showed a modal analysis method based on 

reformulation of the eigenvalue equation in weak form, which enables to obtain a quadratic 

eigenvalue equation in k. The weak formulation finds a natural solution in the frame of the 

Finite Elements Method, which inherently handles weak forms of partial differential 

equations. This modal method, originally developed by Hiett et al. [16], demonstrated to be 

very powerful since it allows dealing with completely general materials, dispersive, lossy and 

possibly anisotropic. 

The analysis of Photonic Crystal Slabs (PCS), however, requires proper handling not only 

of truly bound modes but also of leaky modes. This term addresses eigenmodes whose crystal 

momentum lies inside the light cone. In these cases the modes can couple to waves 

propagating in the semi-infinite half spaces surrounding the slab, resulting in radiative losses 

[12,13]. Simulation of open space boundaries is a tricky task both for methods based on 

discretization of real space (like Finite Elements and Finite Differences) as well as for 

methods which discretize the wave vectors space (like Plane Wave Expansion method). A 

common approach introduces a fictitious periodicity in the direction normal to the slab 

(Super-cell approach [13]). The period is chosen sufficiently large in order to decouple the 

bound modes of the slabs. However, the artificial periodicity produces many spurious modes 

and moreover it perturbs the physical leaky eigenmodes profile. Plane Wave Expansion 

Method has been extended by Shi et al. [15] including Perfectly Matched Layers (PMLs) 

which correctly absorb leakage radiation. These layers are characterized by slowly space 

varying relative permittivity and permeability, properly designed in order to minimize 

reflection of plane waves impinging on them at arbitrary incidence. The method can deal 

with photonic crystal slabs with arbitrarily dispersive materials but only in case of absence of 

losses, excluding therefore the important class of plasmonic crystal slabs. Other methods 

based on FDTD can handle the lossy dispersive problem but are computationally very 

expensive [15]. To our knowledge, a complete and efficient numerical treatment of metallic 

planar crystals still lacks. 

In this paper we calculate the Bloch band structure of dispersive lossy photonic crystal 

slabs adopting the weak formulation of the Helmholtz’s equation and discretizing the system 

by means of Finite Elements Method. In addition to the analysis presented in [18], we include 

PMLs within the unit cell domain in order to properly deal with leaky modes radiation. We 

show how the technique is effective in analyzing plasmonic crystal slabs considering first a 

test example, a simple mono-periodic sinusoidal metal-dielectric interface. This structure 

turns out to be a useful test and allows to properly set PMLs parameters. Then we apply the 

method to an example of particular physical interest for its properties of Extraordinary 

Optical Transmission (EOT), i.e. a bi-periodic array of square holes in a metal film. Although 

it has been widely investigated in recent years [7], few works considered the relationship 

between the optical Bloch eigenmodes of this structure and its EOT properties [9]. This is 

mainly because retrieving the complete complex band structure in presence of strong leakage 

radiation still remains a challenging task, and it is the typical case of plasmonic crystals with 

lattice constant comparable with the impinging light wavelength and with deep modulation of 

the metal-dielectric interface. The modal analysis method we propose comes in useful in 

clarifying the relationship between optical response of the structure and periodicity-induced 

resonant modes. 

The work is organized as follows. In section 2 and 3 we will recall the weak form FEM 

formulation of the eigenvalue problem, pointing out also how PMLs can be implemented in 

this solution scheme. In section 4 we will apply the technique to the determination of the 

complex Bloch-bands of a simple two-dimensional metallic structure, i.e. a sinusoidal metal 

dielectric interface. Finally in section 5 the method will be used to calculate bound and leaky 
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modes of a three-dimensional bi-periodic plasmonic crystal slab. In particular it will be 

pointed out how the method succeeds in reproducing the leaky modes field patterns. In both 

sections, 4 and 5, the modal results are compared to scattering FEM simulations, which, in 

turn, serve as test tool for the accuracy and reliability of the method. 

2. The FEM simulation 

The aim of the present section is to briefly revisit the FEM weak formulation [17,18] of the 

following Helmholtz’s eigenvalue equation

( ) 2ˆ ˆV V 0,p qwÑ´ Ñ´ - = (1) 

where ˆˆ ˆ ˆV E, 1/ ( , ), ( , )p qm w e w= = =r r   for the electric field formulation and 

ˆˆ ˆ ˆV H, 1/ ( , ), ( , )p qe w m w= = =r r   for the magnetic field formulation.

Here ˆ ˆ( , )e e w= r  and ˆ ˆ( , )m m w= r are respectively the frequency-dependent permittivity and 

permeability tensors of the plasmonic crystal. They are supposed to be periodic in x, y and z 

direction. The problem reduces to find Bloch-waves solutions of the form [12,13] 

( )k rV( ;k) u( ) u( ),x y zi k x k y k zie e
- + +- ×= =r r r (2) 

where k is the Bloch-vector. The Finite Elements method relies on the so-called weak 

formulation of Eq. (1), which consists in annulling the following residues 

( ) ( )( ) ( )2 3ˆ ˆv,u v V ;k V ;k r,R p q dw
W

é ù= × Ñ´ Ñ´ -ë ûò r r
k

 (3) 

where v is a weight function and the integration is over the unitary cell volume [20]. After 

inserting expression (2) in Eq. (3) and some straightforward algebra, Eq. (3) yields to 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

3

2
3

2

ˆ ˆ ˆr v k k u v k u v k u

ˆˆ ˆ ˆr v u v u v n k u+ u 0,

d p i p i p

d p q dA p i
c

w
W

W ¶W

- × ´ ´ - × ´ Ñ´ - Ñ´ × ´ +é ù é ùë û ë û

æ ö
+ Ñ´ × Ñ´ - × + × ´ - ´ Ñ´ =é ùç ÷ ë û

è ø

ò

ò ò
 (4) 

In order to turn Eq. (4) into an eigenvalue problem, the three degrees of freedom that 

comprise the Bloch wave-vector k must be reduced to one; i.e by fixing a particular k-vector 

direction, l̂ . In this case Eq. (4) turns out to be a quadratic eigenvalue equation in the k-

vector projection along the chosen direction, i.e. ˆl l= ×k . Following the usual FEM 

discretization procedure [20], Eq. (4) is then turned into a matrix equation [17,18,20] and 

opportunely linearized. 

The presented weak formulation of the eigenvalue problem is inherently handled by 

several Finite Elements software packages. All the models and examples in this paper have 

been performed and calculated with COMSOL Multiphysics, which allows the user to 

specify a custom field equation to be solved. In particular the software automatically turns 

the input Eq. (4) into an algebraic linear equation system. For more details about FEM we 

remand to Ref [20,21].

3. The perfect matched layer (PML) implementation 

A photonic crystal slab (PCS) is a photonic structure with two-dimensional periodicity and 

finite thickness along the third spatial dimension [12], as depicted in Fig. 1 (green structure). 

As mentioned before, the modal analysis of a PCS requires proper truncation of the 

computational domain in the direction normal to the slab. Such a truncation may be 

performed by introducing the so-called Perfectly Matched Layers at the upper and lower 
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boundaries of the unit cell (the violet domains in Fig. 1). Their function is to absorb radiation 

coming from the slab, at any frequency and angle of incidence. 

Fig. 1. Scheme of photonic crystal slab (green) with PMLs (violet) truncating the cladding 

domains. 

As proposed by Sacks et al. [22,23], PMLs can be treated as uniaxial anisotropic 

absorbers whose permittivity and permeability tensors are specified according to the 

following relations: 

ˆ ˆˆ ˆ, = ,e e m m= L L (5) 

where, in case of absorption in the z-direction, 

1

0 0

ˆ 0 0 ,

0 0

c

c

c-

æ ö
ç ÷L = ç ÷
ç ÷
è ø

(6) 

being c = α - iβ, with α equal to the real part of the adjacent medium relative permittivity and 

β > 0. This condition, without any further restriction on β, can assure perfect absorption of 

any plane wave incident upon the boundary of an infinitely thick PML, independently of 

frequency or incidence angle [22]. As was noticed [23], however, the discrete approximation 

of fields and material parameters results in a spurious impedance loading at the interface 

between PMLs and physical domains, and significant reflections are found in presence of 

constant β. In other words, after discretization, PMLs are still absorbing materials and waves 

that propagate across them are still attenuated, but the boundary between PML and regular 

medium is no longer reflectionless. This mismatch problem in the discretized space can be 

tempered by using spatially varying material parameters [23]:

( )0
.

n

n

z z

L
b s=

)
n

(7) 

The plus (minus) sign refers to PMLs located in the lower (upper) half space. In Eq. (7) 

/s s w= , and s , L and n are constant parameters. L is the PML thickness whiles  is the 

wave attenuation rate within the PML. Condition (7) assures a smooth increasing of the 

damping rate of waves incoming into the absorbers and significantly improves PML 

absorption. Optimal PML performance, however, requires a careful optimization of 

parameters σ, L and n. The problem will be addressed in next section. We notice that, in 

general, the β parameter depends on ω and therefore the PML is a dispersive material. This

does not represent a problem since, as mentioned before, in the present modal method 

frequency is fixed. 
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We notice that PMLs are not the only option in order to properly truncate open 

boundaries. Absorbing Boundary Conditions (ABC) [20] can also be used to absorb plane 

wave leaky radiation. A detail comparison between effectiveness of PMLs and ABCs in the 

present method is out of the scope of the present work. However, we notice that if the 

leakage radiation is not in the form of a single plane wave, ABCs are expected to be not 

suitable. 

4. 2D sinusoidal grating and PML test 

We first start with a 2D example (Fig. 2(a)) which serves as a guideline to set the PMLs 

parameters, optimizing them in order to minimize reflections. The unit cell consists of a 

sinusoidal metal-dielectric interface in the x-z plane, infinitely extended in y-direction (out of 

plane). In the z-direction the unitary cell is limited above by a PML layer and below by the 

bulk metal. The period (d) in the x-direction is set to 600nm while the peak-valley amplitude 

of the sinusoid (a) is increased from 0 to 150nm. We adopt silver as metal, its permittivity 

being taken from Palik [24]. Periodic boundary conditions are set in both x and z directions. 

In z direction this condition is not mandatory because of the presence of the PML. This 

choice is made in order to reduce to zero the last term in Eq. (4). Since the PMLs are 

expected to absorb all radiation impinging on them, the particular boundary condition set at 

the end of the PML layer actually does not influence the resulting field distribution. 

In the case of mono-periodic gratings, as in the considered example, one is typically 

interested in studying surface plasmon modes whose k-vector is parallel to the grating vector, 

ˆ(2 / ) .d xp=G In this case the weak form of Helmholtz’s equation, Eq. (4), reduces to the 

following simplified form 

2

2 2

22

33 33 11 33

1 1
0.

uv i u v u v u v
d v u uv

x x z z x x c

w
l l m
e e e eW

é ù¶ ¶ ¶ ¶ ¶ ¶æ ö æ ö+ - + + - =ê úç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶è ø è øê úë û
ò r  (8) 

where λ = kx, εii and μii are the diagonal components of the relative permittivity and 

permeability tensors of the medium involved (both physical domains and PMLs). 

Fig. 2. (a) Scheme of unit cell for the sinusoidal plasmonic grating; (b) Variation of a sample 

eigenvalue (λL = d = 0.0905356 at ω = 1.7∙1015Hz) as a function of PML thickness L and σ, ∆λ

is defined as ∆λm = λL = (m + 1)d - λL = md (m>0), scale is in decibels. 

The need of terminating the computational domain with proper boundary condition, in 

any case, results in the generation of undesired spurious modes, even in presence of PMLs. 

Most of these nonphysical modes look like guided modes within the PML domains or 

between slab and absorbing boundary. A common way to discriminate physical leaky or 

bound modes from PML modes is to employ an average field intensity based filter [15]. The 
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physical modes, even leaky modes, are expected to be those ones mostly confined in 

proximity of the plasmonic slab and rapidly decaying within the PML domain. We calculated

the following quantity for all eigenmodes 

2

(1)

2

(2)

H

H
k = (9) 

where <|H|
2
>(1), <|H|

2
>(2) are the averages of the squared H field norm in a region far from 

the grating in which all evanescent fields are vanished and within a thin air layer (tens of nm) 

close to the metal surface respectively, i.e. regions marked with (1) and (2) in Fig. 2(a) 

respectively. We found out that κ values ranging from 0 to 20% are typically obtained in case 

of physical bound or leaky eigenmodes, whereas higher values are found for nonphysical 

PML–related modes. We used therefore the quantity κ to filter out non-physical modes. 

Before extracting the dispersion curves we performed a PML test in order to 

appropriately set the constants σ, L and n in the PML model, Eq. (7). In Fig. 2(b) we consider 

a sample eigenvalue λ and report its variation as a function of PML thickness L, i.e. ∆λm = λL

= (m + 1)d - λL = md (m>0), for several σ values, keeping fixed n, ω and mesh element density. As 

can be seen, PML performances improve with increasing PML thickness and decreasing σ

(∆λ converges to a small constant value related to the numerical precision). This can be 

explained as follows. The variation in l  is related to non-zero reflections at the interface 

between PML and air. As previously mentioned, PML is perfectly reflectionless only when 

solving the exact wave equation. Reflections keep low as long as the discretization is a good 

approximation of the exponentially decaying wave within the PML, provided the PML is 

thick enough to completely absorb the incoming wave. In order to increase the accuracy of 

the approximation, two methods are possible [25,26]: (a) for a fixed PML thickness, 

increasing mesh element density in the PML or, (b), at a fixed mesh element density, 

decreasing σ parameter, in order to turn on wave absorption more gradually, and increasing 

PML thickness. Clearly option (b) works since, as long as the PML material is slowly 

varying, the wave decay is more diluted in space and is better resolved by the given mesh 

density. Of course both options (a) and (b) require increasing the number of elements within 

the PML domain. An acceptable compromise between accuracy and computational cost was 

found taking the PML thickness L equal to 4d and the σ value close to ω, keeping the mesh 

density the same as in the air domain. 

With regard to the n parameter, it was shown for example in [23,27], that a simple 

quadratic or cubic turn-on of the PML absorption usually produces negligible reflections for 

a PML only few wavelengths thick. 

Once set the tensor parameters in Eq. (7) we performed the modal analysis of the 

structure in Fig. 2(a). In Fig. 3(a) we report a reflectance map obtained by a scattering FEM 

simulation of a grating with amplitude 75nm. This kind of maps is commonly used in 

literature to deduce the real part of SPP modes dispersions by looking at the reflectance dips 

[1]. Black lines are the real part of the SPP modes calculated with the modal analysis. As can 

be seen, the modal analysis correctly predicts the dips observed in the reflectance maps, 

which correspond to coupling of impinging light to SPP modes. 

For a better understanding of the numerical improvement due to the PML insertion into 

the unitary cell, we report in Fig. 3(b) a comparison between the modal curves calculated 

with and without the PML addiction. In both cases, a fictitious periodicity of 5μm in z-

direction is set. In absence of PML, the modal curves present a discontinuous behavior. The 

fictitious periodicity in z-direction unavoidably restricts the allowed spectrum of possible 

frequencies for a given momentum Re(kx) to a discrete set. This discretization occurs even in 
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presence of PMLs, but is much more refined, tending to a continuum of states in the limit of 

infinite PML mesh resolution (which mimics the perfect open boundary condition). 

Fig. 3. (a) Reflectance map compared with the calculated dispersion curves (black lines), 

green dashed line is the light line; (b) Comparison between bands obtained with (black) and 

without (red) PML domains (in both cases the tolerance parameter κ was set to 0.1, and 
periodicity in z direction is 5μm).

Fig. 4. Real part (a) and imaginary part (b) of the modes varying the sinusoidal grating 

amplitude a: a = 0 (flat case, black), 30nm (cyan), 50nm (magenta), 75nm (green), 100nm 
(red), 150nm (blue). The dashed black curve in (a) is the light line. 

In Fig. 4 we report the real and imaginary parts of the mode dispersions for increasing 

grating amplitudes. As well known [1], a flat metal-dielectric interface sustains a SPP wave 

whose dispersion is given by 
1/2

, 0 ( / ( ))SPP F m d m dk k e e e e= + , where εm,d are respectively the 

metal and dielectric relative permittivities, while k0 is the vacuum wave vector. When a 

shallow periodic perturbation is introduced the mode dispersion remains close to the flat case. 

The only remarkable difference is observed at the crossing point of the flat SPP dispersions at 

the edge of first Brillouin zone (kx = π/d), where an energy gap appears with increasing 

grating amplitude [28–30]. As can be seen the modal analysis correctly reproduces the effect. 

Actually it can be noted that the method converges to a solution also at frequencies within the 

band gap and we should more correctly term this frequency range as a gaplike region [31]. In 

particular the band, at frequencies close to the lower gap edge, rises steeply through a 
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continuum of states toward the upper gap edge. The gap edges are actually not well defined, 

especially for higher amplitude gratings. This behavior was already noticed in similar modal 

analyses performed with real frequency and complex Bloch-wave-vector [32,33]. The 

frequency gap however is more evident looking at the imaginary part of the mode dispersions 

(Fig. 4(b)). At frequencies corresponding to the gap the imaginary part assumes great values, 

reaching a maximum at the center of the gap. The phenomenon becomes more evident with 

increasing grating depth, as expected. Within the gap the modes have a great dissipation 

which prevents them to propagate in the direction orthogonal to the grooves. 

For frequencies above the upper gap edge (ω > 1.7∙10
15

Hz) the imaginary part of the 

Bloch-wave-vector has values much greater than its corresponding values at frequencies 

below the gap. This is because the folded plasmonic band enters the light cone and the

radiative coupling to propagating waves in the upper air half space becomes possible. 

In order to have an independent check of the reliability of imaginary part of mode 

eigenvalues, we considered the following FEM model (see Fig. 5(a)). An SPP is launched on 

a flat metal-air interface at the left boundary of the model. The metal interface then continues 

with a sinusoidal profile. The SPP wave, reaching the sinusoidal grooves, is partially 

reflected and partially couples to the grating Bloch-mode. Once the SPP Bloch mode is 

correctly excited, it propagates along the grating with its own complex propagation constant. 

In particular, from the field profile in Fig. 5(a) we can extract the attenuation constant, α, by 

means of exponential fit, obtaining therefore the imaginary part of the propagation constant 

as Im(λ) = 1/(2α) [1].

Fig. 5. (a) z-component of the magnetic field obtained by exciting the proper mode by mean of 

excitation boundary conditions. Frequency is ω = 3.5∙1015Hz, d = 600nm and a = 50nm. (b) 

Comparison between the imaginary part of the modes calculated with illumination (blue 
curve) and by modal analysis (magenta curve) respectively at fixed amplitude a = 50nm. 

We performed the calculation for different frequencies at fixed period d = 600nm and

amplitude a = 50nm. Results are reported in Fig. 5(b). We see that there is a good agreement 

between the direct modal calculation and the indirect method based on SPP excitation for a 

wide spectral range of our interest (up to ω »4∙10
15

Hz). For frequencies above ω »4∙10
15

Hz a 
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growing mismatch is observed since the considered PML setup is not optimal any more for 

too short wavelengths. The deviation may be reduced by tuning again the PML parameters. 

5. 2-D periodic array 

In this section we apply the modal analysis to the plasmonic crystal slab depicted in Fig. 1,

consisting of an array of squared nano-holes with sizes ax = ay = a milled in a thin silver slab. 

Period and silver thickness are fixed to d = 940nm and h = 200nm respectively. Two PMLs 

are introduced in the unit cell in order to absorb the leakage radiation propagating toward 

open space. They are set at distance z0 =  ± 1470nm from the slab and their parameters are set 

according to previous section. 

Holey thin metal films exhibit very interesting plasmonic properties of extraordinary 

optical transmission which have been extensively studied in a vast literature [6–11]. 

However, what is usually omitted in literature is the detailed visualization of both the real and 

imaginary dispersions of the SPP Bloch modes of the considered structures. This is due the 

strong leakage radiation damping that affects the modes for large holes sizes, which is hardly 

handled by standard numerical techniques. 

In order to verify the effectiveness of the method in presence of both low and high 

radiative losses, we carried out two simulations, the first for a small hole size, a = 250nm, the 

second for a wider hole, a = 500nm. We focus on modes along x-direction, ˆk = xkl  . Figure 6 

reports the transmittance maps obtained by FEM scattering simulations for both hole sizes 

and for TM and TE polarized impinging plane waves. The superimposed black lines are the 

real parts of the SPP Bloch modes of the structure calculated with the modal analysis. As can 

be seen, Bloch-modes dispersions directly correlate to transmittance features of the structure. 

This strict connection has been noticed in several works [6–9]. The calculated bands 

approximately follow the dispersions given by the well known grating coupling relation 
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where neff is the real part of effective index of the SPP mode propagating on a flat silver-air 

interface [1] and m, n are integers. We consider dispersions along the x-direction by setting 

Re(ky) = 0. The white and red lines in Fig. 6(a,c,e) denote the (m,n) = ( ± 1,0) and the (0, ± 1) 

flat SPP dispersion curves respectively, according to Eq. (10). Figure 6(e), 6(f) report details 

of Fig. 6(a). As is seen the dispersions found with the modal analysis more precisely account 

for the transmittance features observed.

The modes in general split into two categories: antisymmetric (lower frequency, labeled 

as (|m|,|n|)
-
) and symmetric modes (higher frequency, labeled as (|m|,|n|)

+
), depending on the 

distribution of the dominant magnetic field component with respect to the z = 0. This is a 

consequence of the mirror symmetry of the system with respect to the z = 0 plane [12]. The 

comparison between modal analysis and direct illumination gives important information 

about the modes which can be excited with the two types of illumination. We see that the 

(1,0) 
±

modes can be excited only in presence of TM illumination and both correspond to 

transmittance peaks (see Fig. 6(e)). On the other hand, different (0,1) 
±

modes can be excited 

both in TM and TE illumination. In particular, in Fig. 6(f), only one transmittance peak is 

clearly visible corresponding to the antisymmetric TM (0,1)
-
 mode (see the comparison 

between Hx in the y-z plane obtained with modal analysis and illumination at frequency of 

2.022∙10
15

Hz). 
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Fig. 6. Maps of TM and TE transmittance through arrays of square nano-holes (period d =
940nm) in a 200nm thick Silver film in air compared with the calculated Bloch-modes 

dispersion curves (black lines, labeled as (|m|,|n|) ± ); (a) and (b) refer to holes with size a =

250 nm, (c) and (d) to a = 500nm; (e) and (f) are zooms of the regions marked with 1 and 2 

respectively in (a). Black dashed line marks the light line, white and red solid lines mark the 

flat SPP dispersions, ( ± 1,0) and (0, ± 1) respectively. Figure 6(f) contains also a comparison 

between the x-component of the magnetic field profile in the z-y plane obtained with modal 
analysis and illumination respectively. 

In case of large holes, we note that the (1,0)
-
 mode strongly deviates from the flat SPP 

dispersion curves, whereas the (1,0)
+
 is almost unperturbed. It is also evident how the (1,0)

-

one is correlated to a much higher transmittance peak than the (1,0)
+
 (Fig. 6(c)).
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In Fig. 7(a) and 7(b) we report respectively the fields Hy and |Ex| in the x-z plane, for the 

two TM modes observed at frequency ω = 1.6∙10
15

Hz with a = 250nm (I-II) and a = 500nm 

(III-IV). As can be expected, for small hole sizes, the modes are well confined close to the 

metal slab. The mode confinement decreases in case of a = 500nm and a stronger leakage 

radiation is observed in the cladding regions. The presence of the PMLs, however, makes it 

possible to properly absorb this radiation and allows reconstructing the correct mode field 

profiles. This is clearly seen in Fig. 7(b). In fact, the almost uniform |Ex| in the region far 

from the slab indicates that no waves reflected from the PMLs are present. Comparing Fig. 

7(b) I and III with 7(b) II and IV, we observe that the electric field intensity is mainly 

concentrated within the hole in the anti-symmetric modes, while the field has a node at the 

plane z = 0 in the symmetric case. 

As just pointed out in [7–11], peaks in optical transmission through a holey metal film 

can be described in terms of symmetric and antisymmetric coupling of plasmonic modes 

between the two horizontal metal-dielectric interfaces of the slab. In case of symmetric 

coupling, SPPs at the two horizontal metal-dielectric interfaces are weakly coupled via 

evanescent fields inside the hole. The mechanism depends mainly on the periodicity of the 

structure and is the main EOT channel for arrays of small holes. In the antisymmetric 

coupling, instead, single-interface SPPs are strongly coupled via a Fabry-Pérot resonance 

inside the hole. This resonance depends more on single hole characteristics (size and depth) 

rather than on the periodicity of the structure, and turns out to be the dominant EOT 

mechanism for arrays of large holes [10]. We refer to [7–11] for a detailed description of 

these EOT mechanisms. 

Fig. 7. (a) Hy and (b) |Ex| fields of the TM modes found at frequency of 1.6∙1015Hz for a =

250nm (I,II) and a = 500nm (III,IV). The calculated eigenvalues in the four cases are 

respectively kx/(π/d) = 0.3828 + 0.0019i, 0.3878 + 0.0011i, 0.2792 + 0.1251i, 0.3829 + 

0.0025i. Modes are classified as antisymmetric (I,III) and symmetric (II,IV) according to the 
symmetry of Hy field with respect to the z = 0 plane. PML size is fixed at 2d for convenience. 

This simplified picture for EOT is confirmed by our modal analysis, provided we replace 

the horizontal-SPP-coupling description with a Bloch-modes description. As a matter of fact, 

we find a good matching between SPP Bloch-modes of the structure and EOT peaks for the 

250nm-holes array (Fig. 6(a), 6(b)). This is in agreement with the fact that, for small holes, 
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the nature of the EOT is closely related to the periodicity of the structure. In case of large 

holes, on the other hand, it can be noticed that the TM bands do not exactly follow the wide 

transmittance maxima observed. Moreover, in presence of TE illumination, no Bloch modes 

are correlated to the transmittance maximum found around ω = 1.62∙10
15

Hz. This suggest 

that the main EOT peaks observed are not strictly correlated to the periodicity of the structure 

but are mostly related to single-hole Fabry-Pérot resonances [9,10] and therefore they are 

reasonably not completely caught by an in-plane modal analysis. By contrast, we note that 

the symmetric modes, both in TE and TM illumination, are only weakly perturbed by the 

increased holes size and exactly match the corresponding transmittance peaks visible in the 

maps. This persistent matching confirms that these transmittance features are strictly related 

to the excitation of a periodicity-induced Bloch modes of the structure. 

Fig. 8. Real and imaginary parts of the modes for a = 250nm (a,b) and a = 500nm (c,d). Blue 

and red dots represent the TM (1,0)- and TM (1,0)+ modes respectively, black dots represent 

the TE and TM (0,1) ± modes. Insets in (a) report the dominant magnetic field component 

profile (colorscale) and the (H) field (arrows) respectively in a x-y plane laying 10 nm above 
the slab at frequency of 2.05x1015Hz for the (|m|,|n|)- modes. 

Finally we report in Fig. 8 the real and imaginary parts of the complete band structure 

within the first Brillouin zone along the Г-X crystal direction for both cases at a = 250 nm 

and a = 500nm. The colored bands refer to the TM symmetric (red) and anti-symmetric 
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(blue) modes. The most striking effect of increasing the hole size is found looking at the 

imaginary parts of the modes. In particular, as can be expected, the antisymmetric mode, 

being related to the vertical Fabry-Pérot resonance of the structure, is the most sensitive to 

the hole size and shows a huge increase of imaginary part. At frequencies close to 1∙10
15

 Hz 

the small frequency gap found for a = 250 nm is much wider at a = 500 nm. The hole size 

variation corresponds to a variation of the metal filling fraction along the mode propagation 

direction and acts on the gap-size as the metal amplitude variation did in the sinusoidal 

grating example discussed in section 4. On the other hand, the imaginary part of the 

symmetric mode is almost the same for a = 250 nm and 500 nm. 

Black dots in Fig. 8(a) mark the TE and TM (0,1) 
±

modes. Their imaginary parts present 

strong increases in correspondence of the edge of the first Brillouin zone around the 

frequency of 2.2∙10
15

 Hz (Fig. 8(b) inset). This behavior indicates the presence of gaps 

similar to the ones observed for the TM modes. In the insets of Fig. 8(a) we report the 

dominant magnetic field component profiles of the (|m|,|n|)
-
 modes for a = 250 nm in a x-y

plane laying 10 nm above the slab at frequency of 2.05∙10
15

 Hz. We see that the TM (1,0)
-

mode is a transversal mode with the magnetic field polarized in the y-direction, while both 

the TE and TM (0,1)
-
 modes are longitudinal modes with the magnetic field mostly polarized 

in the x-direction of propagation. 

Looking at the real dispersions of the modes it can be noticed a band bending at 

frequencies around ω = 2∙10
15

 Hz near kx = 0. Correspondingly, a divergence in the imaginary 

parts is observed. Similar deviations are typical of real-frequency (and complex propagation 

constant) eigenvalue methods. They are not physical and were already reported elsewhere 

[18,31,33].

6. Conclusions 

In conclusion we presented a full vectorial Finite Elements based numerical method for the 

modal analysis of photonic crystal slabs in presence of dispersive lossy materials. In 

particular, the important class of plasmonic crystal slabs of arbitrarily complex geometries 

can be handled. The method relies on the reformulation of Helmholtz eigenvalue equation in 

weak form, including Perfectly Matched Layers in the unit cell in order to simulate open 

boundaries. Results were firstly obtained in the simple case of 2D sinusoidal metal-dielectric 

interface and were compared to scattering FEM simulation. Good agreement was found, 

provided that the PML parameters are properly set. Our results prove that PML 

implementation allows to effectively study leaky modes, characteristic features of photonic 

crystal slabs, thus enabling the reconstruction of the correct radiative eigenmode profile. 

The method was then applied to the more complex case of periodic arrays of holes in a 

silver metal film, enabling to investigate the role that plasmonic Bloch modes play in the 

Extraordinary Optical Transmission phenomenon presented by the structure. By comparing 

Bloch-modes dispersions to transmittance maps, indeed, it was possible to discriminate 

between optical features mainly related to periodicity from those mainly dependent upon 

single hole characteristics (with a weak array interaction). A study as a function of the hole 

size, moreover, revealed that in the case of small holes the EOT phenomenon is mainly 

correlated to Bloch modes, while for large hole arrays it is mainly influenced by single hole 

resonances. 
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