
Accepted for Publication in Journal of Shock and VibrationSPECTRAL ANALYSIS OF LARGE FINITE ELEMENT PROBLEMSBY OPTIMIZATION METHODSLUCA BERGAMASCHI, GIUSEPPE GAMBOLATI AND GIORGIO PINIDIPARTIMENTO DI METODI E MODELLI MATEMATICIPER LE SCIENZE APPLICATEUNIVERSITY OF PADUA, ITALYKey words. eigenpairs, conjugate gradient, sparse matrices, Rayleigh quotient, rate of conver-gence, Hessian condition numberAMS(MOS) subject classi�cations. 65F15 - 65F50Abstract. Recently an e�cient method for the solution of the partial symmetric eigenproblem(DACG, Deated-Accelerated Conjugate Gradient) has been developed, based on the conjugate gradi-ent (CG) minimization of successive Rayleigh quotients over deated subspaces of decreasing size. Inthe present paper four di�erent choices of the coe�cient �k required at each DACG iteration for thecomputation of the new search direction pk, are discussed. The 'optimal' choice is the one that yieldsthe same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Nu-merical results point out that the optimal �k leads to a very cost e�ective algorithm in terms of CPUtime in all the sample problems presented in the paper. Various preconditioners are also analyzed. Itis found that DACG using the optimal �k and (LLT )�1 as a preconditioner, L being the incompleteCholesky factor of A, proves a very promising method for the partial eigensolution. It appears to besuperior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of �ve �nite element(FE) problems, and particularly for the largest problem { with size equal to 4560 { for which the speedgain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.Introduction. The numerical computation of the p leftmost eigenpairs of the gen-eralized eigenvalue problem Ax = �Bx, where A and B are large, sparse, symmetricpositive de�nite matrices, is a problem of major importance in many scienti�c andengineering applications making use of �nite di�erence (FD) or �nite element (FE)models.Typical applications are in vibrational analysis of mechanical structures [2], lightwavetechnology [22], and the spectral superposition approach for the solution of large setsof di�erential equations [6]. There are several techniques for solving the generalizedeigenproblem: subspace iteration ([3], [16]), the Lanczos method ([12] and [14]), andoptimization methods by gradient and conjugate gradient (CG) schemes.A new optimization method, Deation-Accelerated Conjugate Gradient (DACG),which performs a preconditioned CG minimization of the Rayleigh quotient over sub-spaces of decreasing size, has recently been developed [10]. A vector and parallel versionof this algorithm can be found in [18].The theoretical asymptotic convergence rate of DACG has been studied by Bergam-aschi et al. [4] who showed it to be related to the spectral condition number of the Hes-sian of the Rayleigh quotient: xTAx=xTBx, restricted over the subspace B-orthogonalto the eigenvectors already computed and evaluated at the desired eigenvector.In the present paper we �rst analyze the particular choice of coe�cient �k in therecurrence equation de�ning the new search direction pk:pk = K�1gk + �kpk�1;1



where K�1 is the CG preconditioning matrix and gk is the gradient of the Rayleighquotient at the iteration k. Using the following general de�nition for �k�k = �pTk�1MK�1gkpTk�1Mpk�1 (1)where M is an appropriate matrix, a sequence of mutually M -conjugate directions pkis constructed. It is shown that several selections for M are possible. However, theyare not all equivalent in terms of computational cost. In particular, the choice of Mwhich yields the same asymptotic convergence as the CG method in solving linearsystems, appears to be the most convenient one. The numerical performance of DACGwith M de�ned as in [17] and [8] is discussed using three well known preconditioners:K�1 = A�1, K�1 = (LLT )�1, L being the incomplete Cholesky factor of A, and K�1 =D�1, where D is the diagonal matrix whose entries are the diagonal coe�cients of A.The numerical asymptotic convergence rate of the Cholesky-preconditioned algorithm iscompared to that of DACG which makes use of the inverse of A as a preconditioner [4].DACG, preconditioned with (LLT )�1, and using four di�erent choices for �k is ap-plied to calculate the 40 leftmost eigenpairs of �ve �nite element eigenproblems of largesize [9]. The DACG convergence pro�les and total CPU times are analyzed and dis-cussed. Finally the behaviour of the Cholesky-preconditioned algorithm, with the best�k value, is compared to the pointwise Lanczos method [9] for evaluating 5, 10, 20 and40 eigenpairs of the �ve test problems.Gradient methods for the evaluation of the p leftmost eigenpairs. We willanalyze the DACG method in the form developed in [10], [8], and [4], to compute thep smallest eigenpairs of the eigenproblem:Ax = �Bx (2)A,B being two sparse, symmetric, positive de�nite, N �N matrices. The real positiveeigenvalues and corresponding eigenvectors are denoted by�N � �N�1 � : : : � �1uN ;uN�1; : : : ;u1The eigenpairs are found sequentially, starting from the leftmost one �N ;uN , by meansof a CG optimization of the restricted Rayleigh quotientq(x) = xTAxxTBx (3)onto subspaces of decreasing size, which are B-orthogonal to the previously computedeigenvectors. 2



The DACG procedure. Assume that the j leftmost eigenpairs of (2) are known.Then the N � j eigenpair is obtained by the following procedure:1. Start with an initial eigenvector guess x0 such that UTj Bx0 = 0, i.e. takex0 to be B-orthogonal to the subset Uj = [uN ; : : : ;uN�j+1] of the j leftmosteigenvectors previously computed. Set k = 0 (iteration index) and p�1 as anarbitrary vector;2. let mk = xTkBxk and gk = 2mk [Axk � q(xk)Bxk] (4)be the gradient of the Rayleigh quotient (3) assessed at the current iterate xk.3. If k = 0 set �k = 0, otherwise calculate �k by [17], [8]:�k := �(1)k = �pTk�1AK�1gkpTk�1Apk�1 (5)or by [4] (MDACG procedure):�k := �(2)k = �pTk�1(A� jB)K�1gkpTk�1(A� jB)pk�1 ; j = �N�j+1 (6)or by [20]: �k := �(3)k = gTkK�1gkgTk�1K�1gk�1 (7)or by [19], [10]: �k := �(4)k = gTkK�1(gk � gk�1)gTk�1K�1gk�1 (8)where K�1 = (LLT )�1 and L is the pointwise incomplete Cholesky factor of A([13], [11]). Equation (7) is di�erent from eq. (1) while eq. (8) can be writtenunder the form (1), as will be shown later.4. Calculate: ~pk = K�1gk + �kpk�1 (9)and evaluate pk by B-orthogonalizing ~pk against the eigenvectors previouslycomputed using a Gram-Schmidt process:pk = ~pk � j�1Xi=0(~pTkBuN�i)uN�i (10)5. Set: xk+1 = xk + �kpk (11)where �k is chosen in order to minimize q(xk + �kpk) (see [15], [17]).3



6. Increase the iteration counter and go back to step 2. The iteration is completedwhenever k is larger than the allowed maximum number of iterations IMAX orerj;k+1 = jq(xk+1)� q(xk)jq(xk) < TOL1 (12)or rrj;k+1 = kAxk+1 � q(xk+1)Bxk+1k2kAxk+1k2 < TOL2; (13)if erj;k+1 < TOL1 or rrj;k+1 < TOL2, we set�N�j = q(xk+1)uN�j = xk+1=pmk+1which are the N � j eigenvalue and corresponding B-normalized eigenvector,respectively, of eq. (2).Note that the leftmost eigenpair �N ;uN can also be computed by this general procedureby taking U0 as the null space and 0 = 0 in (6).Selecting the coe�cient �k. A di�erent coe�cient �k may produce a di�erentasymptotic rate of convergence. Let us now analyze the asymptotic behaviour of thepreconditioned CG algorithm with �k as de�ned by eqs. (5), (6), (7) and (8).Set �k = q(xk), � = �N�j . We assume that the following approximations hold fork � s and s `su�ciently' large.�k = �k�1 = �; mk = mk�1 = m; gk = 2m(A� �B)xk (14)and use the following equation for �k (see [20]):�k = �pTk (A� �B)xkpTk (A� �B)pk = �m2 pTk gkpTk (A� �B)pk (15)Remark: this choice of �k is asymptotically equivalent to that indicated at step 5.of the previous section. Actually, the coe�cient �k is chosen such that q(xk+1) isminimized. This leads to the following equation (see [15], [17], and [7]):a�2k + b�k + c = 0 (16)where a = pTkApk pTkBxk � pTkAxk pTkBpkb = xTkBxk pTkApk � xTkAxk pTkBpk4



c = xTkBxk pTkAxk � xTkAxk pTkBxkThe �rst order approximation of the larger root of the equation is [20]:�k = �cb = xTkBxk pTkAxk � xTkAxk pTkBxkxTkAxk pTkBpk � xTkBxk pTkApkDividing numerator and denominator by xTkBxk and recalling thatxTkAxkxTkBxk = �yield eq. (15).Let k > s, then from (14), (11) and (15) we havegTk pk�1 = 2m[(A� �B)xk]Tpk�1 = 2m(xTk�1 + �k�1pTk�1)(A� �B)pk�1 == 2m[xTk�1(A� �B)pk�1 + �k�1pTk�1(A� �B)pk�1] = 0 (17)Then, for every k > s + 1, using (9), (11), and (15) we obtain the following expressionfor �(3)k : �(3)k = gTkK�1gkgTk�1K�1gk�1 = gTkK�1(2=m)(A� �B)xkgTk�1K�1(K~pk�1 � �k�1Kpk�2)= gTkK�1(2=m)(A� �B)(xk�1 + �k�1pk�1)gTk�1(~pk�1 � �k�1pk�2) == gTkK�1gk�1 + (2=m)�k�1gTkK�1(A� �B)pk�1gTk�1~pk�1 � �k�1gTk�1pk�2 (18)First observe that gTk�1pk�2 = 0 by (17). Then we note thatgTk�1~pk�1 = gTk�1pk�1 + gTk�1 j�1Xi=0(~pTkBuN�i)uN�i = gTk�1pk�1since every iterate xk is B-orthogonal to Uj and consequently, for every i � j � 1,gTk�1uN�i = (2=m) xTk�1(A� �B)uN�i = (�N�i � �)(2=m) xTk�1BuN�i = 0:We now rewrite �(3)k using the above results and eq. (15):�(3)k = gTkK�1gk�1 + (2=m)�k�1gTkK�1(A� �B)pk�1�(2=m)�k�1pTk�1(A� �B)pk�1 : (19)5



Taking now �(4)k as in (8), and observing that eq. (8) di�ers from eq. (7), and conse-quently from (19), only by the term gTkK�1gk�1 at the numerator, we can write:�(4)k = (2=m)�k�1gTkK�1(A� �B)pk�1�(2=m)�k�1pTk�1(A� �B)pk�1 == �gTkK�1(A� �B)pk�1pTk�1(A� �B)pk�1 = �pTk�1(A� �B)K�1gkpTk�1(A� �B)pk�1 (20)If we look at �(4)k given by eq. (20) and �(1)k we may recognize that �(2)k is somewhatintermediate between �(1)k and �(4)k since 0 < j < �:Convergence of the DACG method. The selection of �k = �(4)k , eq. (20),implies that the p directions are mutually (A� �B)-orthogonal. Therefore solving theeigenvalue problem is in this case asymptotically equivalent to solving the linear system:(A� �B)x = 0It has been proved in [1] that the asymptotic convergence rate of the CG method inthe solution of linear systems can be approximated by:� = 2p� (21)� being the condition number of the preconditioned iteration matrix. Hence the DACGconvergence rate �j, de�ned as:�j = limk!1 �j;k = � limk!1 ln erj;k+1erj;k ! (22)with �k = �(4)k , is expected to be inversely proportional to p�, with a proportionalityfactor of 4 instead of 2 (since the convergence toward the eigenvalue is two times asfast as the convergence towards the eigenvector, see [20]), where � is here equal to thecondition number of K�1(A� �B).In [4] a theoretical analysis of convergence with �k = �(1)k , is performed with K�1 =A�1, and it is shown that �j is inversely (linearly) proportional to the spectral conditionnumber �j of the Hessian of the restricted Rayleigh quotient, calculated at the currenteigenvector uN�j : �j � �j = 2 ln 1 + 1=�j1� 1=�j � 4�j (23)where �j = �N�j�1�N�j�1 � �N�j : (24)6



Furthermore, [4] gives an estimate of the number kj of iterations required to reduce therelative error by a factor h: kj � ~k + �j ln h4 (25)where ~k is the number of `initial' iterations performed before the asymptotic convergenceis achieved. By distinction, and in view of eq. (21), we might expect that the DACGasymptotic convergence rate with �k = �(4)k is dependent on the square root of �j. Inthis case the approximate number kj of iterations required to reduce the error by thefactor h is: kj � ~k +q�j ln h4 (26)Note that if K�1 6= A�1 no analytic expression can be given for �j since the eigenvaluesdistribution of K�1 is, in general, unknown.Numerical results. The DACG procedure (with di�erent choices of the coe�cent�k) has been applied to �ve sample problems arising from the FE integration of 2-Dand 3-D equations of elliptic type with size N = 222, 441, 812, 1952 and 4560 [9]. Thedistribution of the 40 leftmost eigenvalues is shown in Fig. 1. Computations have beenperformed on an IBM 9370 computer in double precision arithmetic.Table 1 provides the experimental asymptotic convergence rates �j of DACG with�k = �(1)k and K�1 = (LLT )�1, and makes a comparison between �j and the theoreticalrate �j, computed by eq. (23) for the ideal preconditioner A�1. The results of Table1 are quite interesting and show that the DACG asymptotic behaviour with the pre-conditioners A�1 and (LLT )�1 are very close, except for the �rst few eigenpairs. Notethat K�1 = (LLT )�1 yields a higher convergence rate than K�1 = A�1 for a signi�cantnumber of eigenpairs, particularly for the N = 441 and the N = 4560 problems.As pointed out in [4], A�1 is not the absolutely `best' theoretical preconditioner asis in the CG solution of linear systems, (in which case the spectral condition numberof the iteration matrix is equal to 1 and one iteration su�ces to converge to the exactsolution) and thus it may happen that the preconditioner (LLT )�1 may occasionallylead to a faster asymptotic convergence than A�1. Table 2 provides the average timeper DACG iteration with �k = �(1)k using the two (previous) preconditioners and thenew one K�1 = D�1 where D = diagfa11; a22; : : : ; aNNg, in the evaluation of the 40leftmost eigenpairs. Using D�1 or (LLT )�1, yields a signi�cant reduction of time periteration. Note that the calculation of K�1gk (eq. 9), when K�1 = A�1, is performedby iteratively solving the linear systemAy = gk (27)by the CG method preconditioned with (LLT )�1, and this accounts for the relativelylarge time per iteration required by DACG preconditioned with A�1. The computationof the product between A�1 and gk is by any method much more expensive than the7



computation of (LLT )�1gk. In the N = 441 and N = 4560 problems, we observe(Table 3) a reduction of the total number of iterations with the preconditioner (LLT )�1consistent with the asymptotic convergence rates of Table 1.From a careful inspection of Table 2 we can see that the time per iteration of theincomplete preconditioner is very close to that of the diagonal one although the com-putation of D�1gk (eq. (9)) is from 3 to 4 times less expensive than the computation of(LLT )�1gk. This can be understood by observing that most of the time Tj in a singleiteration at level j is used for the B-orthogonalization:Tj = TK�1 + j � Tort;where Tort is the time needed to perform a B-orthogonalization against a single eigen-vector, and TK�1 the time needed for computing K�1gk in eq. (9). Therefore the averagetime per iteration is:Tit = 140 39Xj=0 Tj = TK�1 + 19:5Tort = TK�1 + TORTwhere TORT is the average B-orthogonalization time in a single iteration. These averagetimes are also given in Table 2.Table 4 gives the overall number of iterations and CPU times of DACG implementedwith K�1 = (LLT )�1 as the preconditioner and �(i)k ; i = 1; 2; 3; 4, and the ratio ofDACG CPU times when �(1)k and �(4)k are used. Figures 2 and 3 show the di�erentconvergence pro�les for the relative residual of a few selected eigenpairs �N�j ;uN�j;for j = 0; 10; 20; 30 for the test problem with N = 441. Careful inspection of Fig. 2,Fig. 3 and Table 4 reveals that:1. The slowest algorithm is DACG with �k = �(1)k (Table 4 and Fig. 3).2. The choice �k = �(2)k (MDACG) provides a good asymptotic convergence butit may be more time consuming than the other choices since each iterationneeds an extra cost due to the computation of A � jB. In the N = 1952problem, MDACG requires the minimal number of iterations. Furthermore,in the N = 812 problem, the other three algorithms perform a complete B-orthogonalization of the current xk-vector against the previously computedeigenvectors, thus increasing the time per iteration (by distinction, MDACGrequires only a selective B-orthogonalization). Therefore MDACG, in the N =812 problem, is superior to the other DACG algorithms in terms of computingtime.3. the choice �k = �(3)k appears to be the best in most of the eigenvalue levelsfrom the point of view of asymptotic rate of convergence (i.e. the slope of thepro�les in Figs. 2 and 3). However, in a few cases (such as, for instance, j = 10for the N = 441 problem) �(3)k provides initial convergence which leads to ahigh number of iterations as is also shown by the horizontal rr pro�le of Fig. 3.4. DACG with �k = �(4)k is the fastest scheme in terms of the total CPU time inthe N = 222 and N = 441 problems although the asymptotic convergence rate8



appears to be almost the same as that of DACG with �(3)k . DACG with �(4)kimplements an authomatic `restart' (see [19]) which is useful when a slow initialconvergence occurs since it prevents the residual from remaining constant fora large number of initial iterations.On balance Table 4 emphasizes the poor performance of DACG with �k = �(1)k andindicates that the remaining DACG are to some extent equivalent in terms of overallcomputer cost, the �k = �(4)k procedure being perhaps slightly superior.The convergence properties of DACG with �k = �(4)k have been numerically studiedto check the validity of formula (26). The tolerance for the relative error is set to a verylow value (TOL1= 10�13). Experience suggests that the average number ~k of initialiterations is 25. Our `initial' error is therefore er25, which we want to reduce by a factorh = er25=TOL1 to achieve the �nal accuracy TOL1. This needs according to eq. (26) anumber of iterations kj given by:kj = 25 +q�j ln h4 = 25 +vuut �N�j�1�N�j�1 � �N�j ln h4 (28)Table 5 compares the theoretical number of iterations kj provided by (28) and the actualone for the N = 441 problem, and also gives the theoretical convergence rate�j = 4=q�j (29)and the convergence rate �j, numerically computed by eq. (22). Table 5 shows that theactual and the expected number of iterations di�er by at most 10, with the exception ofthe 6 leftmost eigenpairs, thus providing experimental evidence that eq. (26) is a reliableapproximation of the DACG iteration number as a function of the relative separationof the eigenvalue �N�j currently sought and the next higher one. Also note in Table 5that the numerical �j is a quite good approximation to the theoretical �j.Comparison of DACG and Lanczos methods. In [9] DACG with �k = �(1)k iscompared with two variants of the Lanczos method. For a description of the pointwiseLanczos algorithm also see [5], [21] and [14]. Consistent with the numerical results ofthe previous section we will compare DACG with K�1 = (LLT )�1 and �k = �(4)k withthe LANCZOS2 procedure developed in [9]. LANCZOS2 is a variant of the classicalLanczos algorithm, especially designed to solve eigenproblems with a pronounced �llin of the triangular factors of matrix A. LANCZOS2 performs the Lanczos recursiveproduct yj = A�1Bqj;by iteratively solving the linear system:Ayj = Bqj: (30)The iterative method used to solve system (30) is the CG scheme, accelerated by(LLT )�1. This technique enables in-core treatment of very large eigenproblems without9



any restriction on the bandwidth and nonzero pattern of the matrix pencil A;B. Table 6shows the performance of DACG and LANCZOS2 in terms of overall CPU time for the�rst 5, 10, 20 and 40 eigenpairs to meet the exit test (TOL2= 6 � 10�3) for the relativeresidual. Inspection of Table 6 reveals that DACG is faster than LANCZOS2, and par-ticularly so when only a few eigenpairs are sought or the problem is large (N > 1000).It may also be noted that DACG for large eigenproblems proves less demanding thanLANCZOS2 in terms of computer storage.Conclusions. The DACG performance with three preconditioners ((LLT )�1, Lbeing the incomplete Cholesky factor of A, A�1, and D�1, where D is a diagonalmatrix whose entries are the diagonal coe�cients of A), has been compared. The DACGconvergence properties have also been analyzed, using (LLT )�1 as a preconditioner andfour di�erent choices of parameter �k in the evaluation of the 40 leftmost eigenpairs ofgeneralized sparse eigenproblems.The asymptotic convergence rate of the Cholesky-preconditioned DACG with �k =�(1)k has been found to be close to that of DACG preconditioned with A�1, with theexception of the �rst few eigenpairs. Computational e�ciency is, however, remarkablyhigher since the cost per iteration turns out to be smaller by a factor ranging between5 and 10.The asymptotic behaviour of DACG is sensitive to �k. DACG with the optimal�k = �(4)k has an asymptotic convergence rate which is practically equal to that of theCG method used to solve linear systems. The choice �k = �(4)k and K�1 = (LLT )�1leads to the lowest CPU time in most of the eigenproblems.The cost of a single DACG iteration with the incomplete Cholesky preconditioner iscomparable to that of the diagonal one, since most of the CPU time is spent to performthe B-orthogonalization. Iterations are, however, much less.Finally, DACG with K�1 = (LLT )�1 and the optimal choice of �k = �(4)k has beencompared with the well known Lanczos algorithm. DACG appears to be superior inthe evaluation of the 40 leftmost eigenpairs of �ve sample problems and results in asaving of CPU time ranging from 4% (N = 222 problem) to 60 % (problem withN = 4560 equations). These values, however, are found to grow signi�cantly if asmaller number of eigenpairs are required. On balance DACG is recommended for largeproblems (N > 1000) and for the computation of few eigenpairs (� 5, on condition thata not too strict tolerance is prescribed). Alternatively, the Lanczos method should beused for eigenproblems of small size and whenever a high accuracy is required (TOL2� 10�5).Acknowledgements. This work has been supported in part by the Italian GNIM-CNR and Fondi MURST. REFERENCES[1] O. Axelsson, A class of iterative methods for �nite element equations, Comp. Methods App. Mech.Eng., 9 (1976), pp. 123{137. 10
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Fig. 1. Distribution of the 40 leftmost eigenvalues for the �ve sample problems.12
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Fig. 2. Convergence pro�le of relative residual of DACG with �k = �(1) and �k = �(2), for theevaluation of �N�j , vN�j , j=0, 10, 20, 30 for the eigenproblem with N = 441. The initial guess vectoris x0 = [1; : : : ; 1] and K�1 = (LLT )�1. 13
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Fig. 3. The same as Figure 2 with �k = �(3) and �k = �(4).14



N = 222 N = 441 N = 812 N = 1952 N = 4560j �j �j �j �j �j �j �j �j �j �j0 3.047 1.458 4.540 1.269 1.952 0.532 2.834 0.448 1.136 0.6721 2.247 1.279 1.937 0.910 2.744 0.584 1.959 0.392 0.270 0.3082 2.247 1.942 1.308 0.883 1.351 0.518 1.959 0.380 1.254 0.6563 0.502 0.487 0.970 0.968 2.163 0.742 0.502 0.141 0.707 0.5044 0.502 0.379 1.373 1.152 2.124 0.792 0.502 0.123 0.507 0.3885 1.408 1.182 0.023 0.023 1.985 0.748 1.112 0.321 0.691 0.5376 0.821 0.747 0.563 0.536 2.304 0.807 0.630 0.345 0.078 0.0787 0.821 0.740 0.899 0.847 2.168 0.749 0.630 0.257 0.572 0.4058 0.852 0.817 0.433 0.445 2.235 0.890 0.744 0.306 0.232 0.3279 0.852 0.870 0.366 0.374 2.215 1.034 0.744 0.307 0.386 0.48810 1.149 0.957 0.312 0.319 2.308 1.086 0.051 0.053 0.131 0.15111 1.149 0.889 0.330 0.339 2.272 0.912 0.641 0.308 0.645 0.56612 0.044 0.044 0.583 0.595 0.300 0.307 0.165 0.206 0.054 0.05413 0.044 0.044 0.221 0.224 0.088 0.051 0.165 0.195 0.159 0.17114 0.156 0.172 0.052 0.053 0.147 0.126 0.400 0.328 0.358 0.39715 0.156 0.172 0.446 0.454 0.225 0.206 0.677 0.305 0.134 0.21816 0.577 0.543 0.390 0.399 0.291 0.294 0.677 0.388 0.503 0.57317 1.018 0.922 0.218 0.222 0.354 0.325 0.230 0.230 0.076 0.07618 1.018 1.058 0.038 0.041 0.414 0.399 0.230 0.246 0.132 0.13419 0.535 0.549 0.228 0.237 0.454 0.462 0.196 0.206 0.096 0.10329 0.621 0.558 0.189 0.199 0.101 0.074 0.783 0.554 0.078 0.07839 0.105 0.112 0.122 0.146 0.125 0.104 0.215 0.221 0.021 0.021Table 1Comparison between the theoretical asymptotic convergence rate �j, eq. (23) and the numericalconvergence rate �j of DACG with �k = �(1)k , and with K�1 = A�1 and K�1 = (LLT )�1, respectively,for some of the leftmost eigenpairs of the �ve sample problems.K�1 = A�1 K�1 = (LLT )�1 K�1 = D�1problem TORT TA�1 Tit T(LLT )�1 Tit TD�1 TitN = 222 0.097 0.876 0.973 0.057 0.154 0.020 0.117N = 441 0.225 1.427 1.652 0.080 0.305 0.030 0.255N = 812 0.474 3.375 3.849 0.118 0.592 * *N = 1952 1.042 12.093 13.135 0.370 1.412 0.122 1.164N = 4560 3.200 41.134 44.334 1.476 4.676 0.334 3.554* DACG does not converge within IMAX= 500.Table 2Comparison of the average time (s) per iteration Tit (Tit = TORT+TK�1) for DACG with �k = �(1)kand three di�erent preconditioners in the calculation of the 40 leftmost eigenpairs. (TOL2=10�3)15



N = 222 N = 441 N = 812 N = 1952 N = 4560K�1 Time # it Time # it Time # it Time # it Time # itA�1 1059 1088 4989 3020 7233 1789 24156 1839 162130 3657(LLT )�1 294 1901 877 2873 2137 2720 4562 3232 13584 2905D�1 398 3409 1098 4303 * * 5524 4745 57632 16216* DACG does not converge within IMAX= 500Table 3Comparison of the overall CPU time (s) for DACG with �k = �(1)k and three di�erent precondi-tioners in the calculation of the 40 leftmost eigenpairs. (TOL2 = 10�3)
N = 222 N = 441 N = 812 N = 1952 N = 4560# it. Time # it. Time # it. Time # it. Time # it. Time1) 1901 294 2873 877 2720 2137 3232 4562 2905 135842) 820 144 1119 365 1058 693 1656 2440 1328 68063) 1185 171 1344 366 1022 739 1903 2423 1290 57464) 701 111 1039 303 1078 792 1834 2431 1303 58271)/4) 2.71 2.65 2.76 2.89 2.52 2.70 1.76 1.88 2.23 2.331) �k = �(1)k = pTk�1A(LLT )�1gkpTk�1Apk�1 2) �k = �(2)k = pTk�1(A�jB)(LLT )�1gkpTk�1(A�jB)pk�13) �k = �(3)k = gTk (LLT )�1gkgTk�1(LLT )�1gk�1 4) �k = �(4)k = gTk (LLT )�1(gk�gk�1)gTk�1(LLT )�1gk�1Table 4DACG performance vs parameter �k in terms of total number of iterations and CPU time (s) inthe calculation of the 40 leftmost eigenpairs (TOL2=10�3).16



j kj NIT �j �j0 27 32 3.579 1.2531 33 57 2.669 0.7052 27 29 2.231 0.7423 34 48 1.941 0.8494 31 38 2.270 1.0655 81 42 0.299 0.6866 39 45 1.485 1.0687 30 35 1.865 1.0648 38 46 1.305 0.8189 44 54 1.198 0.81110 42 44 1.105 0.98611 29 28 1.137 1.11512 32 36 1.505 0.99713 45 53 0.924 0.62714 80 70 0.451 0.49715 34 38 1.316 1.02016 40 48 1.231 0.82217 42 43 0.918 0.83718 80 88 0.386 0.34719 39 40 0.941 1.04329 48 48 0.849 0.80839 47 45 0.696 0.775Table 5Comparison between the expected number of iterations kj, eq. (26), and the actual number ofiterations NIT required by DACG with �k = �(4)k to achieve the prescribed tolerance TOL1=10�13, andbetween the theoretical (�j, eq. (29)) and the numerical (�j) convergence rate for the N = 441 problem.K�1 = (LLT )�1.N = 222 N = 441 N = 812 N = 1952 N = 4560j a b c a b c a b c a b c a b c5 8 24 3.0 19 50 2.6 44 90 2.1 315 762 2.5 319 1976 6.210 15 45 3.0 44 86 2.0 78 158 2.0 460 1036 2.3 747 2998 4.020 36 60 1.7 128 168 1.3 184 342 1.9 809 1741 2.2 1676 5093 3.040 96 100 1.0 258 334 1.3 568 657 1.2 1644 3732 2.3 4208 10968 2.5Table 6Comparison of CPU times (s) for (a) DACG with �k = �(4)k and (b) LANCZOS2 in the calculationof the j, (j � 40) leftmost eigenpairs (TOL2=6 � 10�3). Column c provides the ratio of LANCZOS2and DACG CPU times. 17


