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A CLASSIFICATION OF UNIPOTENT SPHERICAL

CONJUGACY CLASSES

IN BAD CHARACTERISTIC

MAURO COSTANTINI

Abstract. Let G be a simple algebraic group over an algebraically closed field
k of bad characteristic. We classify the spherical unipotent conjugacy classes
of G. We also show that if the characteristic of k is 2, then the fixed point
subgroup of every involutory automorphism (involution) of G is a spherical
subgroup of G.

1. Introduction

Let G be a simple algebraic group over an algebraically closed field k, with Lie
algebra g. In this paper we determine the unipotent spherical conjugacy classes of
G (we recall that a conjugacy class O in G is called spherical if a Borel subgroup
of G has a dense orbit on O) when the characteristic of k is bad for G. There has
been much work related to this field in the cases of good characteristic.

To fix the notation, B is a Borel subgroup of G, T is a maximal torus of B, B− is
the Borel subgroup opposite to B, and {α1, . . . , αn} is the set of simple roots with
respect to the choice of (T,B). Let W be the Weyl group of G and let us denote
by si the reflection corresponding to the simple root αi: �(w) is the length of the
element w ∈ W and rk(1−w) is the rank of 1−w in the geometric representation
of W .

Initially, spherical G-orbits have been studied in the context of Lie algebras ([24],
[25]) in characteristic zero. The classification of spherical nilpotent orbits has been
obtained by Panyushev: in terms of height, a nilpotent orbit O ⊂ g is spherical
if and only if its height is at most 3, which means 2 or 3 if O is not the zero
orbit. Equivalently, O is spherical if and only if it contains an element of the form
eγ1

+ · · · + eγt
, where γ1, . . . , γt are pairwise orthogonal simple roots (Panyushev

[24], [26]).
More recently, in [5], we considered spherical conjugacy classes in G over C. We

classify all spherical conjugacy classes by means of the Bruhat decomposition: a
conjugacy class O ⊂ G is spherical if and only if dimO = �(w) + rk(1− w), where
w = w(O) is the unique element of W such that O ∩ BwB is open dense in O
(we observe that the classification given in [5] over the complex numbers holds in
general for characteristic zero).

In [15] the authors classify spherical nilpotent orbits in good characteristic us-
ing Kempf-Rousseau theory: the classification is the same as in the case of zero
characteristic. In [8], the author obtains the classification of all spherical conju-
gacy classes in characteristic which is zero or is both good and odd by means of
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the Bruhat decomposition and by exploiting another characterization of spherical
conjugacy classes available in such characteristic, namely a conjugacy class O is
spherical if and only if {y ∈ W | O ∩ByB �= ∅} ⊆ {w ∈ W | w2 = 1} ([6, Theorem
2.7], [7, Theorem 5.7]).

In the present paper we complete the picture for unipotent spherical conjugacy
classes by considering bad characteristic. Our strategy is to exhibit for each group
G a set O(G) of unipotent conjugacy classes, show that each element in O(G) is
spherical, and finally show that each conjugacy class not in O(G) is not spherical.
It turns out that in bad characteristic the classification of spherical unipotent con-
jugacy classes is the “same” as in zero characteristic, unless p = 2 in type Cn and
F4 or p = 3 in type G2. In these cases there are more classes than in characteristic
zero. In particular, if p = 2, then the conjugacy class of a non-trivial unipotent
element u is spherical if and only if u is an involution.

It is well known that in zero or odd characteristic the fixed point subgroup H
of any involutory automorphism σ of G is a spherical subgroup (i.e. G/H is a
spherical homogeneous space). This was proved by Vust in [32] in characteristic
zero (see also [23] over C). Then Springer extended the result to odd characteristic
in [29]. In [27], Seitz gives an alternative proof of Springer’s result. Here we prove
that the result also holds in characteristic 2.

The paper is structured as follows. In Section 2 we introduce the notation. In
Section 3 we recall some basic facts about the classification of unipotent conjugacy
classes in bad characteristic and determine the spherical ones. We also determine
which spherical unipotent conjugacy classes have a representative u of the form u =
xγ1

(1) · · ·xγt
(1), where γ1, . . . , γt are pairwise orthogonal simple roots. In Section

4 we prove that if G is a reductive connected algebraic group in characteristic 2
and σ is any involutory automorphism of G, then the fixed point subgroup H of σ
is a spherical subgroup of G.

2. Preliminaries

We denote by C the complex numbers, by R the reals, by Z the integers and by
N the natural numbers.

Let A = (aij) be a finite indecomposable Cartan matrix of rank n with associated
root system Φ, and let k be an algebraically closed field of characteristic char k = p.
Let G be a simple algebraic group over k associated to A, with Lie algebra g. We
fix a maximal torus T of G and a Borel subgroup B containing T : B− is the Borel
subgroup opposite to B and U (respectively U−) is the unipotent radical of B
(respectively of B−). Then Φ is the set of roots relative to T and B determines
the set of positive roots Φ+ and the simple roots Δ = {α1, . . . , αn}. We fix a total
ordering on Φ+ compatible with the height function, and we shall write elements
of U as products of root elements where the roots are taken in the order given
by this ordering. We shall use the numbering and the description of the simple
roots in terms of the canonical basis (e1, . . . , ek) of an appropriate R

k as in [3,
Planches I-IX]. For the exceptional groups, we shall write β = (m1, . . . ,mn) for
β = m1α1 + · · · + mnαn. We denote by P the weight lattice, by P+ the monoid
of dominant weights and by W the Weyl group. Also si is the simple reflection
associated to αi, {ω1, . . . , ωn} are the fundamental weights, and w0 is the longest
element of W . The real space E = RP is a Euclidean space, endowed with the
scalar product (αi, αj) = diaij . Here {d1, . . . , dn} are relatively prime positive
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integers such that if D is the diagonal matrix with entries d1, . . . , dn, then DA is
symmetric.

We put Π = {1, . . . , n} and fix a Chevalley basis {hi, i ∈ Π; eα, α ∈ Φ} of g.
We use the notation xα(ξ), hα(z), for α ∈ Φ, ξ ∈ k, z ∈ k∗ as in [31], [12]. For

α ∈ Φ we put Xα = {xα(ξ) | ξ ∈ k}, the root subgroup corresponding to α, and
Hα = {hα(z) | z ∈ k∗}. We identify W with N/T , where N is the normalizer of
T : given an element w ∈ W we shall denote a representative of w in N by ẇ. We
choose the xα’s so that, for all α ∈ Φ, nα = xα(1)x−α(−1)xα(1) lies in N and has
image the reflection sα in W . Then

(2.1) xα(ξ)x−α(−ξ−1)xα(ξ) = hα(ξ)nα, n2
α = hα(−1)

for every ξ ∈ k∗, α ∈ Φ ([30, Proposition 11.2.1]).
For algebraic groups we use the notation in [17], [13]. In particular, for J ⊆ Π,

ΔJ = {αj | j ∈ J}, ΦJ is the corresponding root system, WJ is the Weyl group, PJ

is the standard parabolic subgroup of G and LJ = T 〈Xα | α ∈ ΦJ 〉 is the standard
Levi subgroup of PJ . For z ∈ W we put Uz = U ∩ z−1U−z. Then the unipotent
radical RuPJ of PJ is Uw0wJ

, where wJ is the longest element of WJ . Moreover,
U ∩ LJ = Uw

J
is a maximal unipotent subgroup of LJ .

If Ψ is a subsystem of type Xr of Φ and H is the subgroup generated by Xα,
α ∈ Ψ, we say that H is an Xr-subgroup of G.

If X is a G-variety and x ∈ X, we denote by G.x the G-orbit of x and by Gx

the isotropy subgroup of x in G. If the homogeneous space G/H is spherical, we
say that H is a spherical subgroup of G.

If x is an element of a group K we denote by Ox its conjugacy class and by
C(x) its centralizer. If H ≤ K, we shall denote by CH(x) the centralizer of x in
H. If x, y ∈ K, then x ∼ y means that x, y are conjugate in K. For unipotent
classes in exceptional groups we use the notation in [13]. We use the description of
centralizers of involutions as in [18], [2].

We denote by Zr the cyclic group of order r.
For each conjugacy class O in G, w = w(O) is the unique element of W such

that BwB ∩O is open dense in O. We shall also say that O lies over w.
In the remainder of the paper we shall denote by p the characteristic of k (hence

p may be 0).

3. The classification

We recall that the bad primes for the individual types of simple groups are as
follows:

none when G has type An;
p = 2 when G has types Bn, Cn, Dn;
p = 2 or 3 when G has types G2, F4, E6, E7;
p = 2, 3 or 5 when G has type E8.
One may find a detailed account of the classification of both unipotent classes

and nilpotent orbits in bad characteristic in [13, §5.11].

Strategy of the proof. Let GC be the corresponding group over C. We have shown
in [5] that for every spherical conjugacy class C of GC there exists an involution
w = w(C) in W such that dim C = �(w) + rk(1− w), with C ∩BwB �= ∅. For each
group G we introduce a certain set O(G) of unipotent conjugacy classes which are
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candidates for being spherical. For each O ∈ O(G) we show that there is a (not
necessarily unipotent) spherical conjugacy class C in GC such that

dimO = dim C.
Let w = w(C). Our aim is to show that O ∩BwB �= ∅.

Definition 3.1. Let O be a conjugacy class of G. We say that O satisfies (∗) if
there exists w ∈ W such that BwB ∩ O �= ∅ and dimO = �(w) + rk(1− w).

Let O be a conjugacy class in G. There exists a unique element w = w(O) ∈ W
such that O ∩BwB is open dense in O. In particular,

(3.1) O = O ∩BwB ⊆ BwB.

It follows that if y is an element of O and y ∈ BzB, then z ≤ w in the Chevalley-
Bruhat order of W .

We recall the following result proved in [5, Theorem 5] over C, but which is valid
with the same proof over any algebraically closed field.

Theorem 3.2. Suppose that O contains an element x ∈ BwB. Then

dimB.x ≥ �(w) + rk(1− w).

In particular, dimO ≥ �(w)+ rk(1−w). If, in addition, dimO ≤ �(w)+ rk(1−w),
then O is spherical, w = w(O) and B.x is the dense B-orbit in O. �

Let O be a conjugacy class of G and let w = w(O). If O−1 = O (i.e. if any
element x ∈ O is conjugate to its inverse), then w2 = 1. It is well known that
over any algebraically closed field any unipotent element is conjugate to its inverse
([9, Lemma 1.16], [10, Lemma 2.3]; see also [22, Proposition 2.5 (a)]) so that w is
an involution for every non-trivial unipotent conjugacy class O. However, it has
recently been shown in [14] that w2 = 1 for every conjugacy class O in G.

If g is in Z(G), then g ∈ T , its conjugacy class O is simply {g}, and w(O) = 1.
In the remainder of the paper we shall consider only non-central conjugacy classes.

We shall use the following result.

Lemma 3.3. Assume the positive roots β1, . . . , β� are such that [X±βi
, X±βj

] = 1

for every 1 ≤ i < j ≤ �. Then, for ξ1, . . . , ξ� ∈ k∗, g = xβ1
(−ξ−1

1 ) · · ·xβ�
(−ξ−1

� ),
and h = hβ1

(−ξ1) · · ·hβ�
(−ξ�) we have

gx−β1
(ξ1) · · ·x−β�

(ξ�)g
−1 = nβ1

· · ·nβ�
hxβ1

(2ξ−1
1 ) · · ·xβ�

(2ξ−1
� ).

Proof. By (2.1) we have xα(−ξ−1)x−α(ξ)xα(ξ
−1) = nαhα(−ξ)xα(2ξ

−1). The result
follows from [X±βi

, X±βj
] = 1 for every 1 ≤ i < j ≤ �. �

The hypothesis of the lemma is satisfied, for instance, if β1, . . . , β� are pairwise
orthogonal and long, as in [11, Lemma 4.1]. In characteristic 2, we have [Xγ , Xδ] = 1
for every pair (γ, δ) of orthogonal roots, so that for any set of pairwise orthogonal
roots β1, . . . , β� and for g = xβ1

(1) · · ·xβ�
(1) we get

(3.2) gx−β1
(1) · · ·x−β�

(1)g−1 = nβ1
· · ·nβ�

.

We shall prove the following theorem.

Theorem 3.4. Let O be a non-trivial unipotent conjugacy class of a simple alge-
braic group in characteristic 2. Then O is spherical if and only if it consists of
involutions. �
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From the classification it will follow that the unipotent conjugacy class O is
spherical if and only if it satisfies (∗). Moreover, we shall see that there is a unique
maximal spherical conjugacy class Omax and that it has the following properties:
w(Omax) = w0, and the closure of Omax is the union of all spherical unipotent
orbits.

3.1. Classical groups in characteristic 2. To deal with the classical groups
with p = 2, we recall that the unipotent classes were determined by Wall in [33]
(the nilpotent orbits were determined by Hesselink in [16]). For the convenience
of the reader, here we recall the classification of unipotent classes in the classical
groups following [28, §2]. Suppose G = GL(n) (any characteristic) and u is a
unipotent element of G. Then one can associate to u a partition λ = (λ1, λ2, . . .) =
1c(1) ⊕ 2c(2) ⊕ · · · of n with λ1 ≥ λ2 ≥ · · · , where c(i) is the number of Jordan
blocks of u of dimension i, for every i ≥ 1. In this way the set CU(G) of unipotent
conjugacy classes of G is parametrized by the set of partitions of n. We denote
by Cλ the unipotent class corresponding to the partition λ. The set CU(G) has a
natural partial order: O1 ≤ O ⇔ O1 ⊆ O. If we partially order the set of partitions

of n by λ ≤ μ ⇔
∑i

j=1 λj ≤
∑i

j=1 μj for every i ≥ 1, then the map λ �→ Cλ is an
isomorphism of p.o. sets.

Now assume p = 2. In this case there exists a homomorphism (central isogeny)
of SO(2n+ 1) onto Sp(2n) which is an isomorphism of abstract groups. We shall
therefore deal only with Sp(2n) and SO(2n). Let ω be an object distinct from
0 and 1, and consider the set {ω, 0, 1} totally ordered by ω < 0 < 1. Assume
G = Sp(2n) ≤ GL(2n) (resp. G = O(2n) ≤ Sp(2n)). The unipotent conjugacy
classes of G are parametrized by pairs (λ, ε) such that

a) λ = 1c(1) ⊕ 2c(2) ⊕ · · · is a partition of 2n with c(i) even for every odd i.
b) ε : N → {ω, 0, 1} is such that

b1) ε(i) = ω if i is odd or i ≥ 1 and c(i) = 0.
b2) ε(i) = 1 if i is even and c(i) is odd (i �= 0).
b3) ε(i) �= ω if i is even and c(i) �= 0 (i �= 0).
b4) ε(0) = 1 (resp. ε(0) = 0).

The correspondence is obtained as follows. Let u be a unipotent element of G.
Then u determines a class in GL(2n), hence the partition λ of 2n. This partition
satisfies a). Now, if i is even, i �= 0 and c(i) �= 0, we put ε(i) = 0 if

f((u− 1)i−1(x), x) = 0

for every x ∈ ker(u − 1)i, and ε(i) = 1 otherwise (here f is the bilinear form used
to define Sp(2n)). In view of condition b), this uniquely defines ε. For i ∈ N we
shall write ci and εi for c(i) and ε(i).

We denote by Cλ,ε the unipotent class of G corresponding to (λ, ε). We observe
that every unipotent class of Sp(2n) intersects O(2n) in a unique class of O(2n).
Moreover, the unipotent classes of O(2n) contained in SO(2n) (the connected com-
ponent of O(2n)) are those for which λ∗

1 is even (λ∗ is the dual partition of λ). If all
λi’s and c(i)’s are even and if ε(i) �= 1 for every i, then the unipotent class Cλ,ε of
O(2n) splits into two classes of SO(2n). All the other unipotent classes in SO(2n)
are unipotent classes in O(2n).

We shall add the subscript 0 in the case when i is even, c(i) is even and ε(i) = 0.
In [28, §2.8, 2.9, 2.10], there are formulas for the dimensions of centralizers of

unipotent elements in Sp(2n), O(2n) (hence also in SO(2n)), the determination of
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Table 1. Spherical unipotent classes in An, p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO

X� = 2� ⊕ 1n+1−2�

� = 1, . . . ,
[
n+1
2

] J� sβ1
· · · sβ�

nβ1
· · ·nβ�

2�(n+ 1− �)

the component groups C(u)/C(u)◦ in the various cases, and an explicit definition
of a partial order on pairs (λ, ε) such that Cλ,ε ≤ Cμ,φ ⇔ (λ, ε) ≤ (μ, φ).

We shall use the notation as in [28]. As mentioned above, we need only treat
Sp(2n) and SO(2n). However, for completeness, we shall also deal with the case
when G has type An, since this is dealt with in [15] but not in [8].

3.1.1. Type An, n ≥ 1. We show that every spherical unipotent conjugacy class
satisfies (∗). The spherical nilpotent orbits (and therefore the spherical unipotent
classes) have been classified in [15], and it follows that a unipotent conjugacy class
O is spherical if and only if O = X�, the unipotent class 2� ⊕ 1n+1−2� for � =
1, . . . ,

[
n+1
2

]
. For every i = 1, . . . ,

[
n+1
2

]
, let βi = ei − en+2−i. Then, as for C

(and for any algebraically closed field of odd or zero characteristic) the element u =
x−β1

(1) · · ·x−β�
(1) lies in X� ∩ BwB, where w = sβ1

· · · sβ�
is such that dimX� =

�(w) + rk(1 − w). In fact one may take nβ1
· · ·nβ�

∈ sβ1
· · · sβ�

B ∩ X�. For � =
1, . . . ,

[
n+1
2

]
− 1 we put J� = {� + 1, . . . , n − �}, J[n+1

2 ] = ∅. We have established

the information presented in Table 1, where w(O) = w0wJ .

Proposition 3.5. Let O be a non-trivial unipotent conjugacy class of SL(n + 1)
in characteristic 2. Then O is spherical if and only if it consists of involutions if
and only if O has a representative of the form xγ1

(1) · · ·xγt
(1), where γ1, . . . , γt

are pairwise orthogonal simple roots. All non-trivial spherical unipotent classes are
listed in Table 1. �

3.1.2. Type Cn (and Bn), n ≥ 2. We first show that if u is an involution of G, then
Ou is spherical, by showing that Ou satisfies (∗). Therefore, let u be an involution
of G = Sp(2n). Then the partition corresponding to u is of the form λ = 1c1 ⊕ 2c2 ,
with c2 = �, c1 = 2n− 2�, � = 1, . . . , n.

Using the description of unipotent conjugacy classes recalled above, let λ =
2� ⊕ 12n−2�, for � = 1, . . . , n. Then we have ε0 = 1, ε1 = ω, εi = ω, for i ≥ 3. As
for ε2, we have ε2 = 1 if � is odd. On the other hand, if � is even, we have both
possibilities ε2 = 0 or 1. We denote by X� the class corresponding to ε2 = 1 and
by Y� the class corresponding to ε2 = 0 (when � is even).

We denote by X�,C the unipotent class in Sp(2n,C) corresponding to λ = 2� ⊕
12n−2�. Then we get

dimX� = dimX�,C = �(2n− �+ 1) � ∈ {1, . . . , n},
dimY� = dimX�,C − � = �(2n− �) � ∈ {1, . . . , n}, � even.

Note that if � is even and we write � = 2�′, then dimY� = dimOσ�′ ,C, where
Oσ�′ ,C is the conjugacy class in Sp(2n,C) of the involution σ�′ ([5, Table 1]). In
Sp(2n,C), the spherical semisimple conjugacy class Oσ�′,C lies over w = sγ1

· · · sγ�′

([5, Table 5], [11, §4.2.2]).
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We observe that if the partition associated to the involution u is λ = 22�⊕12n−4�,
then Ou = 22�0 ⊕12n−4� if and only if f((u−1)v, v) = 0 for every v ∈ V (here f is the
bilinear form on V used to define Sp2n(k)). Let w be an involution of W , L(w) =
{β ∈ Φ+ | w(β) = −β, β long}, and L(w)⊥ = {γ ∈ Φ+ | w(γ) = −γ, (γ, L(w)) =

0, γ short}. Then w =
∏

β∈L(w)

sβ
∏

γ∈L(w)⊥

sγ . Let x =
∏

β∈L(w)

nβ

∏

γ∈L(w)⊥

nγ . Then

x is an involution in BwB and the number of blocks of dimension 2 in the Jordan
canonical form of x is |L(w)+2|L(w)⊥. If this number is even, then f((x−1)v, v) = 0
for every v ∈ V if and only if L(w) = ∅.

We put βi = 2ei for i = 1, . . . , n and γi = e2i−1 + e2i for i = 1, . . . , [n2 ].
Then it is straightforward to show that

x−β1
(1) · · ·x−β�

(1) ∈ X� ∩Bsβ1
· · · sβ�

B ∩ U− for � = 1, . . . , n,

x−γ1
(1) · · ·x−γ�

(1) ∈ Y2� ∩Bsγ1
· · · sγ�

B ∩ U− for � = 1, . . . , [n2 ].

By (3.2), we can choose

nβ1
· · ·nβ�

∈ X� ∩ wB for � = 1, . . . , n,

nγ1
· · ·nγ�

∈ Y2� ∩ wB for � = 1, . . . , [n2 ].

One can easily deduce which classes of involutions have a representative of the
form u =

∏
i∈K xαi

(1) for a certain subset K of Π. Note that since u is an invo-
lution, (αi, αj) = 0 if i, j ∈ K with i �= j. Up to the W action, we have only the
following representatives u:

�∏

i=1

xαn−2(i−1)
(1) ∈ X2�−1 for � = 1, . . . , [n+1

2 ],

�∏

i=1

xα2i−1
(1) ∈ Y2� for � = 1, . . . , [n2 ].

These exhaust the conjugacy classes of involutions with representative of the form∏
i∈K xαi

(1). In particular, all X2� have no representative of the form
∏

i∈K xαi
(1).

The point is that in good characteristic, for �=1, . . . ,
[
n
2

]
the element

∏�
i=1 xα2i−1

(1)

is conjugate to
∏2�

i=1 xβi
(1) (which lies in X2�).

By Theorem 3.2, we have proved

Proposition 3.6. Let O be the conjugacy class of an involution of Sp(2n) in
characteristic 2. Then O is spherical. �

Our aim is to show that a (non-trivial) unipotent conjugacy class Ou is spherical
if and only if u is an involution. By [15, Remark 2.14], the orbit O is spherical if
and only if G/H is spherical, where H is the isotropy subgroup of an element in
O. Moreover, G/H is spherical if and only if G/H◦ is spherical, where H◦ denotes
the connected component of H. We shall therefore use the following.

Lemma 3.7. Let O be a G-orbit with isotropy subgroup H. Then O is spherical if
and only if G/H◦ is spherical. �

By Proposition 3.6, we are left to show that if the (non-trivial) unipotent class O
does not consist of involutions, thenO is not spherical. Let u be a unipotent element
of order greater than 4, and let v be an element of order 4 in the subgroup generated
by u. Since C(u) ≤ C(v), if Ov is non-spherical, then Ou is also non-spherical. We
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are therefore left to consider the set X of conjugacy classes of elements of order 4.
By [19, Theorem 2.2], it is enough to show that the minimal elements in X are not
spherical.

From the explicit definition of a partial order on pairs (λ, ε) such that Cλ,ε ≤
Cμ,φ ⇔ (λ, ε) ≤ (μ, φ) given in [28, §2.10], it follows that the minimal elements in
X are the classes 32 ⊕ 12n−6 (if n ≥ 3) and 4⊕ 12n−4.

In the following lemmas we deal with these cases. We also consider a case in Dn.

Lemma 3.8. Let O be the unipotent conjugacy class of type 32 ⊕ 12n−6 in Cn or
Dn. Then O is not spherical (p = 2).

Proof. Let u be an element in O = 32⊕12n−6 (this exists in Cn if n ≥ 3). In Sp(2n),
we may take u = xα2

(1)xγ−α2
(1), where γ is the highest short root (γ = e1 + e2),

and get C(u)◦ ≤ P , where P is the maximal parabolic subgroup PI\{α2}. Then
C(u)◦ = CR, C = Hα1

×K, where K is the Cn−3-subgroup of G corresponding to
{α4, . . . , αn}, and R is the subgroup

{u ∈ RuP | u =
∏

α∈Φ+

xα(zα) | zα2
= zγ−α2

}

of codimension 1 in RuP . It follows that C(u)◦ fixes the element eα2
+ eγ−α2

of g.
However, we clearly have C(u) ≤ C(u2), and u2 = xγ(1). But C(xγ(1)) fixes the
element eγ of g, since xγ(1) = 1+eγ in M2n(k). It follows that C(u)◦ has 2 linearly
independent invariants in g so that we can find linearly independent functions f ,
g in k[Sp(2n)/C(u)◦] which are B-weight vectors of the same weight. Then f/g is
a non-constant B-invariant rational function on Sp(2n)/C(u)◦, which is therefore
not spherical by Rosenlicht’s Theorem (see [4, Lemma 1.1]).

Since u lies in SO(2n) and both eα2
+ eγ−α2

and eγ are in the Lie algebra of
SO(2n), the SO(2n)-orbit of u is not spherical as well. �
Lemma 3.9. Let O be the unipotent conjugacy class of type 4⊕12n−4 in Cn. Then
O is not spherical (p = 2).

Proof. Let u be an element in O = 4 ⊕ 12n−4. In Sp(2n), we may take u =
xα1

(1)xδ(1), where δ = 2e2, and get C(u)◦ ≤ P , where P is the parabolic subgroup
PI\{α1,α2}. Then C(u)◦ = CR, where C is the Cn−2-subgroup of G corresponding
to {α3, . . . , αn}, and R is a subgroup of U . In fact dimR = 2n − 2, and R is the
product of Xα’s, where α = e1 ± ei, i = 3, . . . , n, or α = e1 + e2 or α = 2e1.

It follows that C(u)◦ fixes the first 2 basis vectors v1 and v2 of the natural module
of G so that Sp(2n)/C(u)◦ is not spherical, as in the previous case. �

If J� = {� + 1, . . . , n} (Jn = ∅) for � = 1, . . . , n, K� = {1, 3, . . . , 2� − 1, 2� +
1, 2� + 2, . . . , n} for � = 1, . . . ,

[
n
2

]
, we have established the information presented

in Table 2, where w(O) = w0wJ
.

We have proved

Proposition 3.10. Let O be a non-trivial unipotent conjugacy class of Sp(2n) in
characteristic 2. Then O is spherical if and only if it consists of involutions. All
non-trivial spherical unipotent classes are listed in Table 2. �
3.1.3. Type Dn, n ≥ 4. Let m =

[
n
2

]
. We put βi = e2i−1 + e2i, δi = e2i−1 − e2i

for i = 1, . . . ,m. For � = 1, . . . ,m − 1 we put J� = {2� + 1, . . . , n}, Jm = ∅;
K� = J� ∪ {1, 3, . . . , 2� − 1} for � = 1, . . . ,m. Also, if n is even, we put K ′

m =
{1, 3, . . . , n− 3, n}.
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Table 2. Spherical unipotent classes in Cn, n ≥ 2, p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO

X� = 2� ⊕ 12n−2�

� = 1, . . . , n
J� sβ1

· · · sβ�
nβ1

· · ·nβ�
�(2n− �+ 1)

Y2� = 22�0 ⊕ 12n−4�

� = 1, . . . , [n2 ]
K� sγ1

· · · sγ�
nγ1

· · ·nγ�
4�(n− �)

Let u be an involution of G = SO(2n). Then the partition corresponding to u
is of the form λ = 2c2 ⊕ 1c1 , with c2 = 2�, c1 = 2n− 4�, � = 1, . . . ,m.

For each � = 1, . . . ,m − 1 there are 2 conjugacy classes corresponding to λ =
22�⊕12n−4�: we denote by X� the class 2

2�
0 ⊕12n−4� and by Z� the class 2

2�⊕12n−4�.
If � = m, then we denote by Zm the class 22m ⊕ 12n−4m. The conjugacy class in
O(2n) corresponding to 22m0 ⊕ 12n−4m is a single class Xm in SO(2n) if n is odd,
while it splits into 2 conjugacy classes Xm and X ′

m in SO(2n) if n is even.
We have

dimZ� = 4�(n− �), dimX� = 2�(2n− 2�− 1) for � = 1, . . . ,m,

with dimX ′
m = dimXm if n is even. We have chosen the notation so that for each

conjugacy class of involutions O in G, the conjugacy class C in GC denoted by the
same symbol in [11, §4.3] has the same dimension. For the corresponding w, we
write w as a product of commuting reflections, w = sγ1

· · · sγt
. It is straightforward

to prove that in each case the element x = nγ1
· · ·nγt

lies in O. By Theorem 3.2,
we have proved

Proposition 3.11. Let O be the conjugacy class of an involution of SO(2n) in
characteristic 2. Then O is spherical. �

Our aim is to show that a (non-trivial) unipotent conjugacy class Ou is spherical
if and only if u is an involution. Using the same arguments as in case Cn, we are
left to consider the set X of conjugacy classes of elements of order 4, and then show
that the minimal elements in X are not spherical. From the explicit definition of
a partial order on pairs (λ, ε) such that Cλ,ε ≤ Cμ,φ ⇔ (λ, ε) ≤ (μ, φ) given in [28,
§2.10], it follows that the minimal element in X is the class 32 ⊕ 12n−6. By Lemma
3.8, this class is not spherical.

We have established the information presented in Tables 3 and 4, where w(O) =
w0wJ

.

Table 3. Spherical unipotent classes in Dn, n ≥ 4, n = 2m, p = 2.

O J w(O) x ∈ O ∩ Bw(O)B dimO

Z� = 22� ⊕ 12n−4�

� = 1, . . . ,m
J� sβ1

sδ1 · · · sβ�
sδ� nβ1

nδ1
· · ·nβ�

nδ�
4�(n − �)

X� = 22�0 ⊕ 12n−4�

� = 1, . . . ,m
K� sβ1

· · · sβ�
nβ1

· · ·nβ�
2�(2n − 2� − 1)

X′
m = (22m0 )′ K

′
m sβ1

· · · sβm−1
sαn−1

nβ1
· · ·nβm−1

nαn−1
n(n − 1)
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Table 4. Spherical unipotent classes in Dn, n ≥ 4, n = 2m + 1,
p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO

Z� = 22� ⊕ 12n−4�

� = 1, . . . ,m
J� sβ1sδ1 · · · sβ�sδ� nβ1nδ1 · · ·nβ�nδ� 4�(n− �)

X� = 22�0 ⊕ 12n−4�

� = 1, . . . ,m
K� sβ1 · · · sβ� nβ1 · · ·nβ� 2�(2n− 2�− 1)

We have therefore proved

Proposition 3.12. Let O be a non-trivial unipotent conjugacy class of SO(2n) in
characteristic 2. Then O is spherical if and only if it consists of involutions. All
non-trivial spherical unipotent classes are listed in Table 3 if n is even and in Table
4 if n is odd. �

Remark 3.13. From our discussion, it follows that for Dn the map πG : XG′ →
XG defined in [28, Theorem III.5.2] induces an isomorphism of p.o. sets between

XG′

sph and XG
sph, where X

G′

sph, X
G
sph are the corresponding sets of spherical unipotent

classes. In particular, every spherical unipotent conjugacy class has a representative
of the form

∏
α∈K xα(1) for a certain set of pairwise orthogonal simple roots K.

3.2. Exceptional groups. For the exceptional groups, we use [21, Table 2]. In
this table, for each group G, there are all unipotent conjugacy classes Ou, in every
characteristic, for which the dimension of C(u) is greater than a certain number
lG. From this we deduce Table 5 where the value of øC(u)/C(u)◦ for E7 refers to
the adjoint group (see [1]).

Table 5. Unipotent classes of small dimension in exceptional groups.

G dimB u with dimOu ≤ dimB dimOu øC(u)/C(u)◦

E6 42 A1, 2A1, 3A1, A2 22, 32, 40, 42 1, 1, 1, 2

E7 70 A1, 2A1, 3A′′
1 , 3A′

1, A2, 4A1 34, 52, 54, 64, 66, 70 1, 1, 1, 1, 2, 1

E8 128 A1, 2A1, 3A1, A2, 4A1 58, 92, 112, 114, 128 1, 1, 1, 2, 1

F4 28 A1, Ã1(p = 2), Ã1(p �= 2), Ã
(2)
1 (p = 2), A1Ã1 16, 16, 22, 22, 28 1, 1, 2, 1, 1

G2 8 A1, Ã1(p = 3), Ã1(p �= 3), Ã
(3)
1 (p = 3) 6, 6, 8, 8 1, 1, 1, 1

The unipotent conjugacy classes appearing in Table 5 are the only candidates
for being spherical. We shall show that they are all spherical, except for the classes
of type A2 in E6, E7 and E8. Note that when p = 2, then all classes of involutions
appear in Table 5 by the results in [2].

Lemma 3.14. Let O be the unipotent conjugacy class of type A2 in E6, E7 or E8.
Then O is not spherical (in any characteristic).

Proof. Let u be an element in O. From [21, Table 2], it follows that the type of
C(u)◦ is independent of the characteristic. For completeness, we determine C(u)◦

in all cases.
In E8, we may take u = xα8

(1)xβ−α8
(1), where β is the highest root, and get

C(u)◦ ≤ P , where P is the maximal parabolic subgroup PI\{α8}. Then C(u)◦ =
CR, where C is the E6-subgroup of G corresponding to {α1, . . . , α6}, and

R = {g =
∏

α∈Φ+

xα(kα) ∈ RuP | kα8
= kβ−α8

}.
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A CLASSIFICATION OF UNIPOTENT SPHERICAL CONJUGACY CLASSES 2007

In E7, we may take u = xα1
(1)xβ−α1

(1), where β is the highest root, and get
C(u)◦ ≤ P , where P is the maximal parabolic subgroup PI\{α1}. Then C(u)◦ =
CR, where C is the A5-subgroup of G corresponding to {α2, α4, α5, α6, α7}, and

R = {g =
∏

α∈Φ+

xα(kα) ∈ RuP | kα1
= kβ−α1

}.

In E6, we may take u = xα2
(1)xβ−α2

(1), where β is the highest root, and get
C(u)◦ ≤ P , where P is the maximal parabolic subgroup PI\{α2}. Then C(u)◦ =
CR, where C is the A2 ×A2-subgroup of G corresponding to {α1, α3, α5, α6}, and

R = {g =
∏

α∈Φ+

xα(kα) ∈ RuP | kα2
= kβ−α2

}.

It is well known that the class A2 is not spherical in E6, E7 or E8 over any
algebraically closed field of characteristic zero ([24, Theorem (3.1)]). We may now
apply [4, Theorem 2.2 (i)]. Note that the groups C(u)◦ involved are all defined over
Z, and the argument in the proof of [4, Theorem 2.2 (i)] is valid in our situation.
Therefore G/C(u)◦ is not spherical in any positive characteristic. It follows that
Ou is not spherical by Lemma 3.7. �

3.2.1. Type E6. We put

β1 = (1, 2, 2, 3, 2, 1), β2 = (1, 0, 1, 1, 1, 1),
β3 = (0, 0, 1, 1, 1, 0), β4 = (0, 0, 0, 1, 0, 0).

For groups of type E6 we have to consider p = 2, 3. If p = 3, then we may apply
the arguments in [5, Theorem 13] to prove that the orbits of type A1, 2A1 and 3A1

satisfy (∗). Hence they are spherical, since to handle 3A1 we need results for D4

which hold due to [8, Theorem 3.4] and its proof (in fact what we need is that the
maximal spherical unipotent conjugacy class O′ of D4 satisfies (∗) when p = 3).
Therefore, now assume p = 2. Then again we may use the proof of [5, Theorem
3.4] to deal with A1 and 2A1. Note that in these cases

x−β1
(1) ∈ A1 ∩Bsβ1

B ∩ U−, x−β1
(1)x−β2

(1) ∈ 2A1 ∩Bsβ1
sβ2

B ∩ U−

with x−β1
(1) ∼ nβ1

, x−β1
(1)x−β2

(1) ∼ nβ1
nβ2

. To deal with 3A1, we may still use
the arguments in the proof of [5, Theorem 3.4] since we have shown in §3.1.3 that
the maximal spherical unipotent conjugacy class O′ of D4 satisfies (∗) when p = 2,
or directly observe that x = nβ1

nβ2
nβ3

nβ4
is an involution in Bnβ1

nβ2
nβ3

nβ4
B =

Bw0B. Then dimOx ≥ �(w0) + rk(1− w0) = 40 by Theorem 3.2, so that x ∈ 3A1

by Table 5, since elements in A2 are not involutions.
We have established the information presented in Tables 6 and 7, where w(O) =

w0wJ
.

Table 6. Spherical unipotent classes in E6, p = 3 (or any p �= 2).

O J w(O) dimO
A1 {1, 3, 4, 5, 6} sβ1

22
2A1 {3, 4, 5} sβ1

sβ2
32

3A1 ∅ w0 40
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Table 7. Spherical unipotent classes in E6, p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO
A1 {1, 3, 4, 5, 6} sβ1

nβ1
22

2A1 {3, 4, 5} sβ1
sβ2

nβ1
nβ2

32
3A1 ∅ w0 nβ1

· · ·nβ4
40

We have proved

Proposition 3.15. Let O be a non-trivial unipotent conjugacy class of E6. Then
O is spherical if and only if it is listed in Tables 6 or 7. If p = 2, these are precisely
the classes consisting of involutions. �

We observe that, independent of the characteristic, xα1
(1) ∈ A1, xα1

(1)xα4
(1) ∈

2A1 and xα1
(1)xα4

(1)xα6
(1) ∈ 3A1. Hence every spherical unipotent conjugacy

class has a representative of the form
∏

α∈K xα(1) for a certain set of pairwise
orthogonal simple roots K.

3.2.2. Type E7. We put

β1 = (2, 2, 3, 4, 3, 2, 1), β2 = (0, 1, 1, 2, 2, 2, 1), β3 = (0, 1, 1, 2, 1, 0, 0),
β4 = α7, β5 = α5, β6 = α3, β7 = α2.

For groups of type E7 we have to consider p = 2, 3. If p = 3, then we may apply
the arguments in [5, Theorem 13] to prove that the orbits of type A1, 2A1, (3A1)

′,
(3A1)

′′ and 4A1 are spherical, since we need results for Dn which hold due to [8,
Theorem 3.4] and its proof. So now assume p = 2. Then again we may use the
proof of [5, Theorem 3.4] to deal with A1, 2A1 and (3A1)

′′. Note that in these cases

x−β1
(1) ∈ A1 ∩Bsβ1

B ∩ U−, x−β1
(1)x−β2

(1) ∈ 2A1 ∩Bsβ1
sβ2

B ∩ U−,

x−β1
(1)x−β2

(1)x−β4
(1) ∈ (3A1)

′′ ∩Bsβ1
sβ2

sβ4
B ∩ U−.

To deal with (3A1)
′ and 4A1, again we may apply the arguments in [5, Theorem

13], since we need results for Dn when p = 2, which we proved in §3.1.3. However,
it is also possible to show directly that nβ1

nβ2
nβ3

nβ6
∈ sβ1

sβ2
sβ3

sβ6
B∩ (3A1)

′. To
deal with 4A1 one can observe that x = nβ1

· · ·nβ7
is an involution in Bw0B. Then

dimOx ≥ �(w0) + rk(1− w0) = 70 by Theorem 3.2, so that x ∈ 4A1 by Table 5.
We have established the information presented in Tables 8 and 9, where w(O) =

w0wJ
.

Table 8. Spherical unipotent classes in E7, p = 3 (or any p �= 2).

O J w(O) dimO
A1 {2, 3, 4, 5, 6, 7} sβ1

34
2A1 {2, 3, 4, 5, 7} sβ1

sβ2
52

(3A1)
′′ {2, 3, 4, 5} sβ1

sβ2
sβ4

54
(3A1)

′ {2, 5, 7} sβ1
sβ2

sβ3
sβ6

64
4A1 ∅ w0 70
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Table 9. Spherical unipotent classes in E7, p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO
A1 {2, 3, 4, 5, 6, 7} sβ1

nβ1
34

2A1 {2, 3, 4, 5, 7} sβ1
sβ2

nβ1
nβ2

52
(3A1)

′′ {2, 3, 4, 5} sβ1
sβ2

sβ4
nβ1

nβ2
nβ4

54
(3A1)

′ {2, 5, 7} sβ1
sβ2

sβ3
sβ6

nβ1
nβ2

nβ3
nβ6

64
4A1 ∅ w0 nβ1

· · ·nβ7
70

We have proved

Proposition 3.16. Let O be a non-trivial unipotent conjugacy class of E7. Then
O is spherical if and only if it is listed in Table 8 or 9. If p = 2, these are precisely
the classes consisting of involutions. �

We observe that, independent of the characteristic, xα1
(1) ∈ A1, xα1

(1)xα4
(1)

∈ 2A1, xα3
(1)xα5

(1)xα7
(1) ∈ (3A1)

′′, xα1
(1)xα4

(1)xα6
(1) ∈ (3A1)

′ and
xα2

(1)xα3
(1)xα5

(1)xα7
(1) ∈ 4A1. Hence every spherical unipotent conjugacy class

has a representative of the form
∏

α∈K xα(1) for a certain set of pairwise orthogonal
simple roots K.

3.2.3. Type E8. We put

β1 = (2, 3, 4, 6, 5, 4, 3, 2), β2 = (2, 2, 3, 4, 3, 2, 1, 0), β3 = (0, 1, 1, 2, 2, 2, 1, 0),
β4 = (0, 1, 1, 2, 1, 0, 0, 0), β5 = α7, β6 = α5, β7 = α3, β8 = α2.

For groups of type E8 we have to consider p = 2, 3, 5. If p = 3 or 5, then we may
apply the arguments in [5, Theorem 13] to prove that the orbits of types, A1, 2A1,
3A1 and 4A1 are spherical, since to handle 3A1 and 4A1 we need results for D4

and D6 which hold due to [8, Theorem 3.4] and its proof. Therefore, now assume
p = 2. Then again we may use the proof of [5, Theorem 3.4] to deal with A1 and
2A1. Note that in these cases

x−β1
(1) ∈ A1 ∩Bsβ1

B ∩ U−,

x−β1
(1)x−β2

(1) ∈ 2A1 ∩Bsβ1
sβ2

B ∩ U−.

To deal with 3A1 and 4A1, again we may apply the arguments in [5, Theorem 13],
since we need results for Dn when p = 2, which we proved in §3.1.3. However, it is
also possible to show directly that nβ1

nβ2
nβ3

nβ5
∈ sβ1

sβ2
sβ3

sβ5
B ∩ 3A1. To deal

with 4A1 one can observe that x = nβ1
· · ·nβ8

is an involution in Bw0B. Then
dimOx ≥ �(w0) + rk(1− w0) = 128 by Theorem 3.2, so that x ∈ 4A1 by Table 5.

We have established the information presented in Tables 10 and 11, where
w(O) = w0wJ

.
We have proved

Proposition 3.17. Let O be a non-trivial unipotent conjugacy class of E8. Then
O is spherical if and only if it is listed in Table 10 or 11. If p = 2, these are
precisely the classes consisting of involutions. �

We observe that, independent of the characteristic, xα1
(1) ∈ A1, xα1

(1)xα4
(1) ∈

2A1, xα1
(1)xα4

(1)xα6
(1) ∈ 3A1, and xα1

(1)xα4
(1)xα6

(1)xα8
(1) ∈ 4A1. Hence every

spherical unipotent conjugacy class has a representative of the form
∏

α∈K xα(1)
for a certain set of pairwise orthogonal simple roots K.
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Table 10. Spherical unipotent classes in E8, p = 3 or 5 (or any
p �= 2).

O J w(O) dimO
A1 {1, 2, 3, 4, 5, 6, 7} sβ1

58
2A1 {2, 3, 4, 5, 6, 7} sβ1

sβ2
92

3A1 {2, 3, 4, 5} sβ1
sβ2

sβ3
sβ5

112
4A1 ∅ w0 128

Table 11. Spherical unipotent classes in E8, p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO
A1 {1, 2, 3, 4, 5, 6, 7} sβ1

nβ1
58

2A1 {2, 3, 4, 5, 6, 7} sβ1
sβ2

nβ1
nβ2

92
3A1 {2, 3, 4, 5} sβ1

sβ2
sβ3

sβ5
nβ1

nβ2
nβ3

nβ5
112

4A1 ∅ w0 nβ1
· · ·nβ8

128

3.2.4. Type F4. We put

β1 = (2, 3, 4, 2), β2 = (0, 1, 2, 2),
β3 = (0, 1, 2, 0), β4 = (0, 1, 0, 0);

also γ1 is the highest short root (1, 2, 3, 2).
For groups of type F4 we have to consider p = 2, 3. If p = 3, then we may

apply the arguments in [5, Theorem 13] to prove that the orbits of types A1, Ã1

and A1Ã1 are spherical, since to handle A1Ã1 we need results for D4 which hold
due to [8, Theorem 3.4] and its proof. Therefore, now assume p = 2. Here there
are more conjugacy classes Ou (due to the presence of the graph automorphism of
G) for which dimOu ≤ dimB (see Table 5). Each class consists of involutions. We
may take the following representatives:

x−β1
(1) ∈ A1 ∩Bsβ1

B ∩ U−,

x−γ1
(1) ∈ Ã1 ∩Bsγ1

B ∩ U−.

To deal with Ã
(2)
1 , we observe that u = xβ1

(1)xγ1
(1) ∈ Ã

(2)
1 by [2, (13.1)]. Let K be

the C2-subgroup of G with basis {(1, 1, 1, 0), β2}. Then β1 and γ1 are the highest
long and short roots in K, respectively. A direct calculation in C2 shows that u is
conjugate to v = xβ1

(1)xβ2
(1); hence

x−β1
(1)x−β2

(1) ∈ Ã
(2)
1 ∩Bsβ1

sβ2
B ∩ U−.

Finally, to deal with A1Ã1 we observe that x = nβ1
· · ·nβ4

is an involution in Bw0B.

Then dimOx ≥ �(w0) + rk(1 − w0) = 28 by Theorem 3.2, so that x ∈ A1Ã1 by
Table 5. We have established the information presented in Tables 12 and 13, where
w(O) = w0wJ .

Proposition 3.18. Let O be a non-trivial unipotent conjugacy class in F4. Then
O is spherical if and only if it is listed in Table 12 or 13. If p = 2, these are
precisely the classes consisting of involutions.

We note that in GC there is an involution σ such that C(σ) is of type B4 and
such that Oσ lies over sγ1

. We also observe that if p = 2, then xα4
(1) ∈ A1,
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Table 12. Spherical unipotent classes in F4, p = 3 (or any p �= 2).

:O J w(O) dimO
A1 {2, 3, 4} sβ1

16

Ã1 {2, 3} sβ1
sβ2

22

A1Ã1 ∅ w0 28

Table 13. Spherical unipotent classes in F4, p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO
A1 {2, 3, 4} sβ1

nβ1
16

Ã1 {1, 2, 3} sγ1
nγ1

16

Ã
(2)
1

{2, 3} sβ1
sβ2

nβ1
nβ2

22

A1Ã1 ∅ w0 nβ1
nβ2

nβ3
nβ4

28

xα1
(1) ∈ Ã1, xα1

(1)xα3
(1) ∈ A1Ã1 and these exhaust the conjugacy classes of

involutions with a representative of the form
∏

i∈K xαi
(1), K ⊆ Π. In particular,

Ã
(2)
1 has no representative of the form

∏
i∈K xαi

(1).

3.2.5. Type G2. We put β1 = (3, 2), β2 = α1, γ1 = (2, 1) (the highest short root).
For groups of type G2 we have to consider p = 2, 3. The p.o. set of unipotent

conjugacy classes is described in the tables in [28, Proposition II 10.4].
If p = 2, the classification of unipotent conjugacy classes O for which dimO ≤

dimB is the same as over C and each class consists of involutions. We may take

x−β1
(1) ∈ A1 ∩Bsβ1

B ∩ U−.

To deal with Ã1 we observe that x = nβ1
nβ2

is an involution in Bw0B. Then

dimOx ≥ �(w0) + rk(1− w0) = 8 by Theorem 3.2, so that x ∈ Ã1 by Table 5.
Therefore, now assume p = 3. Here there are more conjugacy classes O for which

dimOu ≤ dimB (see Table 5), due to the presence of the graph automorphism of
G. We may take the following representatives:

x−β1
(1) ∈ A1 ∩Bsβ1

B ∩ U−,

x−γ1
(1) ∈ Ã1 ∩Bsγ1

B ∩ U−.

To deal with Ã
(3)
1 , we observe that since A1 ≤ Ã

(3)
1 and Ã1 ≤ Ã

(3)
1 , we get sβ1

≤
w(Ã

(3)
1 ) and sγ1

≤ w(Ã
(3)
1 ) so that w(Ã

(3)
1 ) = w0, and we are done since dim Ã

(3)
1 =

8.
We have established the information presented in Tables 14 and 15, where

w(O) = w0wJ .

Table 14. Spherical unipotent classes in G2, p = 2.

O J w(O) x ∈ O ∩Bw(O)B dimO
A1 {1} sβ1

nβ1
6

Ã1 ∅ sβ1
sβ2

nβ1
nβ2

8
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Table 15. Spherical unipotent classes in G2, p = 3.

O J w(O) dimO
A1 {1} sβ1

6

Ã1 {2} sγ1
6

Ã
(3)
1

∅ sβ1
sβ2

8

Proposition 3.19. Let O be a non-trivial unipotent conjugacy class in G2. Then
O is spherical if and only if it is listed in Table 14 or 15. If p = 2, these are
precisely the classes consisting of involutions. �

Note that if p = 3, then xα2
(1) ∈ A1, xα1

(1) ∈ Ã1, while Ã
(3)
1 has no represen-

tative of the form
∏

i∈K xαi
(1), K ⊆ Π.

This completes the classification of unipotent spherical conjugacy classes in bad
characteristic and the proof of Theorem 3.4, which clearly holds for every connected
reductive algebraic group in characteristic 2.

4. Symmetric homogeneous spaces

In this section we shall prove that if G is a connected reductive algebraic group
over an algebraically closed field k of characteristic 2, then H = C(σ) is a spherical
subgroup of G for every involutory automorphism σ of G. This was proved by
Vust in [32] in characteristic zero (see also [23] over C). Then Springer extended
the result to odd characteristic in [29]. In [27], Seitz gives an alternative proof of
Springer’s result.

We start by observing that it is enough to assume G simple, for if G is connected
reductive, then G = S G1 · · ·Gt, where S is the connected component of Z(G) and
G1, . . . , Gt are the simple components of G. Let σ be an involutory automorphism
of G. Then σ fixes S and induces a permutation ρ of the set {1, . . . , t}. If ρ is
non-trivial, then it is the product of disjoint cycles of length 2. Suppose one of
these cycles is (1, 2). Then σ induces an isomorphism ϕ : G1 → G2. Let B1 = T1U1

be a Borel subgroup of G1, where U1 is the unipotent radical of B1 and T1 is a
maximal torus. Let V1 be the maximal unipotent subgroup of the Borel subgroup
of G1 opposite to B1, and let R = B1V

ϕ
1 ≤ G1G2. Then CG1G2

(σ) ∩R is finite so
that CG1G2

(σ) is a spherical subgroup of G1G2, since dimCG1G2
(σ)+dimB1V

ϕ
1 =

dimG1G2. Of course CS(σ) is a spherical subgroup of S, so to conclude it is enough
to assume that G is a (connected) simple algebraic group.

In the following we assume that G is a simple algebraic group over k, of any
characteristic. We shall use a generalization of Theorem 3.2.

Let τ be an automorphism of G fixing B and T , and consider G : 〈τ 〉. Assume
τ has order r. Then we have the Bruhat decomposition

G : 〈τ 〉 =
⋃

w∈W, i∈Zr

Bτ iwB.

Let O be a G-orbit in G : 〈τ 〉. Then there exists a unique i ∈ Zr such that
O ⊆

⋃
w∈W Bτ iwB, and there is a unique z = z(O) such that O ∩ Bτ izB is open

dense in O. In particular,

(4.1) O = O ∩Bτ izB ⊆ Bτ izB = τ iBzB.
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A CLASSIFICATION OF UNIPOTENT SPHERICAL CONJUGACY CLASSES 2013

It follows that if y is an element of O and y ∈ Bτ iwB, then w ≤ z in the
Chevalley-Bruhat order of W . Let us observe that if O is spherical and B.x is the
dense B-orbit in O, then B.x ⊆ Bτ izB.

We still denote by τ the automorphism of E = X(T ) ⊗ R induced by τ (i.e.
τ (χ)(t) = χ(τ−1tτ ) for every χ ∈ X = X(T ), t ∈ T ). For every w ∈ W we put

T τw = {t ∈ T | w−1τ−1tτw = t}.

We have dimT τw = n− rk(1− τw).

Theorem 4.1. Let σ ∈ G : 〈τ 〉, σ = τ ig, for a certain g ∈ G, i ∈ Zr, and let
O = G.σ. Suppose that O contains an element x ∈ Bτ iwB, for a certain w ∈ W ,
where Uw−1 is τ -invariant. Then

dimB.x ≥ �(w) + rk(1− τ iw).

In particular, dimO ≥ �(w) + rk(1− τ iw). If, in addition,

dimO ≤ �(w) + rk(1− τ iw),

then O is spherical, w = z(O) and B.x is the dense B-orbit in O. �

Proof. Without loss of generality, we may assume x = τ iẇu, for a certain represen-
tative ẇ of w in N and u ∈ U . Let us estimate the dimension of the orbit Bw−1 .x,
where Bw−1 = TUw−1 .

Let vt ∈ CBw−1 (x), with v ∈ Uw−1 , t ∈ T . Then

τ iẇuvt = vtτ iẇu = τ iτ−ivtτ iẇu = τ iτ−ivτ iτ−itτ iẇu = τ i τ−ivτ i ẇ ẇ−1τ−itτ iẇu

so that, by the uniqueness of the decomposition, v = 1 since τ−ivτ i ∈ Uw−1 .
Moreover, from ut = ẇ−1τ−itτ iẇu it follows that t = ẇ−1τ−itτ iẇ. Therefore

CBw−1 (x) ≤ T τiw. Thus dimCBw−1 (x) ≤ dimT τiw = n− rk(1− τ iw) and

dimBw−1 .x = dimBw−1 − dimCBw−1 (x) ≥ �(w) + n− n+ rk(1− τ iw)

= �(w) + rk(1− τ iw).

If, in addition, �(w) + rk(1 − τ iw) ≥ dimO, then dimO = �(w) + rk(1 − τ iw). In
particular B.x is the dense B-orbit in O. �

We observe that the condition τ (Uw−1) = Uw−1 is clearly satisfied if w =
sr1 · · · srk , where r1, . . . , rk are roots fixed by τ , or if {r1, . . . , rk} is a τ -invariant
set of pairwise orthogonal roots.

In the remainder of this section we assume that the characteristic of k is 2.
In the previous section we have already shown that C(σ) is a spherical subgroup

of G when σ is an inner involution of G. We are therefore left to deal with outer
involutions, which exist only in the following cases: A�, � ≥ 2, D�, � ≥ 4 and E6.

To prove that the fixed point subgroup of any outer involution of G is spherical,
we shall use the classification of outer involutions of G as in [28] and [2]. We
fix the graph automorphism τ (of order 2) of G, and for each G-orbit O of outer
involutions of G we show that there exists an involution w = sδ1 · · · sδ� ∈ W such
that O ∩ BτwB is not empty, dimO = �(w) + rk(1 − τw), the δi’s are pairwise
orthogonal positive roots and {δ1, . . . , δ�} is τ -invariant. By Theorem 4.1, O is
spherical (with z(O) = w). We consider the various cases: if σ = τg ∈ G : 〈τ 〉,
C(σ) stands for CG(σ). In each case we use the notation introduced in Section 3.
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4.1. Type An, n = 2m, m ≥ 1. We take G = SL(2m + 1). In this case there is
only one (class of) outer involution τ , the graph automorphism of SL(2m+1), and
C(τ ) = SO(2m+ 1). Then

dimSL(2m+ 1)/SO(2m+ 1) = 2m2 + 3m,

which is the dimension of a Borel subgroup of SL(2m+ 1). We may take

x = τnβ1
· · ·nβm

∈ τw0B.

Then x2 = 1 since τ (βk) = βk for each k, so that x lies in Oτ . Since τw0 = −1, we
get

�(w0) + rk(1− τw0) = dimB,

and we are done.
We have established the information presented in Table 16, where w(O) = w0wJ

.

Table 16. Outer involutions of SL(2m+ 1), m ≥ 1, p = 2.

:O J w(O) x ∈ O ∩ τBw(O)B dimO
τ ∅ w0 = sβ1

· · · sβm
τnβ1

· · ·nβm
2m2 + 3m

4.2. Type An, n = 2m − 1, m ≥ 2. We take G = SL(2m). In this case
there are two (classes of) outer involutions: τ and τxβ1

(1), with C(τ ) = Sp(2m),
C(τxβ1

(1)) = CSp(2m)(xβ1
(1)). We have

dimSL(2m)/Sp(2m) = 2m2 −m− 1.

We put J = {1, 3, . . . , n}, w = w0wJ . We have

�(w) = �(w0)− �(wJ ) = m(2m− 1)−m = 2m2 − 2m

and

rk(1− τw) = rk(w
J
+ 1) = m− 1

since τw0 = −1 and the (simple) roots in J are pairwise orthogonal. Hence

�(w) + rk(1− τw) = 2m2 −m− 1 = dimSL(2m)/Sp(2m).

We are left to exhibit a conjugate x ∈ τBwB of τ . For this purpose we distinguish
2 cases.

Assume m is even, m = 2r. Then there are precisely m positive roots γ1, . . . , γm
for which w(γ) = −γ, namely

γ2i−1 = e2i−1 − e2m−2i+1, γ2i = e2i − e2m+2−2i

for i = 1, . . . , r and

w = sγ1
· · · sγm

.

We also note that τ exchanges γ2i−1 and γ2i for each i = 1, . . . , r. In this case we
take

x = gτg−1,

where g is the involution g = x−γ1
(1)x−γ3

(1) · · ·x−γm−1
(1). Then

x = τx−γ1
(1)x−γ2

(1)x−γ3
(1) · · ·x−γm−1

(1)x−γm
(1) ∈ τBwB,

and we are done.
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If m is odd, m−1 = 2r, then there are precisely m−1 positive roots γ1, . . . , γm−1

for which w(γ) = −γ, namely

γ2i−1 = e2i−1 − e2m−2i+1, γ2i = e2i − e2m+2−2i

for i = 1, . . . , r and

w = sγ1
· · · sγm−1

.

We also note that τ exchanges γ2i−1 and γ2i for each i = 1, . . . , r. In this case we
take

x = gτg−1,

where g is the involution g = x−γ1
(1)x−γ3

(1) · · ·x−γm−2
(1). Then

x = τx−γ1
(1)x−γ2

(1)x−γ3
(1) · · ·x−γm−2

(1)x−γm−1
(1) ∈ τBwB,

and we are done.
We finally deal with τxβ1

(1), H = C(τxβ1
(1)) = CSp(2m)(xβ1

(1)). We have

dimSL(2m)/H = dimSL(2m)/Sp(2m)+dimO′ = 2m2−m−1+2m = 2m2+m−1,

where O′ is the Sp(2m)-orbit of xβ1
(1), which has dimension 2m (note that

dimSL(2m)/H = dimSL(2m)/SO(2m), and SO(2m) is the centralizer of an outer
involution of SL(2m) if the characteristic is not 2). Therefore dimSL(2m)/H is
the dimension of a Borel subgroup of SL(2m). As in the case when n is even, we
take w = w0,

x = τnβ1
· · ·nβm

∈ τw0B.

Then x2 = 1 since τ (βk) = βk for each k, and for dimensional reasons, x is conjugate
to τxβ(1).

We have established the information presented in Tables 17 and 18, where
w(O) = w0wJ

.

Table 17. Outer involutions of SL(2m), m ≥ 2, m even, p = 2.

:O J w(O) x ∈ O ∩ τBw(O)B dimO
τ {1, 3, . . . , 2m− 1} sγ1 · · · sγm τx−γ1(1) · · · x−γm(1) 2m2 −m− 1

τxβ1(1) ∅ w0 τn0 2m2 +m− 1

Table 18. Outer involutions of SL(2m), m ≥ 3, m odd, p = 2.

O J w(O) x ∈ O ∩ τBw(O)B dimO
τ {1, 3, . . . , 2m− 1} sγ1 · · · sγm−1 τx−γ1(1) · · · x−γm−1(1) 2m2 −m− 1

τxβ1(1) ∅ w0 τn0 2m2 +m− 1

4.3. Type Dn, n ≥ 4. To deal with G of type Dn we shall, as usual, consider
G = SO(2n). Then the outer involutions of G are obtained by conjugation with
involutions of O(2n). Note that if n = 4 and if G is adjoint or simply-connected,
then there are other outer involutions in Aut G. However, they are conjugate in
Aut G to involutions in O(2n).

Let τ be the involution of O(2n) inducing the graph automorphism of SO(2n),
i.e. the graph automorphism acting trivially on 〈X±αi

| i ∈ {1, . . . , n− 2}〉 and
such that xαn−1

(ξ) ↔ xαn
(ξ), x−αn−1

(ξ) ↔ x−αn
(ξ) for ξ ∈ k.
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The classes of involutions in O(2n)\SO(2n) correspond to partitions 2�⊕12n−2�

for � ≤ n with � odd, with τ corresponding to 2 ⊕ 12n−2. Let O� be the class
corresponding to 2� ⊕ 12n−2�. From [28, 2.9 b)] we get

dimO� = dimO�,Sp(2n,C) − 2n+ λ∗
1,

where λ∗
1 = c1 + c2 = (2n− 2�) + � = 2n− �. Hence

dimO� = k(2n− �+ 1)− 2n+ 2n− � = �(2n− �)

for � ≤ n with � odd.
Let

μ1 = e1 − en, ν1 = e1 + en, w = sμ1
sν1

.

Then

�(w) + rk(1− τw) = 2(n− 1) + 1 = 2n− 1 = dimO1

and τ (μ1) = ν1. We have

nν1
τnν1

= τnμ1
nν1

so that

τnμ1
nν1

∈ O1 ∩ wB.

To deal with the remaining classes, we put m =
[
n
2

]
and

μi = e2i−2 − e2i−1, νi = e2i−2 + e2i−1, wi = sμ1
sν1

· · · sμi
sνi

for i = 2, . . . ,m.
Arguing as above, we can prove that

�(w�) + rk(1− τw�) = dimO2�−1

and

τnμ1
nν1

· · ·nμ�
nν�

∈ O2�−1 ∩ w�B

for � = 2, . . . ,m. In fact it is enough to count the number of Jordan blocks of
dimension 2 in τnμ1

nν1
· · ·nμ�

nν�
: in τnμ1

nν1
there is 1, and in nμi

nνi
there are 2

for each i = 2, . . . , �.
If n is even, then there are 1

2n conjugacy classes of outer involutions, and we

are done. In particular, the maximal one is 2n−1 ⊕ 12 and corresponds to w =
sμ1

sν1
· · · sμm

sνm
= w0 = −1.

If n is odd, then there are 1
2 (n + 1) conjugacy classes of outer involutions: the

maximal one is On = 2n, which is the only one not in the previous list. We have

dimOn = n2.

Let n0 be any representative in N of w0 with n0 of order 2 and commuting with τ .
Then x = τn0 is an involution in τw0B. Since

�(w0) + rk(1− τw0) = n2 − n+ n = n2

by Theorem 4.1, we have dimB.x ≥ n2. However, x is an involution in O(2n)\
SO(2n), so that dimG.x ≤ dimOn = n2. Therefore x lies in On ∩ τw0B, and we
are done.

Let J� = {2�, 2�+1, . . . , n} for � = 1 . . . ,m. We have established the information
presented in Tables 19 and 20, where w(O) = w0wJ

.
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Table 19. Outer involutions of Dn, n ≥ 4, n = 2m, p = 2.

O J w(O) x ∈ O ∩ τBw(O)B dimO

22�−1 ⊕ 12n−4�+2

� = 1, . . . ,m − 1
J� sμ1

sν1 · · · sμ�
sν� τnμ1

nν1
· · ·nμ�

nν�
(2� − 1)(2n − 2� + 1)

2n−1 ⊕ 12 ∅ w0 = sμ1
sν1 · · · sμmsνm τnμ1

nν1
· · ·nμmnνm n2 − 1

Table 20. Outer involutions of Dn, n ≥ 4, n = 2m+ 1, p = 2.

O J w(O) x ∈ O ∩ τBw(O)B dimO

22�−1 ⊕ 12n−4�+2

� = 1, . . . ,m
J� sμ1

sν1 · · · sμ�
sν� τnμ1

nν1
· · ·nμ�

nν�
(2� − 1)(2n − 2� + 1)

2n ∅ w0 τn0 n2

4.4. Type E6. There are two (classes of) outer involutions, τ and τxβ1
(1), where

τ is the graph automorphism of G. We recall from §3.2.1 that

β1 = (1, 2, 2, 3, 2, 1), β2 = (1, 0, 1, 1, 1, 1),
β3 = (0, 0, 1, 1, 1, 0), β4 = (0, 0, 0, 1, 0, 0).

Note that each βi is fixed by τ .
Let us start with τxβ1

(1). We have K = C(τxβ1
(1)) ∼= CF4

(xβ1
(1)), dimK = 36.

Let x = τnβ1
nβ2

nβ3
nβ4

. Since x is an involution in τw0B, with �(w0)+rk(1−τw0) =
36 + 6 = dimE6/K, it follows that τxβ1

(1) ∼ x.
To deal with τ , we put δ1 = (1, 1, 2, 2, 1, 1), δ2 = (1, 1, 1, 2, 2, 1). We have

dimE6/F4 = 26.

Note that τ (δ1) = δ2 and

�(sδ1sδ2) + rk(1− τsδ1sδ2) = 24 + 2 = 26.

In fact, here J = {2, 3, 4, 5}, w = sδ1sδ2 = w0wJ .
We show that τ ∼ τnδ1nδ2 . Let g = x−δ1(1). Then

gτg−1 = τx−δ1(1)x−δ2(1) ∈ τBwB.

Moreover, since [τ, xδ1(1)xδ2(1)] = 1, we get

xδ1(1)xδ2(1)τx−δ1(1)x−δ2(1)xδ1(1)xδ2(1) = τnδ1nδ2

and we are done. We have established the information presented in Table 21, where
w(O) = w0wJ .

Table 21. Outer involutions of E6, p = 2.

O J w(O) x ∈ O ∩ τBw(O)B dimO
τ {2, 3, 4, 5} sδ1sδ2 τnδ1nδ2 26

τxβ1
(1) ∅ w0 τnβ1

nβ2
nβ3

nβ4
42

This completes the list of outer involutions of simple algebraic groups in charac-
teristic 2. We have proved

Theorem 4.2. Let G be a reductive connected algebraic group in characteristic 2,
and let σ be any involutory automorphism of G. Then the fixed point subgroup H
of σ is a spherical subgroup of G. �

We conclude with another application of Theorem 4.1.
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4.5. Type G2 in D4. We show briefly how one can prove that the subgroup of type
G2 in D4 is spherical (in all characteristics). Let us assume G of type D4. Without
loss of generality, we may assume G is adjoint. Hence if we denote by ϕ the graph
automorphism of G fixing α2 and mapping α1 �→ α3 �→ α4 �→ α1, then the fixed
point subgroup K of ϕ is of type G2. Let δ1 = α1 + α2 + α3, δ2 = α1 + α2 + α4,
δ3 = α2 + α3 + α4, and let w = w0s2 = sδ1sδ2sδ3 . We have

�(w) + rk(1− ϕw) = 14 = dimD4/G2.

It remains to show that a G-conjugate of ϕ lies in ϕBw0s2B ⊆ G : 〈ϕ〉.
Let g = x−δ1(ξ1)x−δ2(ξ2)x−δ3(ξ3). Then

gϕg−1 = ϕx−δ1(−ξ1 − ξ3)x−δ2(−ξ2 − ξ1)x−δ3(−ξ3 + ξ2).

If we choose ξ1, ξ2, ξ3 such that ξ1 + ξ3, ξ2 + ξ1 and −ξ3 + ξ2 are non-zero, then
gϕg−1 ∈ ϕBw0s2B, and we are done.

Remark 4.3. If the characteristic is zero, we may apply the arguments in [11].
Since Tϕw = Hα2

is connected, it follows that, in the simply-connected case, the
monoid λ(D4/G2) of B-weights in k[D4/G2] is generated by ω1, ω3, ω4, since G2 is
connected and has no non-trivial characters, so that the monoid λ(D4/G2) is free
(and it contains (1− ϕw)P+, which is the monoid generated by ω1 + ω3, ω1 + ω4,
ω3 + ω4, ω1 + ω3 + ω4) (see also [20]).
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