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Abstract. Recently an efficient method for the solution of the partial symmetric eigenproblem
(DACG, Deflated-Accelerated Conjugate Gradient) has been developed, based on the conjugate gradi-
ent (CG) minimization of successive Rayleigh quotients over deflated subspaces of decreasing size. In
the present paper four different choices of the coeflicient G; required at each DACG iteration for the
computation of the new search direction pg, are discussed. The ’optimal’ choice is the one that yields
the same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Nu-
merical results point out that the optimal 3 leads to a very cost effective algorithm in terms of CPU
time in all the sample problems presented in the paper. Various preconditioners are also analyzed. It
is found that DACG using the optimal 8% and (LLT)~! as a preconditioner, L being the incomplete
Cholesky factor of A, proves a very promising method for the partial eigensolution. It appears to be
superior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of five finite element
(FE) problems, and particularly for the largest problem — with size equal to 4560 — for which the speed
gain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.

Introduction. The numerical computation of the p leftmost eigenpairs of the gen-
eralized eigenvalue problem Ax = ABx, where A and B are large, sparse, symmetric
positive definite matrices, is a problem of major importance in many scientific and
engineering applications making use of finite difference (FD) or finite element (FE)
models.

Typical applications are in vibrational analysis of mechanical structures [2], lightwave
technology [22], and the spectral superposition approach for the solution of large sets
of differential equations [6]. There are several techniques for solving the generalized
eigenproblem: subspace iteration ([3], [16]), the Lanczos method ([12] and [14]), and
optimization methods by gradient and conjugate gradient (CG) schemes.

A new optimization method, Deflation-Accelerated Conjugate Gradient (DACG),
which performs a preconditioned CG minimization of the Rayleigh quotient over sub-
spaces of decreasing size, has recently been developed [10]. A vector and parallel version
of this algorithm can be found in [18].

The theoretical asymptotic convergence rate of DACG has been studied by Bergam-
aschi et al. [4] who showed it to be related to the spectral condition number of the Hes-
sian of the Rayleigh quotient: xT Ax/xT Bx, restricted over the subspace B-orthogonal
to the eigenvectors already computed and evaluated at the desired eigenvector.

In the present paper we first analyze the particular choice of coefficient § in the
recurrence equation defining the new search direction pg:

Pr = K7'gr + Brpr-1,
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where K~ ! is the CG preconditioning matrix and gj, is the gradient of the Rayleigh
quotient at the iteration k. Using the following general definition for B

_pf_lMK_lgk

Br =
pf_l Mpr_4

(1)
where M is an appropriate matrix, a sequence of mutually M-conjugate directions py
is constructed. It is shown that several selections for M are possible. However, they
are not all equivalent in terms of computational cost. In particular, the choice of M
which yields the same asymptotic convergence as the CG method in solving linear
systems, appears to be the most convenient one. The numerical performance of DACG
with M defined as in [17] and [8] is discussed using three well known preconditioners:
K= A"', K~' = (LLT)7!, L being the incomplete Cholesky factor of A, and K~ =
D7! where D is the diagonal matrix whose entries are the diagonal coefficients of A.
The numerical asymptotic convergence rate of the Cholesky-preconditioned algorithm is
compared to that of DACG which makes use of the inverse of A as a preconditioner [4].

DACG, preconditioned with (LLT)~!) and using four different choices for 8y is ap-
plied to calculate the 40 leftmost eigenpairs of five finite element eigenproblems of large
size [9]. The DACG convergence profiles and total CPU times are analyzed and dis-
cussed. Finally the behaviour of the Cholesky-preconditioned algorithm, with the best
Bk value, is compared to the pointwise Lanczos method [9] for evaluating 5, 10, 20 and
40 eigenpairs of the five test problems.

Gradient methods for the evaluation of the p leftmost eigenpairs. We will
analyze the DACG method in the form developed in [10], [8], and [4], to compute the
p smallest eigenpairs of the eigenproblem:

Ax = ABx (2)

A, B being two sparse, symmetric, positive definite, N X N matrices. The real positive
eigenvalues and corresponding eigenvectors are denoted by

Av <Ay <L <)y

uy,uny-1,...,U1

The eigenpairs are found sequentially, starting from the leftmost one Ay, uyn, by means
of a CG optimization of the restricted Rayleigh quotient

q(x) = T Bx (3)

onto subspaces of decreasing size, which are B-orthogonal to the previously computed
eigenvectors.



The DACG procedure. Assume that the j leftmost eigenpairs of (2) are known.
Then the N — j eigenpair is obtained by the following procedure:
1. Start with an initial eigenvector guess X, such that UJTBXO = 0, 1.e. take
Xo to be B-orthogonal to the subset U; = [uy,...,un_j+1] of the 7 leftmost
eigenvectors previously computed. Set k¥ = 0 (iteration index) and p_; as an
arbitrary vector;
2. let my, = Xfok and

8r — i[AXk — q(x) Bxy] (4)

mpg

be the gradient of the Rayleigh quotient (3) assessed at the current iterate x.
3. If k=0 set Bx =0, otherwise calculate 8 by [17], [8]:

_ pf_lAK_lgk

) _
B = P Pr_ APk

(5)
or by [4] (MDACG procedure):

Pioi(A— 7 B)K g

= (2) e . — )\ iy 6
& & Pf—l(A_’YjB)Pk—l ’ i N-i+l ( )
or by [20]:
T —1

ORI -2 - ,
ﬂk . ﬂk g]{_lK_lgk_l ( )

or by [19], [10]:

T -1

@ _ 8K (8 —8k-1) g
ﬂk . ﬂk g]{_lK_lgk_l ( )

where K~! = (LLT)~! and L is the pointwise incomplete Cholesky factor of A
([13], [11]). Equation (7) is different from eq. (1) while eq. (8) can be written
under the form (1), as will be shown later.

4. Calculate:

Pr = K7'gk + BrPr—1 (9)
and evaluate pg by B-orthogonalizing p; against the eigenvectors previously
computed using a Gram-Schmidt process:

j-1
Pr = Pr — ) (Pp Bun_i)uy_; (10)
=0
5. Set:

Xp+1 = Xk + APk (11)

where oy, is chosen in order to minimize ¢(xx + axpx) (see [15], [17]).
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6. Increase the iteration counter and go back to step 2. The iteration is completed
whenever k is larger than the allowed maximum number of iterations IMAX or

erirs — 11 —900)| 7y (12)
q(x)

or

A — B
PPkl = 1A%k 11 — 9%kt 1) BXpsal2 <TOL2; (13)
’ | Axpr1][2

if erjpy1 <TOL1 or rrjpi1 < TOL2, we set

AN—; = q(Xni1)

uy—; = Xk-|—1/\/mk-|—1

which are the N — j eigenvalue and corresponding B-normalized eigenvector,
respectively, of eq. (2).
Note that the leftmost eigenpair Ay, uy can also be computed by this general procedure
by taking Up as the null space and v, = 0 in (6).

Selecting the coeflicient G;. A different coefficient §; may produce a different
asymptotic rate of convergence. Let us now analyze the asymptotic behaviour of the
preconditioned CG algorithm with 8 as defined by eqgs. (5), (6), (7) and (8).

Set pr = q(xz), p = An_;. We assume that the following approximations hold for
k > s and s ‘sufficiently’ large.

2
Pk = Pe-1 = i, My =M1 =m, gk = E(A — uB)xy, (14)

and use the following equation for ay (see [20]):

PL(A-pB)xi _ m_ pig (15)
Pi (A — pB)px 2 p; (A — uB)px

Remark: this choice of ay i1s asymptotically equivalent to that indicated at step 5.

[0 4

of the previous section. Actually, the coeflicient aj is chosen such that g(xgi1) is
minimized. This leads to the following equation (see [15], [17], and [7]):

aa,zc—l—bak—l—c: 0 (16)
where
a = pj, Apx. P; Bxi — pi Axy, pi Bpr

b = xI Bx; pL Apr — XL Ax;, pY Bpi
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¢ = X! Bx;, pt Ax, — x; Axy, pi By
The first order approximation of the larger root of the equation is [20]:

X3 Bxy, pj Axy, — x;, A%y, pj Bx;,

C
ak = —— =
b  xIAx; pfBpi — xi Bxi pf Aps

Dividing numerator and denominator by xi Bx; and recalling that

xF Ax,,

xI Bxy, —H

yield eq. (15).

Let k > s, then from (14), (11) and (15) we have

2
(A= pB)xi]"pr-1 = —(31 + ak-1Pt_1)(A — pB)Pe-r =

SIS

g;fpk—l

[Xz—l(A - ,“B)Pk—l + ak—lpg—l(A - #B)Pk—l] =0
(17)

Then, for every k > s + 1, using (9), (11), and (15) we obtain the following expression
for ﬂ,(cs):

g K ‘g g K '(2/m)(A— uB)x;
g Kgi1 gl (K Y(KPr1 — Be1Kprs)
gr K 1(2/m)(A — pB)(Xp-1 + 0k—1Pk-1)

gl?:—l(f)k—l — Br-1Pk—2) B
gr K 'gr-1 + (2/m)ar_18f K (A — pB)pe-1
g;f_lf)k_l - ﬁk—lg;‘f_lpk—z

(18)
First observe that gl ,pxz_2 = 0 by (17). Then we note that

-1
8r_1Pk-1 = 8r_1Pk—1 + 8r_1 O (Pr Bun_i)un_; = g_1Pk—1

=0

since every iterate xj 1s B-orthogonal to U; and consequently, for every ¢ < j — 1,
gi_1un—i = (2/m) x;_; (A — pB)uy_; = (Ay—; — p)(2/m) x;_; Buy_; = 0.

We now rewrite ﬁ,(cs) using the above results and eq. (15):

8E — g K g1 + (2/m)on-1gi K (A — pB)pr_s
* —(2/m)oy-1Pf_1 (A — pB)Pr-1 '
5
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Taking now ﬁ,(f) as in (8), and observing that eq. (8) differs from eq. (7), and conse-
quently from (19), only by the term gl K ~'g;_, at the numerator, we can write:

(2/m)as_1gi K" (A

—(2/m)ar-1pf_1 (A — pB)pe-1

g KN (A—pB)pr1  Pii(A—pB)K g
P (A—pB)prs PP 4(A—pB)pra

,UB)Pk—l

Y

(20)

If we look at ﬁ,(f) given by eq. (20) and ﬁ,(cl) we may recognize that ﬁ,(cz) i1s somewhat
intermediate between ﬁ,(cl) and ﬁ,(f) since 0 < y; < p.

Convergence of the DACG method. The selection of §; = ﬂ,(f), eq. (20),
implies that the p directions are mutually (A — pB)-orthogonal. Therefore solving the
eigenvalue problem is in this case asymptotically equivalent to solving the linear system:

(A—pB)x=0

It has been proved in [1] that the asymptotic convergence rate of the CG method in
the solution of linear systems can be approximated by:

2
6=z (21)

¢ being the condition number of the preconditioned iteration matrix. Hence the DACG
convergence rate p;, defined as:

p; = lim pjp = — lim In (M) (22)

k— oo k— oo e""j,k

with G = ﬂ,(f), is expected to be inversely proportional to /€, with a proportionality
factor of 4 instead of 2 (since the convergence toward the eigenvalue is two times as
fast as the convergence towards the eigenvector, see [20]), where £ is here equal to the
condition number of K~'(A — uB).

In [4] a theoretical analysis of convergence with 8 = ﬁ,(cl) , is performed with K~ =
A~', and it is shown that p; is inversely (linearly) proportional to the spectral condition
number ¢; of the Hessian of the restricted Rayleigh quotient, calculated at the current
eigenvector uy_;:

1+1/¢; 4
sz¢j=2ln+7/£JN— (23)

1-1/& &

where

AN_j-1
= ) 24
5.7 AN—j—l _ AN—J ( )
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Furthermore, [4] gives an estimate of the number k; of iterations required to reduce the
relative error by a factor h:

Inh

- (25)

where k is the number of ‘initial’ iterations performed before the asymptotic convergence

is achieved. By distinction, and in view of eq. (21), we might expect that the DACG
)

this case the approximate number k; of iterations required to reduce the error by the

asymptotic convergence rate with G, = ﬁ,(f is dependent on the square root of ¢&;. In

factor h is:

- Inh

Note that if K=! # A™! no analytic expression can be given for ¢; since the eigenvalues
distribution of K~! is, in general, unknown.

Numerical results. The DACG procedure (with different choices of the coefficent
Bk) has been applied to five sample problems arising from the FE integration of 2-D
and 3-D equations of elliptic type with size N = 222, 441, 812, 1952 and 4560 [9]. The
distribution of the 40 leftmost eigenvalues is shown in Fig. 1. Computations have been
performed on an IBM 9370 computer in double precision arithmetic.

Table 1 provides the experimental asymptotic convergence rates p; of DACG with
Br = ﬁ,(cl) and K~! = (LLT)7!, and makes a comparison between p; and the theoretical
rate ¢;, computed by eq. (23) for the ideal preconditioner A~!. The results of Table
1 are quite interesting and show that the DACG asymptotic behaviour with the pre-
conditioners A~! and (LLT)~! are very close, except for the first few eigenpairs. Note
that K~ = (LLT)™! yields a higher convergence rate than K~! = A~! for a significant
number of eigenpairs, particularly for the N = 441 and the N = 4560 problems.

As pointed out in [4], A™! is not the absolutely ‘best’ theoretical preconditioner as
is in the CG solution of linear systems, (in which case the spectral condition number
of the iteration matrix is equal to 1 and one iteration suffices to converge to the exact
solution) and thus it may happen that the preconditioner (LLT)~! may occasionally
lead to a faster asymptotic convergence than A~!. Table 2 provides the average time
per DACG iteration with g = ﬁ,(cl) using the two (previous) preconditioners and the
new one K~! = D™ where D = diag{ai1,ass,...,ann}, in the evaluation of the 40
leftmost eigenpairs. Using D~! or (LLT)7!, yields a significant reduction of time per
iteration. Note that the calculation of K~'gy (eq. 9), when K~' = A™', is performed
by iteratively solving the linear system

Ay = gk (27)

by the CG method preconditioned with (LLT)~!) and this accounts for the relatively

large time per iteration required by DACG preconditioned with A™!. The computation

of the product between A~! and g is by any method much more expensive than the
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computation of (LLT) !gy. In the N = 441 and N = 4560 problems, we observe
(Table 3) a reduction of the total number of iterations with the preconditioner (LLT)™?
consistent with the asymptotic convergence rates of Table 1.

From a careful inspection of Table 2 we can see that the time per iteration of the
incomplete preconditioner is very close to that of the diagonal one although the com-
putation of D~'gy (eq. (9)) is from 3 to 4 times less expensive than the computation of
(LLT) 'gs. This can be understood by observing that most of the time 7} in a single
iteration at level j is used for the B-orthogonalization:

T; = Tx-1 + j X Tont,

where T,,; is the time needed to perform a B-orthogonalization against a single eigen-
vector, and Tk,-1 the time needed for computing K g in eq. (9). Therefore the average
time per iteration is:

1 39
= E Z Tj =Txg-1 +19.5T5 = Tk-1 + Torr

=0

Ty

where Togr 1s the average B-orthogonalization time in a single iteration. These average
times are also given in Table 2.

Table 4 gives the overall number of iterations and CPU times of DACG implemented
with K=! = (LLT)™! as the preconditioner and ﬂ,(:),i = 1,2,3,4, and the ratio of
DACG CPU times when ﬁ,(cl) and ﬁ,(f) are used. Figures 2 and 3 show the different
convergence profiles for the relative residual of a few selected eigenpairs Ay_;, un_j,
for y = 0,10, 20,30 for the test problem with N = 441. Careful inspection of Fig. 2,
Fig. 3 and Table 4 reveals that:

1. The slowest algorithm is DACG with 8 = ﬁ,(cl) (Table 4 and Fig. 3).

2. The choice By = ﬁ,(cz) (MDACG) provides a good asymptotic convergence but
it may be more time consuming than the other choices since each iteration
needs an extra cost due to the computation of A —;B. In the N = 1952
problem, MDACG requires the minimal number of iterations. Furthermore,
in the N = 812 problem, the other three algorithms perform a complete B-
orthogonalization of the current xj-vector against the previously computed
eigenvectors, thus increasing the time per iteration (by distinction, MDACG
requires only a selective B-orthogonalization). Therefore MDACG, in the N =
812 problem, is superior to the other DACG algorithms in terms of computing
time.

3. the choice G = ﬁ,(cs) appears to be the best in most of the eigenvalue levels
from the point of view of asymptotic rate of convergence (i.e. the slope of the
profiles in Figs. 2 and 3). However, in a few cases (such as, for instance, 7 = 10
for the N = 441 problem) ﬁ,(cs) provides initial convergence which leads to a
high number of iterations as is also shown by the horizontal rr profile of Fig. 3.

4. DACG with G = ﬁ,(f) is the fastest scheme in terms of the total CPU time in
the N = 222 and N = 441 problems although the asymptotic convergence rate
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appears to be almost the same as that of DACG with ﬂ,(cs). DACG with ﬁ,(f)
implements an authomatic ‘restart’ (see [19]) which is useful when a slow initial
convergence occurs since it prevents the residual from remaining constant for
a large number of initial iterations.
On balance Table 4 emphasizes the poor performance of DACG with §; = ﬁ,(cl) and
indicates that the remaining DACG are to some extent equivalent in terms of overall
computer cost, the B = ﬁ,(f procedure being perhaps slightly superior.

The convergence properties of DACG with 8, = ﬁ,(f) have been numerically studied
to check the validity of formula (26). The tolerance for the relative error is set to a very
low value (TOL1= 107!3). Experience suggests that the average number k of initial
iterations is 25. Our ‘initial’ error is therefore erys, which we want to reduce by a factor
h = ery5/TOLL to achieve the final accuracy TOL1. This needs according to eq. (26) a

number of iterations k; given by:

Inh J Av_j1  Inh (28)

kj =254 /& — =25+
7 & 4 AN_jo1— An_; 4

Table 5 compares the theoretical number of iterations k; provided by (28) and the actual
one for the N = 441 problem, and also gives the theoretical convergence rate

;= 4/\/& (29)

and the convergence rate p;, numerically computed by eq. (22). Table 5 shows that the
actual and the expected number of iterations differ by at most 10, with the exception of
the 6 leftmost eigenpairs, thus providing experimental evidence that eq. (26) is a reliable
approximation of the DACG iteration number as a function of the relative separation
of the eigenvalue Ay_; currently sought and the next higher one. Also note in Table 5
that the numerical p; is a quite good approximation to the theoretical ¢;.

Comparison of DACG and Lanczos methods. In [9] DACG with 8 = ﬁ,ﬁ” is
compared with two variants of the Lanczos method. For a description of the pointwise
Lanczos algorithm also see [5], [21] and [14]. Consistent with the numerical results of
the previous section we will compare DACG with K~ = (LLT)™! and 8; = ﬁ,(f) with
the LANCZOS2 procedure developed in [9]. LANCZOS2 is a variant of the classical
Lanczos algorithm, especially designed to solve eigenproblems with a pronounced fill
in of the triangular factors of matrix A. LANCZOS2 performs the Lanczos recursive
product

Yi = A_quj7
by iteratively solving the linear system:
Ay; = Bq;. (30)

The iterative method used to solve system (30) is the CG scheme, accelerated by
(LLT)~!. This technique enables in-core treatment of very large eigenproblems without
9



any restriction on the bandwidth and nonzero pattern of the matrix pencil A, B. Table 6
shows the performance of DACG and LANCZOS2 in terms of overall CPU time for the
first 5, 10, 20 and 40 eigenpairs to meet the exit test (TOL2= 6 x 1073) for the relative
residual. Inspection of Table 6 reveals that DACG is faster than LANCZOS2, and par-
ticularly so when only a few eigenpairs are sought or the problem is large (N > 1000).
It may also be noted that DACG for large eigenproblems proves less demanding than
LANCZOS2 in terms of computer storage.

Conclusions. The DACG performance with three preconditioners ((LLT)™!, L
being the incomplete Cholesky factor of A, A™!, and D~!, where D is a diagonal
matrix whose entries are the diagonal coefficients of A), has been compared. The DACG
convergence properties have also been analyzed, using (LLT)~! as a preconditioner and
four different choices of parameter S in the evaluation of the 40 leftmost eigenpairs of
generalized sparse eigenproblems.

The asymptotic convergence rate of the Cholesky-preconditioned DACG with G =
ﬁ,(cl) has been found to be close to that of DACG preconditioned with A~!, with the
exception of the first few eigenpairs. Computational efficiency is, however, remarkably
higher since the cost per iteration turns out to be smaller by a factor ranging between
5 and 10.

The asymptotic behaviour of DACG is sensitive to 8. DACG with the optimal
Br = ﬁ,(f) has an asymptotic convergence rate which is practically equal to that of the
CG method used to solve linear systems. The choice Gy = ﬁ,(f) and K~! = (LLT)™!
leads to the lowest CPU time in most of the eigenproblems.

The cost of a single DACG iteration with the incomplete Cholesky preconditioner is
comparable to that of the diagonal one, since most of the CPU time is spent to perform
the B-orthogonalization. Iterations are, however, much less.

Finally, DACG with K~! = (LLT)~! and the optimal choice of B = ﬁ,(f) has been
compared with the well known Lanczos algorithm. DACG appears to be superior in
the evaluation of the 40 leftmost eigenpairs of five sample problems and results in a
saving of CPU time ranging from 4% (N = 222 problem) to 60 % (problem with
N = 4560 equations). These values, however, are found to grow significantly if a
smaller number of eigenpairs are required. On balance DACG is recommended for large
problems (N > 1000) and for the computation of few eigenpairs (< 5, on condition that
a not too strict tolerance is prescribed). Alternatively, the Lanczos method should be
used for eigenproblems of small size and whenever a high accuracy is required (TOL2
< 1075).
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evaluation of Ay_;, vn_j, =0, 10, 20, 30 for the eigenproblem with N = 441. The initial guess vector
isxo=[1,...,1] and K~ = (LLT)~ 1.
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F1G. 3. The same as Figure 2 with By = BC) and By = B9,
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N =222

N =441

N =812

N = 1952

N = 4560

é;

Pj

é;

Pj

é;

Pj

é;

Pj

é;

Pj

3.047
2.247
2.247
0.502
0.502
1.408
0.821
0.821
0.852
0.852
1.149
1.149
0.044
0.044
0.156
0.156
0.577
1.018
1.018
0.535
0.621
0.105

— =
EE oo 3o ok wih e~ O

N = = = = e e e
O O 00 ~J O O b= W N

(o
©

1.458
1.279
1.942
0.487
0.379
1.182
0.747
0.740
0.817
0.870
0.957
0.889
0.044
0.044
0.172
0.172
0.543
0.922
1.058
0.549
0.558
0.112

4.540
1.937
1.308
0.970
1.373
0.023
0.563
0.899
0.433
0.366
0.312
0.330
0.583
0.221
0.052
0.446
0.390
0.218
0.038
0.228
0.189
0.122

1.269
0.910
0.883
0.968
1.152
0.023
0.536
0.847
0.445
0.374
0.319
0.339
0.595
0.224
0.053
0.454
0.399
0.222
0.041
0.237
0.199
0.146

1.952
2.744
1.351
2.163
2.124
1.985
2.304
2.168
2.235
2.215
2.308
2.272
0.300
0.088
0.147
0.225
0.291
0.354
0.414
0.454
0.101
0.125

0.532
0.584
0.518
0.742
0.792
0.748
0.807
0.749
0.890
1.034
1.086
0.912
0.307
0.051
0.126
0.206
0.294
0.325
0.399
0.462
0.074
0.104

2.834
1.959
1.959
0.502
0.502
1.112
0.630
0.630
0.744
0.744
0.051
0.641
0.165
0.165
0.400
0.677
0.677
0.230
0.230
0.196
0.783
0.215

0.448
0.392
0.380
0.141
0.123
0.321
0.345
0.257
0.306
0.307
0.053
0.308
0.206
0.195
0.328
0.305
0.388
0.230
0.246
0.206
0.554
0.221

1.136
0.270
1.254
0.707
0.507
0.691
0.078
0.572
0.232
0.386
0.131
0.645
0.054
0.159
0.358
0.134
0.503
0.076
0.132
0.096
0.078
0.021

0.672
0.308
0.656
0.504
0.388
0.537
0.078
0.405
0.327
0.488
0.151
0.566
0.054
0.171
0.397
0.218
0.573
0.076
0.134
0.103
0.078
0.021

Comparison between the theoretical asymptotic convergence rate ¢j, eq. (23) and the numerical
, and with K~1 = A= and K= = (LLT)™1, respectively,

convergence rate p; of DACG with By = ,(cl)

TABLE 1

for some of the leftmost eigenpairs of the five sample problems.

K—l — A—l K—l — (LLT)—l K—l — D—l
problem TORT TA—I TZ T(LLT) -1 TZ TD—l TZ
N =222 | 0.097 | 0.876 | 0.973 0.057 | 0.154 | 0.020 | 0.117
N =441 | 0.225 | 1.427 | 1.652 0.080 | 0.305 | 0.030 | 0.255
N =812 | 0.474 | 3.375 | 3.849 0.118 | 0.592 * *
N =1952 | 1.042 | 12.093 | 13.135 0.370 | 1.412 | 0.122 | 1.164
N = 4560 | 3.200 | 41.134 | 44.334 1.476 | 4.676 | 0.334 | 3.554
* DACG does not converge within IMAX = 500.

Comparison of the average time (s) per iteration Ty (Tiy = Torr + Tk -1 ) for DACG with By = ,B,El)

TABLE 2

and three different preconditioners in the calculation of the 40 leftmost eigenpairs. (TOL2=10"3)
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N =222 N =441 N =812 N = 1952 N = 4560
K-t Time # it | Time # it | Time # it | Time # it Time  # it
At 1059 1088 | 4989 3020 | 7233 1789 | 24156 1839 | 162130 3657
(LLT)? 294 1901 877 2873 | 2137 2720 | 4562 3232 | 13584 2905
D! 398 3409 | 1098 4303 * * 5524 4745 | 57632 16216

* DACG does not converge within IMAX =

500

TABLE 3
Comparison of the overall CPU time (s) for DACG with B =

(1)
&

tioners in the calculation of the 40 leftmost eigenpairs. (TOL2 = 1073)

and three different precondi-

N =222 N =441 N =812 N = 1952 N = 4560
#it. Time | # it. Time | # it. Time | # it. Time | # it. Time
1) 1901 204 | 2873 877 | 2720 2137 | 3232 4562 | 2005 13584
2) 820 144 | 1119 365 | 1058 693 | 1656 2440 | 1328 6806
3) 1185 171 | 1344 366 | 1022 739 | 1903 2423 | 1290 5746
4) 701 111 | 1039 303 | 1078 792 | 1834 2431 | 1303 5827
1)/4) | 2.711 265 | 2.76 2.8 | 252 2.70| 1.76 1.88 | 2.23 2.33
Pi_, (LLT)‘lg _ P} 1(A ;B)(LLT)'g
R LN ==
T LLT —1 LLT _1
3) ﬂk = ﬂ]gs) - gT%’;((LLT))_lg::_l ) ﬂ ﬂk gk (]_)'ILT()g’c gi’il )
TABLE 4

DACG performance vs parameter 3y, in terms of total number of iterations and CPU time (s) in
the calculation of the 40 leftmost eigenpairs (TOL2=10"3).
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J| ki NIT ¢; Pi
0 27 32 3.579 | 1.253
1 33 57 2.669 | 0.705
2 27 29 2.231 | 0.742
3 34 48 1.941 | 0.849
4 31 38 2.270 | 1.065
5 81 42 0.299 | 0.686
6 39 45 1.485 | 1.068
7 30 35 1.865 | 1.064
8 38 46 1.305 | 0.818
9 44 54 1.198 | 0.811
10 42 44 1.105 | 0.986
11 29 28 1.137 | 1.115
12 32 36 1.505 | 0.997
13 45 53 0.924 | 0.627
14 80 70 0.451 | 0.497
15 34 38 1.316 | 1.020
16 40 48 1.231 | 0.822
17 42 43 0.918 | 0.837
18 80 88 0.386 | 0.347
19 39 40 0.941 | 1.043
29 48 48 0.849 | 0.808
39 47 45 0.696 | 0.775

TABLE 5
Comparison between the exzpected number of iterations kj, eq. (26), and the actual number of
iterations NIT required by DACG with By = ,3,(;1) to achieve the prescribed tolerance TOL1=10"1'3, and

between the theoretical (¢;, eq. (29)) and the numerical (p;) convergence rate for the N = 441 problem.
K-1=(LLT)-1.

N =222 N =441 N =812 N =1952 N = 4560
j a b c a b c a b| ¢ a b| ¢ a b
5 8| 24| 3.0 19| 50|26 44| 90| 2.1 315 | 762 | 2.5 319 | 1976 | 6.2
10|15 | 45| 3.0 44| 86| 2.0 78 | 158 | 2.0 || 460 | 1036 | 2.3 747 | 2998 | 4.0
20 36| 60| 1.7 128 | 168 | 1.3 || 184 | 342 | 1.9 809 | 1741 | 2.2 || 1676 | 5093 | 3.0
40 || 96 | 100 | 1.0 || 258 | 334 | 1.3 || b68 | 657 | 1.2 || 1644 | 3732 | 2.3 || 4208 | 10968 | 2.5
TABLE 6

Comparison of CPU times (s) for (a) DACG with B = ,(f) and (b) LANCZOS2 in the calculation
of the j, (7 < 40) leftmost eigenpairs (TOL2=6 x 10=3). Column c provides the ratio of LANCZOS2
and DACG CPU times.
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