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INTRODUCTION

Given a group G, an autoprojectivity of G is an automorphism of the
lattice of all subgroups of G. We denote by Aut L({G) the group of all
autoprojectivities of GG. Every automorphism « of G induces in a natural
way the autoprojectivity a* of G given by X* = X for every X < G. We
have therefore a homomorphism *: Aut G — Aut L(G) given by a — a*
for every a in Aut G.

An interesting problem in the study of a given group G, from its
subgroup lattice point of view, is whether or not every autoprojectivity of
G is induced by an automorphism, that is, if * is surjective or not.

Studying this problem for a simple algebraic group G over the algebraic
closure l_?,, of a finite field, we showed in [5, Corollary 4.9] that * is
surjective if and only if the kernel I'(G) of the action of Aut L(G) on the
canonical building associated to G coincides with the identity subgroup of
Aut L(G) (following Volklein [16] we call the elements of I'(G) excep-
tional autoprojectivities of G). Then we proved in [6, Theorems A, B, C]
that this is the case if p is odd and G is not of type A,. [n the present
paper we consider the case when G has type A,, ie, when G is
isomorphic either to SL3(F‘,,) or to PGL_;(F,,), with no restriction on p.
This kind of problem has been considered already for special linear groups
over finite fields F. Metelli proved that = is surjective for all groups
PSL,(F) where F has at least 4 elements and for PSL.(3) [11, 12]. For
PSL,(F) it is known that * is not in general surjective [16, 2, 4, 3]. In [17],
Volklein considered more closely the structure of I'(G) for the groups
SL,(F)/D where D is any central subgroup of SL (F) and »n is greater
than 2, and in particular when » is 3.

We consider in detail the structure of I'(G) for G = SL,(K) with K
any subfield of I_?p. Here an important role is played by the relation
between I'(G) and the group of autoprojectivities of the subgroup H of
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diagonal matrices of . We first give some necessary conditions for an
autoprojectivity of H to be the restriction of an element of I'(G) (Theo-
rem 1.12), and subsequently we prove that these conditions are aiso
sufficient (Theorem 2.7). Thus we get a complete description of I'(G) as
an included subgroup of Aut L(H) (Theorem 2.13). We also prove that
every autoprojectivity of PSLy(K) is induced by an autoprojectivity of
SL,(K), and that this correspondence is injective if and only if the
3-component of K™ is infinite or is the identity or has order 3 (Proposition
2.14, Theorem 2.15).

In the third section we consider more closely the behaviour of certain
r-subgroups of H under the action of an exceptional autoprojectivity ¢ of
G, and give arithmetic conditions between the primes p and r able to
ensure that each such ¢ is the identity on the r-component H, of H
(Corollaries 3.4, 3.13). Moreover we prove that the presence of “free”
subgroups (Definition 3.14) of H guarantees that I'(G) is not the identity
subgroup (Theorem 3.18). This enables us to show that I'(G) is not trivial
for a large family of subficlds K of F,, (Proposition 3.19). Finally, using
exponential congruences, we prove that for every prime p the groups
SL3(I_4‘I,) and PGL3(I_7,,) have autoprojectivities which are not induced by
any automorphism (Theorem 3.20, Corollary 3.21). More precisely we
prove that the groups I'(SL4(F,)) and I'(PGL(F,)) are always non-soluble
and non-periodic groups. In the last section we give necessary and suffi-
cient conditions on the primes p and r, such that the group of autoprojec-
tivities of £2(H,) induced by I'(G) is trivial, using a result from the theory
of elliptic equations (Proposition 4.2, Theorem 4.4). We conclude by giving
some examples.

Notation. N = set of natural numbers = {1,2,...}. For every prime r
and every natural n, ¢, (n) is the maximal power of r dividing n. We also
put © = ¢ (o).

Let X be a group. L(X) is the set of all subgroups of X partially
ordered by inclusion. L(X) is a complete algebraic lattice.

If X is a group, and x is an element of X, |x| is the order of x. x is an
r-element means that the order of x is a power of the prime r.

If (X)), for « is an index set A, is a family of groups, we denote by
Cr X, the cartesian product over A4 of the groups X,,.

If x, y are elements of a group X, x” =y~ 'xy. If A, B are subgroups of
X, weput A? = {ala € A, b € B). If X actson a sct S, for every s in S,
s is the orbit of s under X and X, is the stabilizer of s.

For every prime r, C,. is the cyclic group of order r* if « lies in N, and
the hypercyclic group relative to r if o = «, If X is an abelian torsion
group and r is a prime, X, is the r-component of X. If X is an abelian
r-group, for every n in N, 2,(X) = {x € X|x"" = 1} and 2(X) = Q(X).
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If R is a ring, R* denotes the group of units of R.

Let p be a fixed prime. We shall always denote by K a fixed subfield of
I_FP (for a complete description of subfields ogl_?p see for instance Exercise 6
on page 147 in [9]). Z is the centre of SL,(F,), T is the group of diagonal
matrices, and U the group of upper unitriangular matrices in SL_;(F,,).

Throughout the paper, by G we shall always denote the group SL,(K),
which is the main concern of our investigation. H is the group of diagonal
matrices in G, N = N {H), and W = N/H. N is therefore the group of
monomial matrices in G, W is isomorphic to S; and acts on H by
permuting the diagonal entries. We shall make W act on L(H) in the
obvious way. For every subfield F of K, H(F) is the group of diagonal
matrices with entries in F. We denote by diag(A, A,, A;) the diagonal
3 X 3 matrix having A; in the (i, i) position.

We consider the vector space K*® with canonical basis (e,, e, e;). For
every non-zero ¢ in K?, (') denotes the corresponding point of PXK). G
acts naturally on P3(K). The canonical building of G is (isomorphic to)
the flag complex of P?(K). I'(G) denotes the group of exceptional
autoprojectivities of G, ie., the group of autoprojectivities fixing every
parabolic subgroup of G. :

We choose the algebraic homomorphisms x;: F, — U for i = 1,2,3,

1 k& 0 1 0 0
x(ky=1{0o 1 0 x(ky=1{0 1 &
0 0 1 0 0 1

10 —k
x(ky=1o 1 o0
0 0 1

so that we have the commutator formula x,(b)x(a) = x (a)x,(b)x;(ab)
for every a, b in F,.

1. Some ProrerTies oF I'(SL,(K))

We begin recalling some results which were proved for finite fields in
[17, 3], and for I_“,, in [5, 6], and which can be easily extended to our case
using local arguments. Every autoprojectivity of G is index-preserving,
since (G is a perfect locally finite group. Using the fundamental theorem of
projective geometry, as noticed in [17], one gets the decomposition
Aut L(G) = I'(G) X Aut G. Hence every autoprojectivity of G is induced
by an automorphism if and only if I'(G) = {1}. In the next statement we
collect some basic results concerning exceptional autoprojectivities of G.
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TueoreM 1.1. Let G be the group SL(K). Then every exceptional
autoprojectivity ¢ of G satisfies the following conditions.

(a) ¢ fixes H.

(b) For every prime r, ¢ fixes the groups H, and (2, (H) for each n in
N, and H(F), for every subfield F of K.

(c) ¢ fixes every subgroup of order 2 and every unipotent subgroup
of G.
(d) ¢ commutes with the inner automorphisms of G.

(e} For every a in K*, ¢ fixes the subgroups {diag(a,a”', 1)) and
(diagla, a,a ?)).

(f) ¢ fixes every subgroup of order 3 of G.

Moreover, the restriction homomorphism o from I'(G) to Aut L(H) is
injective.

Proof. (a) We have H = G, , A G, A G, , so that H* = H.
(b) This follows from the fact that ¢ is index-preserving.

(¢) and (d) ¢ is injective. If K is finite, see the theorem and the
corollary in [17]. So assume K is infinite.

Let F be a finite subfield of K of order at least 3. We show that ¢ fixes
the subgroup SL.(F) of G. Let r be a prime divisor of [F*|. By (b), ¢
fixes the group H(F),, and similarly one can show that it fixes the groups
H(F)? for every g in SLy(F). Hence SL(F)® = SL,(F), since SL;(F) =
(H(F)¥|g € SLy(F)). For each n in N, let F, be the unique subfield of
order p™ of F,, and let K, = F, A K. We put G, = SL(K,). G is the sct
theoretic union of the G,’s. By the previous discussion, there exists an M
such that for each n > M, ¢ fixes G,. We denote by ¢, the autoprojectiv-
ity of G, induced by ¢. Let o, u, x, g be clements of G, with o of order 2
and u unipotent. Let n > M be such that o, u, g, x, h are in G,. Then, by
the theorem and the corollary in [17], we get {o )" = (o), {u)*" = {u),
{xy*¥ = {x)¥* and we are done. Moreover, if the restriction of ¢ to
L(H) is the identity, it follows that the restriction of ¢, to LIH(K,)) is
the identity for every n > M. Hence each ¢, is the identity and ¢ = 1.

(e) The group B = {diag(h, b, b~?)|b € K™} coincides with the inter-
section of G, , with the intersection of the family of all G, for all points
P in the line e, ¢,). Hence B¥ = B, and X¥ = X for every X < B, since
K is a torsion locally cyclic group and ¢ is index-preserving. Let a be in
K*, and let s = diag{a, a ', 1). If s is an involution we are done, by (¢). So
assume the order of s at least 3. There exists an involution o in G such
that s = s~ '. Then (s)* = {s) since {s) is the unique cyclic maximal
subgroup of the group {s, o), which is generated by involutions.
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(f) Let x be an element of order 3 of G. If it is unipotent, or
semisimple and diagonalizable in G, then we are done by (e), (¢c), and (d).
So assume x semisimple but not diagonalizable in G, and let n > M be
such that x lies in G,. Then the result follows from Lemma 8 in [17].

We shall now point out other properties of ¢.

Lemma 1.2, Let E,F be cyclic subgroups of order r® of the group
C,» X Cpx. Then we have EF = {RIEAF <R < C,- X C,-, R cyclic of
order r®),

Proof. We can get the result by induction on the order of E A F. |

ProrositTion 1.3. Let X be a subgroup of H which is fixed by a
non-trivial element of W. Then X is fixed by ¢.

Proof.  Suppose first that X is cyclic of order a power of a prime r. If
the order of w is 2, there exists o of order 2 in N such that w = Ho . If r
is odd, then either o centralizes X or it acts on it as inversion. In both
cases we get X¥ = X by Theorem 1.1(e). Assume now r = 2, and consider
the group { X, o). If (X, o) is abelian or dihedral, then we conclude in
the same way as for r odd. If { X ¢} is the modular group, then { X%, o) is
abelian, so that (X 2)¢ = X 2. Let ¥ be the unique cyclic subgroup of order
IX| of H containing X ? and commuting with ¢. Then we have Y¥ = Y, so
that X¢ = X as the unique cyclic subgroups of order |X| of H containing
X2 are X and Y. Similarly one proves that X¥ = X if (X, o) is semidihe-
dral (in this case there exists a unique cyclic subgroup Y of order | X| of H
containing X ? on which ¢ acts as inversion). Suppose now that w has
order 3. Then there exists an clement p of order 3 in N such that
w = Hp. Suppose r is not 3. Then X is the unique r-Sylow subgroup of
(X, py, which is generated by elements of order 3 (p and px for instance).
Hence X¥ = X by Theorem 1.I(f). If r = 3, then we must have X = Z,
and we are done.

Now assume X is any subgroup of H. Without loss of generality we may
assume X to be a finite r-group, for a certain prime r. We shall have
X = C,« X C,s, for some a > B. If « = B, then we are done by Theorem
1.1(b). So assume a > B, and let C be a cyclic subgroup of X of order r¢,
and M be the subgroup of X isomorphic to C,s X C,s. From X = (C, M),
it follows that X¢ = X if and only if C¥ < X. Let L = C A C". We have
1*¥ = L, as C is cyclic. By Lemma 1.2, C - C* = (DI|L < D < H, D cyclic
of order r*), so that (C-C"*)¢ =C-C" as L¢ =L by the previous
discussion. Hence C? < C - C* < X, and we are done. |

DeriniTioN 1.4, Let s = diag(a, b, ¢) be an element of H. We put

a,(s) =ab ', ay(s) =bc !, as(s) = ac™! (= a,(s)a,(s)).
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Also, for i = 1,2,3, we denote by u,(s) the minimum polynomial of afs)
over F . and by F(s) the field F,(a,(s)). We put F(s) = F (a(s), a,(s)
and H(s) = H(F(a, b)).

DeriniTion 1.5, We say that a diagonal element s satisfies (') if
pAs) = p (s) for every i # j. We say that s satisfies (= =) if 5™ satisfies
(=) for every w in W (cf. the definition given in [4]).

From basic facts in field theory, elements u, ¢ in I_?,, have the same
minimum polynomial over F, if and only if there exists a non-negative

integer m such that ™" = .

Dermation 1.6, Suppose s is an r-clement of H not satisfying (). If
r is not 3, we say that s is determined. Suppose r = 3. We put

#(5) = {mlm > 0, ay(5)"" = ax(s). p" = 1 mod3}.

2(s) = {mlm >0, afs)” = ay(s), p” = 1 mod 3}.

y(s) = {mlm >0, a,(s)” = ay(s), p" = 2 mod 3}.

We say that s is almost determined if each 2°(s) is cmpty. Otherwise we
say that s is determined.

We shall soon prove that if ¢ is in I'(G), then ¢ fixes {s) if s Is
determined and it fixes {s*) if s is almost determined.

Provrosimion 1.7. Let s = diag(a, b, c) be a 3-element of H. If s is
almost determined, then a(s), a(s), and ay(s) have the same order as s. If
s is determined, there exists i such that a(s) has order less than the order of
5.

Proof. Let s be almost determined, and let a,(s)"" = a(s) for some
i <j and some nonnegative integer m. In all cases, a,(s), a,(s), and a4(s)
have the same order. Let 3” be the order of s and 3* be the order of the
a(s)s. Note that for a 3-element ¢ of H we have |a(¢)| = |t for every
i=1,273 ifandonlyif {¢) 2 Z. If A < v, it follows that (s} = Z, so that
2 (s) is not empty, a contradiction. Hence A = ».

If s is determined, there exists ¢ such that #27(s) is not empty. It then
follows that the order of «,(s) is less than the order of 5. |}
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From the previous proposition we get a criterion to see if a 3-element of
H not satisfying (') is determined or almost determined.

CoroLLARY 1.8, Suppose s is a 3-element of H not satisfying ('). Then
s is almost determined if and only if {s) # Z.

Proof. Suppose s is almost determined. Then, by Proposition 1.7 we
have |a(s)| = [s| for every i = 1,2, 3, so that {(s) 2 Z. If s is determined,
by Proposition 1.7 there exists ¢ such that la(s)] < {s|. Hence {5) > Z.

We shall now study the behaviour of subgroups gcnerated by deter-
mined or almost determined elements of H, under the action of excep-
tional autoprojectivities.

Lemma 1.9, Let s be an r-element of H not satisfying (+'), and let
a = o, (|(K"),|). Then there exists a subgroup P of U normalized by s and
such that H_ A N(P) is isomorphic to C,.. if s is determined, and to
Cy. X C4 if 5 is almost determined.

Proof. H, is isomorphic to C,. X C,.. Let a,(s)"" = a,(s) for some
i <j and some nonnegative integer m. For each case we define a certain
subgroup P of U. Suppose first that s is almost determined.

w

If (i, j) = (1,2), we put P = {x (O)x,(&"x(ME, n e K). I G, j) =
(1,3), we put P = {x(&)x,(¢”")|¢€ € K). Finally, if (i, j) = (2,3), we put
P = {x,(E)x(£7)€ € K}. In all cases, s lies in N (P) and N,(P) A H,
is isomorphic to C;. X C;.

Suppose now that s is determined. Suppose first r # 3. If we define P
as in the previous cases then N, (P) A H, is isomorphic to C . and we are
done. Finally, if r = 3, then at least one of the #7,(s)’s is non-empty. If we
define P as in the previous case for the corresponding (i, j). it then follows

that N,(P) A H(s); is isomorphic to Cs., and it contains (s). ||

Lemma 1.10. Let s be an almost determined element of H, with
als)"" = a/s) for some i <j and some non-negative integer m. M =
(s, SNHLY, " an element of H of the same order of s. Then the following
are equiralent

(i) als)" = als’).
(ii) s liesin M.
Proof. We observe that from Corollary 1.8 we have (s, {2(H,)) =
(sy X Z. It is then clear that (it) = (i). The reverse implication comes

from Lemma 1.9: M must be the unique subgroup of N (P} A H(s),
isomorphic to Cys X Cy, where 3# is the order of 5. |}
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ProposiTioN 1.11.  Let s be an r-element of H. Let ¢ lie in I'(G). If s is
determined , then {s)® = {s). If s is almost determined, then {s*)* = {s*).
Moreover, if (s)¥ = {s"), then s' is almost determined.

Proof. In both cascs we consider the p-group P of Lemma 1.9. Let
L =H AN, P) We have L =L as P is the unique maximal p-
subgroup of LP, P¥ =P, (H,)¥ = H,, and ¢ is index-preserving (we
argue locally). If s is determined we have (5% = (s), as L is locally
cyclic. So assume s is almost determined, and let 3" be the order of s. Let
M be the unigue subgroup of L isomorphic to Cy. X C;. Then (s*)* =
(s*y as {(s*) = FrattM). Since {s') # Z, s' is almost determined by
Lemma 1.10. |

It is clear that we still have (s)¢ = (s if there is a cyclic subgroup of
H, A N,(P) of order 3"" ' containing s.

We summarize the properties satisfied by the clements of the subgroup
(I'(G)) of Aut L(H ) so far obtained.

Tueorem 1,12, Let G be the group SL(K), and let ¢ be an exceptional
autoprojectivity of G. If A is the autoprojectivity of H induced by ¢, then

(a) A commutes with the action of W;

(b) A fixes every subgroup of H which is fixed by a non-trivial element
of W;

(c) if s is an r-element of H, then A fixes (s) if s is determined, and it
fixes {s*) if s is almost determined.

We shall show in the next section that these conditions are also
sufficient. For completencss we prove

Corovrary 1.13.  Let s be an r-clement of H satisfying (+'). Let ¢ lie in
I'(G), and ()¢ = {s'). Then 5" satisfies (') and we have la(s)| = |la{s")]|
foreveryi =1,2,3.

Proof. Suppose that s" does not satisfy (). If s' is determined, then
we get {5) = (s')¥ = {s'), by Proposition 1.11 and this is a contradic-
tion. If 5" is almost dctermined, then s is almost determined by Proposi-
tion 1.11. Again we have a contradiction. Hence ' satisfies (*'). Let
la () =r™, Is| =r" Let t =s"". We have t = diag(u,u,u "), for a
certain u of order r” ", and s = diag(a, b, ¢) with a’" =b"" = u. Let
s' = diagla', b',¢'). We get @’ =" as ¢ fixes (¢+). Hence la(s)] <
Ja,(s)|. By symmetry we get la(s)] = |a(s)]|. Similarly for |a,(s')| and
la(sD]. 1
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2. THE STRUCTURE OF ['(SL4(K)) anp I'(PSL(K))

Our aim is to determine the image of the restriction monomorphism &:
I'(G) = Aut L(H), i.e., to determine which autoprojectivities A of H can
be extended to exceptional autoprojectivities of G.

Let s = diag(e, B, y) be an r-element of H and let u = x (a)x,(b)x,(c)
be an element of U. For convenience we shall write «; for a/(s), F; for
F(s), i =1,2,3, and F for F(s). We consider the case when s satisfies

(=").

LemMma 2.1, Suppose s satisfies (+'). For every A in F,, Bin F,, C in
Fy there exists k in (F|, F,) such that x (Aa)x,(Bb)x,(Cc + kab) is in
Y,

Proof. See Proposition 2.4 in [4] (note that the proof of Proposition 2.4
in [4] does not make use of the fact that F, = F for every / = 1,2,3). |

ProposITION 2.2, Suppose s satisfies (*'). Then, for every A in F,, B in
F,, Cin Fy and D in {F,, F,), x,(Aa)x,{ Bb)x(Cc + Dab) lies in {u)*’.

Proof. By Lemma 2.1 we are left to prove the following. For every D in
(F,, F,), x(Dab) lies in (u)**’. So let D be in (F,, F,). Following the
same procedure in the proof of Proposition 2.5 in [4}, and by Lemma 2.1, if
A, A" are elements of F, and B, B’ are elements of F,, one can prove that
x((A'B — AB")ab) lies in (u)**’. As at least one of F, and F, is equal to
(F,, Fy», we can always choose A4, A', B, B’ such that 4B — AB' = D,
and we are done. ||

We prove a fact relating elements of H with p-subgroups of G.

ProrosiTion 2.3, Let s, 5" be r-elements of H and let P be a subgroup of
U normalized by s. If one of the following condition holds

(a) s, s satisfy (') and F(s) > F(s") forevery i =1,2,3;

(b) s is almost determined, and s lies in {s, {}(H,)},
then P is also normalized by s’.

Proof.  Suppose (a) holds. If u = x,(a)x,b)x,(c) is in P, we have
s'us’™' = x (a(s)a)x,(ax(sID)x(as(s')c). Then s'us’™' is in u)” by
Proposition 2.2. Suppose now (b) holds. Then s'us’™ "' is in (u)*"’ since
(s, 02(H;)) = {s) X Z. In both cases it follows that 5" lies in N(P). |

We can now prove two extension criteria in connection with the one
proved in [16].
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ProrosiTioN 2.4, Let A be an autoprojectivity of H. Then A can be
extended to an exceptional autoprojectivity of G if the following holds:

(i) A commutes with the action of W,
(i) A fixes every subgroup of H which is fixed by a non-trivial element
of W;
(iii) A fixes every cyclic 3-subgroup C of H such that C* fixes pointwise
a line of P(F,);
(iv) if s is an r-element of H not satisfying (+'), then A fixes {s) if s is
determined. If s is almost determined then A fixes {s*).

Proof. 'We follow step by step the proof of Proposition 3 in [16] (taking
into account [4]). For brevity, in the following we shall just write [16] to
refer to that proof,

(1),(2) If X is a subgroup of H with X* # X, then C,(X) = H, as
in [16].

(3),(4) If P is a p-subgroup of G normalized by a subgroup X of H,
then P is also normalized by X*. We may assume X to be a cyclic
r-group. Let X = (s). If {s)" = {s) then we arc done. So suppose
(Y = (s’ # {s). As in [16] there exists # in N such that P" < U. Let
w=Tn, and ¢ =s" ' =s" Then ()" = (s = (O = ("), and
(t) < N, (P"). We prove that (') < N, (P"), so that {s') < N,(P).

Suppose ¢ satisfies (). We prove that ¢ satisfies (=) and F(¢') = F{1)
for every i = 1,2,3. Suppose ' does not satisfy ('), If t' is determined,
we have (+')* = ('), so that (> = (¢’ and ¢ does not satisfy (*'), which
is a contradiction. Hence ¢’ is almost determined, so that (¢'*Y = (¢+'*).
But then ¢ lies in {¢') X Z, so that t is almost determined by Lemma 1.10.
Again we have a contradiction. Therefore ¢’ satisfies (+'). Using the same
argument as in the proof of Corollary 1.13, one can show that [ (¢')] =
la, (1) for every i =1,2,3, so that FAt') = F,(t) for every i=1,2,3.
Therefore, by Proposition 2.3 we get {t') < N, (P"). If ¢ does not satisfy
('), by (iv), + must be almost determined, and ¢’ lies in {r, 2(H,)). Again
by Proposition 2.3 we get {t') < N,,(P") and we are done.

As G is locally finite, we first define the map ¢ on the set L (G) of all
finite subgroups of G. Later we shall show that ¢ is inclusion preserving.
Similarly one can define  starting from A~!. Then ¢ and ¢ are one the
inverse of the other, and they are both inclusion preserving. It is straight-
forward to prove that ¢ can then be extended (uniquely) to the required
autoprojectivity of G.

(5) We extend the definition of A to a bijection ¢ of LAG). The
extension is defined as in [16]. For the convenience of the reader we recall
the procedure. ¢ is first defined on the set 2 of all {finite) subgroups of G
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with X* < H for some g in G by X® = X** ', We have a good definition
as A fixes every subgroup of H which is fixed by a non-trivial element of
W. Then ¢ is defined on the set % of all (finite) subgroups Y of G which
are the semi-direct product of a normal p-subgroup P and some X in %7,
by Y¥ = P - X¥, Finally X¥ = X for all (finite) subgroups X not in %.

(6),(7) As in [16], we fix (finite) subgroups E, F of G with E < F,
and we prove that E¥ < F¢. This holds if F belongs to %.

(8) We assume that E is a cyclic s-subgroup of H for some prime s,
with E¢ # E, F is minimal among the subgroups of G containing E and
not lying in %/, and suppose for a contradiction that E¥ &£ F.

(9-(11) CAE)=H, FANi(E)<H and if § is an s-Sylow sub-
group of F containing F, then § is contained in H and it has a normal
complement R in F, as in [16].

(12) R is an r-group for some prime r different from p. As in [16], R
cannot be a p-group, and we can choose an r-Sylow subgroup R, of R
normalized by S, and assume for a contradiction that R, # R. Then RS
lies in H and Ni(R,) # C4x(R,). Let K, be a complement of R, in
Nx(R)) normalized by S, so that K,§ = (K,§ A H)P, where P is the
unique p-Sylow subgroup of K,S. Here we modify the proof given in [16].
We prove that [P, R,] = 1. As in the proof of (4) (since P is normalized
by E), there exists n in N such that P” < U. Hence {P, R,]" = [P", R{]
< [U, H] = U. Moreover we observe that P must lie in K, so that
P < Ni(R)), which implies that [P, R|] < R, < H. It follows that [P, R,]
<HAU"'=1. We finally prove that Ng(R,) = Cx(R,) to reach a
contradiction. From Nig(R,) = R K, < R(K,S)=R(K S A H)P, it fol-
lows that N(R|) € HP. Then [N(R)), R|]] <[HP,R|] =1, and we arc
done.

(13) R is not abelian. Otherwise R would be diagonalizable over E,.
We have 2 possibilities. Either R fixes only 3 points of PZ(FP), or it fixes a
line y pointwise and point A4 not on it. Suppose we are in the second case.
Then S must fix both y and A, so that we get [R, S] = 1 as § fixes only 3
points, and this is a contradiction. Hence R fixes only 3 points, 4,, A,, A5,
say. Then S permutes A, 4,, A, and we conclude that [R, S] =1 as in
[16] if 5 > 5. Therefore we have s = 2 or 3. Let £ = (x). Assume s = 2.
As [R,S] # 1, without loss of generality we may suppose § = (7)5,,
where S, is a subgroup of index 2 in § fixing A,, A,, A; and 7 fixes A,
and interchanges A4,, A,, x does not lie in §,, so that it fixes 4, and
interchanges A,, A;. Therefore x? fixes pointwise the line 4, + A,. But
then {(x2)? = (x?) by (ii). In H, besides E, there is only one cyclic
subgroup E, of order |E| containing {x?). E, fixes pointwise the line
A, + A, so that it is fixed by ¢, forcing also E to be fixed by ¢. This is
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again a contradiction. We are therefore left with the case s = 3. In this
case x will induce a permutation of order 3 on the points A4,, A,, A3,
forcing x to have order 3 (as det x = 1). Again by (ii) we get E£Y = E,
which is the final contradiction. ’

(14) As in [16], we have Frat(R) =R = Z(R) (R’ = derived sub-
group of R), and this group is elementary abelian, [Z(R),S] =1 and §
acts irreducibly on R/Z(R), so that R A H = Z(R).

(15) Let us assume that R’ lies in Z, so that R" =Z, and r = 3.
R/Z(R) is a vector space of dimension 2 over F;, and we are done if
s =5, as in [16]. So now suppose s = 2. We have |R| = 27. R has 4
maximal subgroups, R, R,, R;, R,, say. We then get a homomorphism &:
§ — S, Also R must be of exponent 3, as in SLF,) there is no
non-abelian subgroup of order 27 and exponent 9. Therefore each R, lies
in a unique maximal torus 7; of SL_,,(F‘,, ). We need a description of the 7;’s.

Just for this purpose we assume R = X X (p), where X is the subgroup
of the group of diagonal matrices 7 of SL4(F,) isomorphic to C; X Cj,

and
0 0 1
p=11 0 0

0 1 0

To each torus 7, we associate the triangle whose vertices are the fixed

!

points of 7,. Let 8 be a fixed element of K™ of order 3. We get

Tl =Teo <el>,<€2>*<e3>;
T, o <€| +e, + e3>,<el + fe, + 0263>* ey + 0262 +8ey),
Ty o (B¢, + e, + €3),{0¢, + ¢, + Bey), e, + e, + Oey);

T, & (8%, + 8%, + e;), (0%, + e, + 8%¢;), (e, + 0%, + 6%;).

One can show that if A4 is a vertex of one of the triangles, and B is a
vertex of another triangle, then the line through A4 and B contains a
vertex of the third and a vertex of the fourth triangle. It then follows that
N (T A NATy) A NAT3) A N(T,) has order 54. Going back to our
case, we put L = N (T,) A Ne(T,) A NAT3) A N(T,). Then kere < L,
as C,(R;) = T, for every i. In particular E A ker e has order at most 2,
from which it follows that E has order at most 8. But the hypotheses on A
then implies that E¥ = E (since there exists an involution w in W such
that E" = F), which is a contradiction.

(16) As in [16], we are left with the case when H ¢ C (R') ¢ G.
Hence R’ fixes pointwise a line of P*(K) so that C (R) = GL,(K),
r =2, R has order 2, and R/R’ is the Klein group. If s > 5 we are done.
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So now suppose s = 3. We have |R| = 8. If R is the dihedral group, then
it has a characteristic cyclic subgroup C of order 4, which is therefore
normalized by S. By minimality of F, C is centralized by FE, so that
C < H, which is a contradiction. Hence R is isomorphic to the group of
quaternions Q,. Since Aut(Q,) = S,, we have [E: E A C,(R)l =1 or 3
(in fact it must be 3), so that E? lies in C,(R). In general, if Q is a
subgroup of SL3(I_<‘[,) isomorphic to O, with maximal subgroups @, @,, Q5,
then C,(Q) =T, A T, A T,, where T, = C,;(Q,) is a maximal torus for
every i. It turns out that 7, A T, A T; is a l-dimensional torus fixing
pointwise a line of P*(F,). Hence E* fixes pointwise a line of PX(F,), so
that E¥ = E by (iii). This is the final contradiction for the proof of
Proposition 2.4. |

We shall now give another criterion of extension, focusing only on the
3-subgroups of H.

ProrosiTioN 2.5. Let A be an autoprojectivity of H. Then A can be
extended to an exceptional autoprojectivity of G if the following holds:

(i) A commutes with the action of W,
(ii) A fixes every subgroup of H which is fixed by a non-trivial element
of W;
(ifi) A fixes every r-subgroup of H for every prime r different from 3;

(iv) if s is a 3-element of H not satisfying ('), then A fixes {s) if s is
determined. If s is almost determined then A fixes {s*).

Proof. If K™ does not contain elements of order 3, then we have
A = 1 and we are done (with ¢ = 1 of course). So assume K* contains
elements of order 3.

To define ¢ to the whole of L{G), we first prove the following

Lemma 2.6, If C is a finite subgroup of G whose order is not divisible by
3 and N C) contains a finite 3-subgroup X of H, then N (C) contains
also X*.

Proof. Suppose this is false, and consider the set & of all the pairs
(S, C) with S a finite 3-subgroup of H,3 t |Cl, § < N;(C), $* & N;(C),
In & we choose a pair (§, C) with minimum |S| and, with this choice of §,
with minimum |C]|. We shall reach a contradiction in several steps.

(a) S is cyclic and C,(§)=H. § is cyclic by minimality of |S}.
C.(S) = H as in steps (1),(2) above.

(b) § £ C,(C). Otherwise C < H, so that $* < N, (C).
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(c) If P is a p-subgroup of G normalized by S, then P is also
normalized by $*. The proof is the same as in steps (3), (4) above.

(d) C is an r-group for some prime r different from p. Let r,,....r,
be the prime divisors of |C|. As in step (12) in [16] for cach i we can
choose an r-Sylow subgroup R, of C normalized by S. If $* < N (R,) for
each i, then we have §* < N(C), which is a contradiction. Hence there
exists j such that S* ¢ Ni(R;). By minimality of [C|, we must have

C = R;. We shall just write r for r;. r is different from p by (c).
(e) C is not abelian. This is as in step (13) above.

(f) r = 2 and Z(C) fixes pointwise a linc w of PZ(I—TI,). By (d) and (e)
we get r = 2. Hence C(Z(C)) # G and Z(C) fixes pointwise a line o of
P*(E,) as C,(Z(C)) is non-abelian (as in step (16) above).

(g) Let A be the unique point of Pz(ﬁ,) not in w fixed by Z(C). As S
normalizes Z(C), it must fix both 4 and w. But S fixes only three points
and three lines of PZ(I_T,,), so that without loss of generality we may
suppose A = (e, and w = {e,, e,), so that C < CAZ(C)) = G, A G,,.
The group B = {diag(d 7, 8, 8)) with & of the same order of S, then even
centralizes C, so that {B, §) < N, (C). By Lemma 1.2, {B, §) is generated
by all the cyclic subgroups of H of order (S| containing B A S, which is
fixed by A by (ii). Hence S* < (B,S)" = (B,S), which is the final
contradiction. ||

Remark. In fact, as it will be clear later, there are examples of this
situation with X* # X. For instance with G = SL;(109), C isomorphic to
the group of quaternions Qy, and H; A N,(C) = C,; X C,. In this case
one can take X = {(diag(e, ¢'", ¢'®)) and X* = {diag(c, ', ¢”)), where ¢
is an element of order 27 in K™.

We can now complete the proof of Proposition 2.5. We extend the
definition of A to LAG). Let 2 be the set of all (finitc) abelian
3-subgroups of G. If X lies in 27, then it is diagonalizable, and there
exists g in G such that X* < H. Then we put X* = X¢** ' Let % be the
set of all (finite) subgroups Y of G which are the semi-direct product of a
Hall normal subgroup C and some X in . Let g be an element of G
such that X* < H. From X* < N (C*), it follows that X** < N_(C*) by
Lemma 2.6. Hence X¥ = X**¢"' < N,(C). We put Y¥ = C - X*. This is a
good definition as in step (5) above. Finally we put X¥ =X for all
subgroups X not in %. To prove that ¢ can be extended to an autoprojec-
tivity of GG, we only have to prove that it is inclusion preserving (as in step
(6) above). We first prove the following fact.

Let E, F be 3-subgroups of G such that E < F. Then we have E¥ < F¥.
If E is non-abelian, then we have E¥ = E, F¥ = F, and we are done. If F
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is abelian, without loss of generality we may suppose F < H, and we are
done. So now suppose FE abelian and F non-abelian. Then F¥ = F and
without loss of generality £ < H. We have to show that E* < F. We may
assume that is FE cyclic and F is minimal among the non-abelian 3-
subgroups of G containing E£. If E* = E, then we are done. So assume
E* # E. Then we have C(E) = H, by (ii). Let M be a maximal subgroup
of F containing E. M must be abelian, by minimality of F. Therefore
M<C/E)=H, and C;(M)=H. Let p be an element of F not
centralizing M. Then p € NACAMN\C{M)=N\H. Let L=EA
E?. We have L” = L, as E is cyclic. By Lemma 1.2, £-E* = (D|L <D
< H, D cyclic of order|E|), so that (£ - EP)* = E - E?, as L* = L by (ii).
Hence E* < E - E* < F, and we are done.

We now prove that ¢ is inclusion preserving. Let E,, E, be subgroups
of G such that £, < E,, and let §, be a 3-Sylow subgroup of £, and §, a
3-Sylow subgroup of E, containing S,. By the previous observation we
have S7 < §%.

If £, belongs to %, then E, = §,C,, where C, is the unique normal
complement of §5,. Hence C, = E| A C, is a normal Hall subgroup of £,
with £, = §,C,, so that Ef = §fC, < $¥C, = £, and we are done.

Now assume £, does not belong to . Hence E§ = E, and $§ = §,. If
Ef = E,, we are done. So assume EY¥ # E|, so that E, belongs to %,
E, = §,C,, say. Then Ef = §7C, <(S,,E,) = E, and we are done. ||

We are now in the position to prove that the conditions given in
Theorem 1.12 are also sufficient.

THeoREM 2.7, Let G be the group SL(K). Let A be an autoprojectivity
of the group H of diagonal matrices of G such that

(a) A commutes with the action of W

(b) A fixes every subgroup of H which is fixed by a non-trivial element
of W;

(c) let s be an r-element of H not satisfying (='). Then X fixes (s) if s is
determined, and it fixes {s*) otherwise.

Then there exists a (unique) exceptional autoprojectivity of G inducing A
on H.

Proof. We define the following autoprojectivities of H. We let 7 be
the autoprojectivity inducing A on H, for every r different from 3, and
inducing the identity on H,, and we let p be the autoprojectivity inducing
A on H, and the identity on H, for every r different from 3.

It follows that n satisfies the hypothesis of Proposition 2.4 and p
satisfies the hypothesis of Proposition 2.5. We can thercfore extend 7, p
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respectively to exceptional autoprojectivities ¢, w of G. We finally put
¢ = Yw to get the required result. |

We can use Theorems 1.12 and 2.7 to give a description of the group
I'(G). For this purpose, we first describe the structure of Aut L{(H ).

For every prime g different from p, let v(q) = uq(I(KX)qI). We have
H=eoH, with H, =C_.uXCw. The determination of the group
Aut L(H) is then reduced to the study of the group of autoprojectivities of
Cllt’lxl) X C(Il'(ll'-

So let r be a prime, and let R =C,. X C,., where | < v < =, We
introduce the mect-semilattice of a group. For every group X, we define
M(X) to be the set of all cyclic subgroups of X. Therefore M(X) is a
subset of the lattice L{X) with the property that for every 4, B in M(X),
A A B lies in M(X) (for a more gencral definition see [1, p. 22]). A
bijection ¢ of M(X) onto itsclf will be called an automorphism of M(X)
if we have 4 < B if and only if 4% < B?. If ¢ is an autoprojectivity of X,
then clearly the restriction of ¢ to M(X) is an automorphism of M(X).
We are interested in the converse, i.e., whether an automorphism of
M(X) can be extended (uniquely ) to an autoprojectivity of X. This is not
in general true, as one can sce from the following example. Let X be the
group C, X C, X C,. Then every permutation of M(X) fixing the identity
subgroup is an automorphism of M(X), but the automorphism ¢ inter-
changing the cyclic subgroups C, X {1} x {1} and {1} x {1} x C,, and
fixing all the other elements of M(X) cannot be extended to an autopro-
jectivity of X. We show that for the group R every automorphism of M(R)
can be extended to an autoprojectivity of R. We state without proof an
easy lemma.

Lemma 2.8, Let X be a group. Suppose that for every n in N we hatve a
subgroup X, of X and an autoprojectivity ¢, of X, such that X,, < X,,, | for
every n in N, U, X, =X, Y¥ =Y for ecery n in N and every
subgroup Y of X ,,.

Then there exists a unique autoprojectivity ¢ of X such that Y¥ = Y¥ for
every n in N and every subgroup Y of X,,.

ProposITiON 2.9, If ¢ is an automorphism of M(R), then there exists a
unique autoprojectivity ¥ of R inducing ¢ on M(R).

Proof. For every n, let R, = ,(R) and let ¢, be the automorphism of
M(R,) induced by ¢. By Lemma 3 in [8], therc exists a unique autoprojec-
tivity ¢, of R, inducing ¢, on M(R,). By Lemma 2.8 there exists an
autoprojectivity ¢ of R such that Y¥ = Y" for every n in N and every
subgroup Y of R,. It is clear that ¢ induces ¢ on M(R). |
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We can therefore prove

Prorosition 2.10.  If for every prime q we have an automorphism ¢, of
M(H,), then there exists a (unique) autoprojectivity ¢ of H such that
X¥a = X¢ for every q and every cyclic subgroup X of H,,.

Proof. By Proposition 2.9, we can extend every ¢, to an autoprojectiv-
ity ¢, of H,. If X is any subgroup of H, we define X¥ = V X% Then ¢
is an autoprojectivity of H and it induces ¢, on M(H ). |

We actually have Aut L(H) = Cr Aut M(H,), since every auto-
projectivity of H is index-preserving. We shall identify Aut L{H) with
Cr Aut M(H,).

Lemma 2.11.  Let u be an autoprojectivity of H,, for a certain prime r.
If u fixes every cyclic subgroup of H, which is fixed by a non-trivial element
of W, then it also fixes every subgroup of H, which is fixed by a non-trivial
element of W. Moreover p commutes with the action of W if and only if we
have C** = CH*" for every cyclic subgroup C.

Proof. The second part is obvious. For the first, see the proof of
Proposition 1.3. |

We are now in the position to describe the group I'(G).

DEerFINITION 2,12, For every prime r different from p we denote by A, the
group of automorphisms p of H_, satisfying the following conditions.

(a) p commutes with the action of W
(b) u fixes every cyclic subgroup of H, which is fixed by a non-trivial
element of W;

(c) let s be an element of H, not satisfying (+'). Then w fixes {s) if ris
not 3. If ris 3, then p fixes {s) if {s) = Z, and it fixes {s*) otherwise.

THEOREM 2.13.  Let G be the group SL(K). For every element (u,), . ,
in Cr A, there exists a unique exceptional autoprojectivity ¢ of G inducing
r, on H, for each q. The map so obtained is an isomorphism of Cr A, onto
rG).

Proof. For each g, let 4, be the group of automorphisms of M(Hq)
induced by I'(G) on M(H,). By Theorem 1.12 and Corollary 1.8 we have
A,<A, Let(n,), ., be an element of Cr A, and let u be the unique
autoprojectivity of H inducing u, on H,. By Lemma 2.11 and Theorem
2.7, u lies in «(I'(G)). Hence, under the identification of Aut L(H) with
CrAut M(H,), we get (I'(G)) < Cr4, < CrA, < I'(G)), so that I'(G)
is isomorphic to CrA,. [
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Remark. 1t also follows that for each r, A, coincides with the group of
automorphisms of M(H,) induced by I'(G) on M(H,). We describe the
structure of A,. For this purpose, let us consider, for each k in N, the
restriction maps p,: A, = Aut M2, (H)). We put A, , = Im p,. Note
that if r is not 3, then A, ; coincides with the group of automorphisms of
M4, (H))) satistfying the conditions (a), (b),{c) of Definition 2.12. We
define the epimorphism 7, A, ., = A, by 7w (p,, (f) = p,(f) for
every f in A,. It is then clear that A, is (isomorphic to) the inverse limit
of the system (A, ,, 7, ) .. We show that for each k, A, , | contains a
copy of A, ,, and that A, ., , =1, ,, XA, ,, where I, ,, |, = kerm7,.
Let & be in N. We define a map j,: A, , > A, Let E,...,E be
representatives of W-orbits of length 6 of cyclic subgroups of order r* of
H (if there are no such subgroups, we have A, , = {1}). For each i =
I,...,s,weput & ={X|Xe M(H), X=E} Let i, be in {1,...,s}. We

denote by E; ..., E; , the r cyclic subgroups of order r**1 containing
E I X is an clement of &, of order r**", with n > 2, we write
X=E ., ., with z,,..., € {1,...,r} choosing the indices in order
to have 2,,., (X)=E, . 0 Let ¢ be in A, ,. We define the

bijection j,(¢) of M(H,) o)nto itself as follows. Let X € M(H,). If X lies
in 2,(H,), we put X% = X* Now assume X has order r"*” with # in
N, If £,(X) has W-orbit of length less than 6, we put X/«¥) =X,

Otherwmu there exists umquely i, in{l,..., shoiy... f, in{l,... r}, and
w in W such that X = E*, . Since ¢ liesin A, , the W—orblt of E¥
has length 6. Hence there cxms a unique (i) in {1,..., s} and a unique
w(iy) in W, such that Ef = E}{v). We put X4 = b,‘,‘(‘,""*,”:l '''' . 1t follows

that j,(¢) is an automorphlsm of M(H,) satisfying the condmons
(a), (b),{c) of Definition 2.12, so that it lies in A,. The map j, is a
monomorphism from A, , to A,, and we have p,(j,(¢)) = ¢. In particular
A, is isomorphic to ker p; X A_ .. Moreover we can get a similar decom-
position for all the finite groups A, .. For every k we define the
monomorphism 8,: A, , = A, as the composite of j, and p,,,. Then
we have A, ., =1, . XA, ), with §(A, ) isomorphic to A, ,,
and I, ,,, = ker 7. We have therefore a recursive way to get all the
groups A, , starting from A, .

So far we dealt with the group SL,(K). We now describe the relation
between the groups Aut L(SL,(K)) and Aut L{PSL,(K)). Every autopro-
jectivity ¢ of G fixes the centre Z(G) of G, so that it induces the
autoprojectivity ¢ of G/Z(G) = PSL,(K). Hence there is a natural
homomorphism 7: Aut L(G) — Aut L(G /Z(G)). We shall show that = is
always surjective, and that it is injective if and only if the 3-component of
K> is infinite or is the identity or has order 3. For this purpose we make
the following observation. The statements are trivial if the 3-component of
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K™ is the identity. So assume 1 < v < o, where v = o;(|[(K™);1), so that
Z(G) = Z. We observe that all the discussion we have done at the
beginning for G can be extended to G/Z, as already proved for finite
fields in [17]. In particular we have Aut L(G/Z) = I'(G/Z) X Au(G /Z),
and I'(G/Z) embeds into Aut L(H/Z). From the fact that every auto-
morphism of G/Z is induced by a unique automorphism of G (cf. [7,
Chap. TV, Sect. 6]), we are left to study the restriction of 7 (that we still
denote by ) from I'(G) to I'(G/Z). To describe ker = we introduce the
set .o of all the cyclic subgroups C of H of order 3%, with the W-orbit of
C of length6 and C 2 Z. & is non-empty if and only if 2 < v < oo, and in
this case it has 3 — 3 elements. Moreover .« is clearly invariant under the
action of I'(G).

Prorosimion 2.14. 7 is injective if and only if v = 0,1,. In the other
cases ker m is isomorphic to C, X (S,)", where m = (3"72 — 1) /2.

Proof. We prove that 7 is injective if (K*); is infinite or it has order 3.
Let ¢ be an (exceptional) autoprojectivity of G fixing every subgroup
containing Z. To prove that ¢ is the identity it is enough to show that it
fixes every cyclic r-subgroup {s) of H. If r is not 3, then (s) is the unique
r-Sylow subgroup of {s, Z) which is fixed by ¢, and we are done. Suppose
now r = 3. If v =1, then we have {s)?* = {(s) by Theorem 1.1(f). If
v = o, we consider two cases. If {s) = Z, then we are done. Otherwise let
y be an element of H such that y* =s. We have Frat({y, Z)) = (s).
Hence {s)¥ = (s, as the Frattini subgroup is clearly an invariant under
projectivities.

To complete the proof it is enough to show that if 2 < v < o, then
ker IT is isomorphic to C, X ($;)™, where m = (3"7? = 1)/2. So we
assume 2 < v < oo,

Let a be an element of order 3" in K*, and let 5 = diag(a, e, 1). Let
X,, X, be the cyclic subgroups of order 3* containing s’ and different
from {s). Then X,, X, lie in &. Note that if  is in I'(G), then X} = X,
or X, . If = Xlw (i.e., if v = 2), then we are done, since we can define
the autoprojectivity u of H, fixing every cyclic subgroup not in &/, and
such that X** = X3 for each w in W (note that there exists an involution
o in W such that X7 = X,). We then extend u to the autoprojectivity A of
H which is the identity on H, for every ¢ # 3. By Theorem 2.13, A can be
extended to an element of I'(G), which lies in ker .

Suppose now & # X*, and let ¥, be in & \ X}¥. Let W,, Z, be the
cyclic subgroups order 3* containing Y,* and different from Y. If 4 is in
ker m, then ¢ leaves the set {Y,, W,, Z|} invariant. Moreover Y, W/ zV
are pairwise distinct orbits of length 6, and for each permutation 7 of the
set {Y;, W,, Z,} we can define a (unique) element ¢_ of ker 7 fixing every
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cyclic r-subgroup not in Y* U W U Z}¥ and such that Yy~ = Y/, Wp- =
Whand Z¢=Z7. f w =X YV U WY U ZP e, if v =3, then we
are done with m = 1. Otherwise we keep on with this process till we
exhaust . |

Tueorem 2.15.  If v =0, 1,x, then I'(G /Z) and T'(G) are isomorphic.
If 2 <v <, then I'(G) is isomorphic to (C, X (8,)") X I'(G /Z), where
m = (372 = 1)/2. 7 is always surjective.

Proof. 'The statement is trivial if v = 0. So we assume 1 < v < . Let
f be in I'(G/Z), and let u be the autoprojectivity of H/Z induced by f.
Our aim is to define an autoprojectivity A of H fixing Z, inducing p on
H/Z, and satisfying the hypothesis of Theorem 2.7. By Theorem 2.13, it is
enough to define A on M(H,), and prove that this restriction lies in A,.

Let s be an r-element of H. If there exists a non-trivial element of W
fixing (s), we put {s)* = (s) (note that in this case p fixes (sZ)). So now
assume that {s) is not fixed by any non-trivial element of W.

Let X be the unique subgroup of H containing Z such that
({s,Z)/Z) = X/Z.If r is not 3 we define (s)" to be the unique r-Sylow
subgroup of X. If r = 3 and (s) > Z, we put {s)* = X. We are left with
the case r = 3 and (s) # Z. Here we consider two cases. If there exists y
in H such that y? =5 (and this is always the case if v = %), we put
(s = Frat Y, where Y is the unique subgroup of H containing Z such
that ({(y,Z»/Z) = Y/Z. Finally suppose there does not exist y in H
such that yv* = s. This means v < =, s has order 3", and v > 2, since the
W-orbit of {(s) has length 6. We are therefore left to define A on the set &
previously defined. We write . as the disjoint union of W-orbits in the
following way. & = XY U (X UXHL UX DU - U XY, VXY, U
X)), whereX, = (diagla,a ¥ a7 ), m =G~ 1)/2, and
X} =X, =X}, foreach i = 1,..., m. We denote this last subgroup by
Y,. We define A on X, and the X, /s, and extend the definition of A on &/,
requiring commutativity with the W-action. We put X} = X,. For each {
in {1,..., m}, we note that the W-orbit of Y; has length 6, and that we
have already defined Y*. Since u commutes with the W-action (cf. the
theorem in [17]), there exists a unique o(i) in {1,...,m}, and a unique
w(i) in W such that Y* = Y. We put X}, = X3 for each j = 1,2,3.
Hence we have defined the autoprojectivity A of H, inducing u on H/Z,
commuting with the W-action and fixing every subgroup of H fixed by a
non-trivial element of W, Suppose now that s does not satisfy (+'). With a
procedure similar to the one used in Lemma 1.10, one can show that
({s,2Y/Z) = {s,Z)/Z. Hence {s)' = (s) if s is determined, and
(s = (s?Y if s is almost determined.

By Theorem 2.7, there exists a unique element ¢ in I'(() inducing A on
H and therefore p on H/Z. Then the exceptional autoprojectivities ¢ and
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f of G/Z both induce u on H/Z, so that they must coincide. We have
therefore proved that 7 is always surjective. We now prove the rest of the
assertions. If » = 0, 1, e, then, by Proposition 2.14, 7 is an isomorphism,
and we are done. So suppose 2 < v < «. To underline the fact that ¢
depends on f, we write ®r instead of ¢, and we put M = {(pflf e I'G/Z)).
From a direct calculation it follows that the map f — ¢, is a homomor-
phism. Since m(¢,) = f, it follows that I'(G) is the semidirect product of
ker 7 and M, and that M is isomorphic to I'(G /Z). Then we are done by
Proposition 2.14. |}

As a corollary of the proof of Proposition 2.14 we get

CoROLLARY 2.16.  For every X in &/, there exists ¢ in I'(G) such that
X¢ # X,

3. THE MaIN RESULT

In this section we shall use Theorem 2.13 to construct exceptional
autoprojectivities of G for certain families of fields K. We first give some
arithmetic conditions between the primes p and r such that every ¢ in
I'(G) induces the identity on H,.

Let r be a prime different from p, and let # be in N. We dcnote by 8(n)
the order of p in (Z/r"7)* (hence F,s. is the smallest subfield of F,
containing elements of order r”). We shall write § instead of 8§(1).

Prorosition 3.1.  Let s be an element of order v of H not satisfying
(*"). Suppose ¢ (I(K>),|) >n+ 1 and we are in one of the following
situations:

(a) s is almost determined or s is determined but r # 3, and r"*' ¢
A(n) .
pr =1

(b) r =3, n> 2, s is determined and 3" < p®"~1 — 1.

1

Then every cyclic subgroup of H of order r"* ! containing {s) is generated

by an element not satisfving (+').

Proof. Let a(s)?" = a(s) with i <j. Let C be a cyclic subgroup of H
of order r"*! containing {s). Since «,(s) and a,(s) in this case have the
same order, this must be the maximal possible order r/ among the orders
of a(s), ay(s), ay(s). If r is not 3, then f =n. If r =3, then we have
f=nif{s># Zand f=n — 1if (s) > Z. Suppose we are in case (a), so
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that we have la(s)| = lads) =r". We put m =m, m,=m+
a(n), ..., m,=m + (r — 1)8(n). Suppose r is not 3. For each k=
1,...,r, there cxists an element 7, of order r"*! such that a,(1,)"" e
= a;(1;). Since r"*' f p®™ — 1, the groups {1,),...,{t,) are all distinct,
so that there exists k& such that C = (1, ) and we are done. If r is 3, for
each k there are 3 distinct subgroups {t, >, {t, »), and {t, ;7 such that
a,-(t,‘._,)””“(k = alt, ) for each / = 1,2,3. Then there exist a unique &
and a unique / such that C = {r, ,>, and we are done.

Supposc now we are in case (b). Here we have la(s)] = fa(s)] = 3’
We put my=m, my=m + 8(n — 1), my=m + 28(n — 1). For each
k = 1,2,3. let 1, be an clement of order 3" *' such that a,(z,)?" """
= a,(1,). Since 3" 4 p®"~" — 1, the groups {1,),...,{t;) arc all distinct,
so that there exists k such that C = {7, ) and we are done. ||

Lemma 32, Ifr>2,a=1modrorr=2a=1mod4 then we hare
sla? = ) =0v(B)+0ola—D.

Proof. See [13, p. 401, Formula (8)]. |1

ThHeorReM 3.3.  Let ¢ be in I'(G), and let s be an element of order r” of
H not satisfying (='). Let v = v (|(K™);1). Suppose one of the following
condition holds:

(1) if ris at least 5, n = u,(p‘s - 1)
(i) r =2, n=0,(p>® - 1.

(iit) r = 3, then n = 03([)‘s ~ D if{sy# Zandn -1 = 03(17’S - Dif
{(s)>Z.

Then ¢ fixes every cyclic r-subgroup of H containing s if s is determined. If
s is almost determined, then ¢ fixes erery cyclic subgroup containing s and
not containing Z of order less then 3" (all of them if v = ),

Proof. Suppose s is determined. If r is not 3, by Lemma 3.2 we have
8(n + j) = 8(n)r’, for every j in N. By Proposition 3.1 and induction on j,
every cyclic subgroup C of H containing {s) is generated by a determined
element. Hence ¢ fixes C by Proposition 1.11. If r is 3, by Lemma 3.2 we
get 8(n +j — 1) =8(n — 13/, for every j. Then we conclude as in the
previous case.

Suppose now that s is almost determined. If » = n, then we have
(s*¥ = (s*> by Proposition 1.11 and we are done. So assume » > n. We
prove that ¢ fixes every cyclic subgroup C of H of order 3" containing 5%
and not containing Z. Lemma 3.2 and induction will then give the result
for every C of order less then 3" and for all of them if » = =. Since
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C <{s)yxZ, C is generated by an almost determined element. By
Proposition 3.1, every cyclic subgroup of H of order 3"*! containing C is
generated by an almost determined ¢lement. Then by Proposition 1.11, ¢
fixes C. |

CoROLLARY 34. Let ¢ be in I'(G), and let v = o ,(|[(K™);]).

If ris at least 5, r* + p"~ ' — 1, and s is an element of order r of H not
satisfying (x "), then ¢ fixes every cyclic r-subgroup of H containing s.

If p =3 or 5mod8, then ¢ fixes every 2-subgroup of H.

Ifp=2,4,5 or 7mod9Y, then ¢ fixes every cyclic 3-subgroup of H not
containing Z of order less than 3" (all of them if v = x). The same holds if
p =8, 10,17, or 19 mod 27.

If p=2.4,5 or 7 mod9, then ¢ fixes every cyclic 3-subgroup of H
containing Z.

Proof. Suppose r > 5. Since ¢ commutes with the inner automor-
phisms, we may assume that s is determined. The condition r? + p"~' — 1
implies »,(p® — 1) = 1, so that we are done by Theorem 3.3. Suppose now
s is a 2-element of H. We already know that ¢ fixes every cyclic subgroup
of order 2, 4, and 8, since the W-orbits of such groups have length 3. So
assume s has order at least 16. Let ' be an element of order 4 in {s) if
p = 5 mod8, and of order 8 if p = 3 mod 8. Suppose p = 5 mod 8. Every
element of order 4 does not satisfy (* =), so we may suppose that s is
determined. We have 8(2) = 1, v,(p — 1) = 2, so that by Theorem 3.3, ¢
fixes every cyclic 2-subgroup containing s’. Hence ¢ fixes (s). If p=3
mod 8, from a direct calculation (see the next Section) it follows that every
element of order & does not satisfy (* ='). Then we conclude by Theorem
33,as 8(2) =2, v,(p? = 1)=3.

Suppose finally that s is a 3-element of H. We note that every element
of order 3 or of order 9 does not satisfy (* *'). We first consider the case
when {(s) 2 Z. If v = 1,2, there is nothing to prove, since by Theorem
1.1(f), ¢ fixes every subgroup of order 3. So we assume » > 3, and s of
order 3"7! if v # =, and s of order at least 9 if v = =. Let s, 5" be
clements of order respectively 3 and 9 in {s). We may suppose s and s”
are almost determined. If p = 4,7 mod9, we have § = 1, vo(p — 1) = L.
If p=235 mod9, we have § =2, ¢(p” — 1) = 1. Then we conclude
applying Theorem 3.3 to {s'). Suppose now that p= +1 mod9. If

= 10,19 mod 27, we get 6 = 1, vy(p — 1) = 2. If p =8,17 mod 27, we
get 8 = 2, o,(p? — 1) = 2. Again we conclude by Theorem 3.3 applied to
(s,

Suppose now (s) = Z. If s has order 3, then (s) = Z and we are done.
So suppose s has order at least 9, and p = 2,4,5,7 mod9. Let s’ be an
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element of order 9 in {(s). We may assume 5" is determined. Then ¢ fixes
(s by Theorem 3.3 applied to (s"). |

From the discussion so far developed, it is clear that to construct
autoprojectivities of H satisfying the conditions of Theorem 2.13, we need
a more explicit description of elements of H satisfying (* *’). We recall
that if r is a prime different from p, and »n is in N, we denoted by 8(n) the
order of p in(Z/r"7)™.

Dermnerion 3.5, Let x, y be integers. We say that x, y are equivalent
mod r”, and we write x ~ y(r") (or x ~ v if there is no ambiguity) if there
exists an integer y with 0 < y < 8(n) such that p”x =y mod r".

This is clearly an equivalence relation. Also, if x, y # 0 mod r, then
x ~y(r") = y/x lies in the subgroup of (Z/r"Z)* generated by p.

We fix an r-element s = diag(a, b, ¢) of H of order r". Since s satisfies
(+ ') if and only if wsw ™! satisfies (* =') for every w in W, we shall
assume that @ has order r". Then s = diaga, a”,a~ ') for a certain
integer h mod r”. We put x = h — 1.

PropOSITION 3.6. s does not satisfy (x ") if and only if at least one of
the following equivalences mod r" holds:

x ~e(x +3), x ~e(2x + 3), X+ 3~e(2x +3),withe = +1.

Proof. This follows from a direct calculation. |

If x is an integer with x # 0, —3, we put a(x) = (x + 3)/x, a,(x) =
Qx + 3)/x, ay{x)=Qx + 3)/(x + 3). Note that afx)ay(x)=ax).
Whenever x and x + 3 are invertible in Z/r"7, we shall consider the
elements a,(x) as elements of Z /r"Z.

By Proposition 3.6, s does not satisfy (* ") if and only if there exists an
integer y with 0 <y < 8(n) such that x is a solution of one of the
following linear equations mod r”:

) pPX =X+ 3, ie, (pY— HX =3,
2) pPX = —(X + 3), e, (p¥+ DX = =3,
3) pPX =2X + 3, e, (p? — )X =3,
@) pPX=-Q2X + 3), e, (p¥ + 2)X = -3,

) p( X +3)=2X+3, ie., (p¥ - 2)X = 3(1 - p”),
6) pP( X +3)= -QX +3), ie,(p"+2)X = =31 +p”).
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The problem is therefore reduced to studying the solutions of the above
family &%, of 68(n) equations (if 8(n) is even and r is odd, then it is
enough to study only 38(n) equations). It is clear that if r is not 3, each
equation has at most one solution.

DeriNiTION 3.7, Let y be an integer mod r”. We denote by N,(y) the
number of equations in .%, of which y is a solution.

"

CoroLLAaRY 3.8, s satisfies (* +") if and only if N,(x) = 0.
We shall make use of the following

Lemma 3.9.  Let vy be an integer mod r", and let A be a natural number.
If for 8(n) = A we have N(y) = 0, then whenever 8(n) divides A, we have
N(y)=0.

Proof. This is obvious. ||

We describe more explicitly the situation when n = 1. We just write 8
for 8(1), # for #,, and N(y) for N(y). H as r + 1 subgroups of order r,
which are permuted by W. Each of them, except {diag(1,a,a ')}, has a
generator of the form ¢, = diag(a, a’, a~'™’) for a unique integer j mod r.
For convenience we put f, = diag(l,a,a”'), and denote by 2 the set
Z/rZ J{x}. If r = 2, there is just one W-orbit of length 3. If r = 3, then
there is one orbit of length 3 and one orbit of a single element (the center
of G). If r = 5 there are always two orbits of length 3 (the orbits of {¢,)
and of {r,)), and there is one orbit of length 2 if and only if r = 1 mod 3
(the orbit of (t,), where 8° = 1 mod r, but 8 # 1 mod r). All the other
orbits have length six. If » = 2,3, then s does not satisfy (* '), We
assume r > 5. Each equation in .% has in particular at most one solution:
we denote by x;(vy) the solution of the ith equation corresponding to vy if
this equation has a solution. Otherwise we put x{y) = ®. We denote
by N(x) the number of equations with no solution (this notation is
in fact consistent, as we could see introducing appropriate homogeneous
coordinates for {2, and rewriting the equations (1)—(6) in terms of these
coordinates). We define an action of Won £2. Let y bein 2,Y = (¢, >,
w in W. We put y* =y, where Y = (1, > (convention: o = o — | =
x+ 1) We get yW={y, -y -3, -y/Ay+ 1D -Qy+3INAy+1),-(y
+ 3)/(y +2), —Qy + 3)/(y + 2)}. It is clear that the W-orbits of y and
Y have the same length, and that N(y™) = N(y) for every w in W. From
the previous discussion, we always have the orbits {0, —3,(r ~ 3)/2} and
{x, — 1, =2}, and the orbit {# — 1,8% — 1} if r = 1 mod 3. We are inter-
ested in the number m of orbits of length six. We have m = (r — 5)/6 if
r#1lmod3and m =(r — 7)/6if r =1mod3. Let y,...,y, be repre-
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sentatives of each orbit of length six. We get the equations

AN(0) + 3N(=)
+6(N(y)) + - +N(y,)) =068 if r # 1 mod3, ()
3N(0) + 3N(=) + 2N(0 — 1)
+6(N(y,) + - +N(y,)) =68 if r =1 mod3,

with N(0), N(=) = 1, since 0 = x(0) and « = x,(0). It is also clear that for
every x in Z/rZ U {=} we have N(x) € {0,1,2,3,6}, N(0) € {1,2}, and
N(® — 1) € {0,3,6}.

Observation 3.10. In practice it is more convenient to study the equa-
tions (1)—(6) allowing the coefficients on the left hand side to be any
element of a certain subgroup C of (Z /rZ)™, and then analyse for which p
we have (p) < C (it is known (Corollary 3 on page 191 in [10]) that the
polar density of the set of primes p in C is |C|/(r — 1)). It is obvious that
the equations (..} will then hold with {C| instead of &.

We also note that for certain primes p there exists integers x for which
at least one of the +a,(x) (as an element of Q) is an integral power of p.
For these x it is clear that N(x) # 0 for each r. The possibilities (besides
x=0,-1, -2 -3) are

x=3 -6 for p = 2or 3,
x=1,-4 forp=2or5(notethat —6 € 3 and —4 € 1),

PrOPOSITION 3.11.  Let 8 < m. Then for at least one i we have N(y,) = 0.

Proof. We have m = 1. Suppose N(y}-) > 0 for each j. From the

equations (..) we get 8 > m + 1, a contradiction. ||

ProOPOSITION 3.12. Let r = 1 mod 3. If & divides (r — 1)/3, then there
exists y such that N(y) = 0.

Proof. Suppose 8 = (r — 1)/3. Then & is even, so that each N(z) is
even. If there exists i such that N(y,) = 0, then we are done. Otherwise
we have N(0), N(=), N(y,) = 2 for each i. But then 3N(0) + 3N(x) +
2N — 1) + 6(N(y)) + -+ +N(y,)) = 65 implies N(0) = N(x) =
N(y,) = 2 for each ¢, and N(¢ — 1) = 0, and we are done. By Lemma 3.9
we get the result for each & dividing (r — 1)/3. |}

On the other hand the equations in .# can be used to prove the
following statement.
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ProrosiTion 3.13. Suppose r = 5. If 8§ =r — 1 or (r — 1) /2, then we
have N(x) # 0 for each integer x. The same holds if 5 = (r — 1)/4, when
r =5 mod 8. If moreover r* + p*~' — 1, then A, = {1).

Proof. We prove the first part. One is reduced to show that in each
case the subgroup { p) of (Z/rZ)* contains at least one among +a(x), +
a,(x), + a;(x), for every x in Z /r 7 different from 0, — 3, —3 /2. This is of
course the case if 8 = r — 1. Also, since @,(x)a (x) = a,(x), for at least
one i we have a x)"~"/? =1, so that a(x) lies in the subgroup C of
index 2 in (Z /rZ)*. Hence the result if 8§ = (r — 1)/2. Moreover, if r = 5
mod 8, then one of a,(x) and —a,(x) lies in C?, and we get the result for
8 = (r — 1)/4. The second part now comes from Corollary 3.4. |

We start now to consider the problem of constructing exceptional
autoprojectivities. In the discussion so far developed, we have given a list
of conditions that guarantee that a certain cyclic r-subgroup of H is fixed
by every element of I'((G). We shall prove that if there exists a cyclic
r-subgroup X of H which does not satisfy any of the above mentioned
conditions (in the next definition we shall call “free” such a subgroup),
then there exists an exceptional autoprojectivity of G not fixing X.

DermiTion 3.14. Let s be an r-element of H and X = {s). We say
that X 1s “free” if the W-orbit of X has length 6 and if one of the
following conditions holds:

(i) s satisfies (* * '),

(i) r = 3, s does not satisfy (* '), X ¢ Z, and either X is maximal
cyclic in H,, or at least one (hence all) cyclic subgroup of order 3|X]|
containing X is generated by an element satisfying (* = ').

We can summarize the results of Section 1 in

Prorosition 3.15. Let X be an r-subgroup of H which is not * free.”
Then X is fixed by every element of T'(G).

Observation 3.16. We introduce a standard procedure to construct
certain exceptional autoprojectivities of G. Suppose we have “free” sub-
groups E,, E, of H of order r¥, such that E, > E} (we do not exclude
E, = E)). Let v = ¢ ([(K™),]).

Let &, (respectively &) be the set of all cyclic subgroups of H,
containing E, (respectively E,). Let us denote by E,,,..., E,, the r
cyclic subgroups of order r**! containing E,. If X is an element of &, of
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k+n

order r"™", with n>2, we write X=F,, , ., with /,....i, €
{1,...,r), choosing the indices in order to have 2,,,_ (X) =
Ey; i i Similarly for E. Let X =E,, , be in &, and let
o = (g;) be in (§)". We put X7 = E\ oiin. o,y Suppose XY are in

&,. Then we have X7 < Y if and only if X < Y. Similarly for E,. We
distinguish two cases.

If E}Y = EY, for each & in (S,)" we define the autoprojectivity A, of H
to be the identity on H,_ if g # r. Let X be a cyclic subgroup of H,. We
put X* =X if £,(X) does not lie in E}. Otherwise there exists a
unique w in W such that X* € &,. We put X*» = X" ',

If EY #+ EV, for each o, 7 in (§,)" we define the autoprojectivity A,
of H to be the identity on H, if g # r. Let X be a cyclic subgroup of H,.
We put X*+ = X if £,(X) does not lic in E}Y U E}*. Otherwise there
exists a unique w in W such that X* € &, U &,. We put X rr = x"o» '
if X*e&,, and X" = X i X e &,. In both cases A, or A,
satisfies the hypothesis of Theorem 2.13, so that it can be uniquely
extended to an element ¢, or ¢, . of I'(G).

We have therefore proved in particular the following things. If v = o,
then I'(G) (and I'(G /Z) by Proposition 2.9) contains a copy of (§,)™: we
just need to take E, = E,, and consider the subgroup {¢_ lo € §,)} of
'(G). Similarly, if kK < v < , I'(G) contains a copy of (§,)" .

On the other hand, if E, # E|, then there exists ¢ in I'(G) such that
E¢ = E| (we just take ¢ = ¢, or ¢, ;, and the construction works for every
k <v <)

Lemma 3.17. Let X be a “free” subgroup of H. Then there exists a
“free” subgroup Y of the same order of X containing X' bur different
from X.

Proof. Let r" be the order of X. We put X" = C.

Suppose the W-orbit of C has length less than 6. Then there exists
w # 1 such that C* = C. Then we can take ¥ = X" and we are done.
Hence we suppose the W-orbit of C has length 6 (in particular n > 2). We
suppose for a contradiction that such a Y does not exist.

Suppose first r is not 3. If C is “free,” then every cyclic subgroup
containing C is “free,” and we may take Y to be any of the cyclic
subgroups of order {X| containing C and different from X. Hence C is
not “free.” We may suppose C = {s) with s = diag(a, a”,a '~ ") with a
of order r"', and N, _(h — 1) # 0. If r* + p°"~ D — 1, by Proposition
3.1, X is not “free.” Hence r"[p®" 1> — 1. Suppose r # 2. By Lemma 3.2
we must have r"|p® — 1, so that each equation in &, _, satisfied by & — 1
can be lifted only to one equation in .%,. If N,_,(h — 1) is 6, we must
have —1 = p” mod r" ', for a certain integer vy, so that N,(y) is even for
every integer y. Hence we get r < 4, which is a contradiction. Therefore
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we are left with N,_(h — 1) < 3, which again gives the contradiction
r < 4. Thus we are done if r # 2.

Suppose r = 2. We must have n > 5, since the W-orbits of cyclic
subgroups of order 2, 4, or 8 have length 3. By Lemma 3.2 we have
27p%@ — 1. If 8(2) = 1, then C is conjugate either to (diag(a, @, a %)) or
to (diagla, 1,a~")). If 8(2) = 2, besides the previous possibilities, C may
be conjugate to {(diag(a,a’,a "))y with i =2""2—1or 27 2+ 1 (ie.,
i = 1 mod2”~"'). In all cases the W-orbit of C would be of length 3, and
this is a contradiction.

We are left with the case r = 3. Suppose first that X is generated by an
element not satisfying (= *’). We may assume that this element is almost
determined. If X is maximal cyclic in H;, then we can take for Y any of
the two cyclic subgroups of order 3" in X X Z different from X, and we
are done. So assume X is not maximal cyclic, but the cyclic subgroups
X,. X,, X5 of order 3]X]| containing X are gencrated by elements satisfy-
ing (* * ). By Proposition 3.1 we have 3"*'([p®™ — |, so that 3" |p® — I,
by Lemma 3.2. Since & = | or 2, the W-orbit of C has length 3, which is a
contradiction. Hence X is generated by an element satisfying (* =’). We
have two cases. If X > Z, we may assume that C is generated by a
determined element. By Proposition 3.1 we must have 377 '[p3"~2 — |
(note that n > 3, since the W-orbit of a cyclic subgroup of order 9
containing Z has order 3). Hence by Lemma 3.2 we must have 3"~ '{p® — 1.
But 6 =1 or 2, and in both cases we get that C is conjugate to
(diag(u, u, u™*)) whose W-orbit has length 3. This is a contradiction.
Therefore we must have X 2 Z. But, if X, X, are the cyclic subgroups of
order 3" in X X Z different from X, then both X, X, are “free.” This is
the final contradiction. ||

THeEOREM 3.18.  Let X be a * free” subgroup of H. Then there exists ¢ in
I'(G) such that X¥ + X. In particular I'(G) # {1}.

Proof. By Observation 3.16 we only need to prove that there exists a
“free” subgroup Y of the same order of X containing X’ but different
from X, and this comes from Lemma 3.17. |

We give some arithmetic cenditions between the primes p and r which
ensure that the group A, of automorphisms of M(H,) induced by I'(G) is
not trivial.

Proposimion 3.19.  Let v, = ¢ (|[(K™),|). Suppose v, > 1 and one of the
following conditions holds:
() r=2v,>4 andp = +1 mod8.
Gi) r = 11 and rip® — 1.
Gi) r=Sand rilp~"' - 1.
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(iv) r=1mod3, rip" V" — 1, and v, > 2.

il

V) r=3,vy>3,andp = +1 mod9.
Wi)r=3and 2 <v; <o,

(vi) r = 1 mod9 and rlp"~ V" — 1.

(viii) r = 4,7 mod 9, rlp " — 1, and 2" Y* =1 mod r.

(ix) r =1 mod 12 and 6 = (r — 1)/6.

Then A, is non-trivial.

Proof. In all cases, by Lemma 3.17 and Observation 3.16, we only need
to prove the existence of a certain r-subgroup which is “free.” We recall
that if @ is an element of order r, and j is an integer, then ¢; represents
the element diagla, a’,a '™/) of H.

(i) Let u be an element of order 8, and let s = diag{u, u?, u™?).
Then p = +1 mod§ implies that N,(1) = 0, so that s satisfies (% *').
Since the two cyclic subgroups of order 16 containing {s) have W-orbit of
length 6, they are both “free.”

(ii) Since r > 11, we get m > 1. Then 6 =1 or 2 implies that
N(y;) =0 for every i = 1,...,m. We can take X = (r, ., and we are
done.

(i) Since r2|p’~" — 1, there exists in K> an element u of order r?.
Let s = diag(w, 1, u~"). Then at least one among the cyclic subgroups of
order r? containing s” is “free.” Suppose on the contrary N,(x) # 0 for
each x in Z/r*Z with x = —1 mod r. If N(—1) # 6, we have N(—1) < 3
so that r < 3 which is a contradiction. Hence we have N(—1) = 6, which
means — | lies in the subgroup of (Z/rZ)> generated by p. Hence N,(y)
is even for every integer vy, and r < 3 which is again a contradiction.

(iv) Since r|p”~"/? — 1, by Proposition 3.12 there exists y such that
N(y) = 0. If there exists such a y with W-orbit of length 6, we are done.
Otherwise we must have N(8 — 1) = 0, where #* =1 mod r, but 8 # 1
mod r. Then every cyclic subgroup of order r? except one containing {t,
is “free.”

(v) We can take X = (diag(u, u'®, u'®)) where u has order 27, since
8(3)|6 implies that N;(9) = 0 (see the next section).

(vi) This follows from Corollary 2.16.

(vii) and (viii) Let =1 modr, but § # 1 modr. We have
a@—1) =0 a8 —1)=—0 and ay(§ — 1) = —6°. Hence we have
N(# — 1) # 0 if and only if & is divisible by 3. Suppose 6 = (r — D /3. If
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r=1mod9, we get N(8 — 1) # 0, so that by Proposition 3.12 there exists
i with N(y,) = 0, and we are done. Suppose now r = 4,7 mod9. Since
20D = 1 mod r, +2 lie in {p), so that N(x) = 6. This implies that
there exists { with N(y,) = 0. In both cases, by Lemma 3.9 we have
N(y;) = 0 for every 8 dividing (r — 1)/3, and we are done.

(ix) Since —1 € {p>, N(y) is even for every y. Supposc N(y,) # 0
for each i (note that m > 1) we get r — 1 > 12 + 2(r — 7), hence 1 > r

which is a contradiction. Therefore there exists i with N(y,) = 0, and we
are done. |

In the previous section we considered the groups A,, and we showed
how each A, decomposes as a certain semidirect product for each & in
N. Here we describe the groups A, , in a particular situation. First we
assume that there are “free” subgroups of order r, and we let s be the
number of i's for which N(y;)=0. Then A, =(8;)' X5, (cf. the
description given in Proposition 2 in [17]). Suppose r =2 mod3 and
r4+p"~'— 1. Let Y,,...,Y, be representatives of W-orbits of “free”
subgroups of order r. We have I, , = (§,)’, since every cyclic r-subgroup
C for which C)e Y for some i in {1,...,s}, is fixed by
every exceptional autoprojectivity by Corollary 3.4. By induction we get
L= (S,)“’Fl, for each k& inN. Since A, ,,, =1, ,,, XA, for each
k, the groups A, , are therefore completely described. Similarly one can
deal also with the other cases. In particular, when ¢ (p"~' — 1) > 2, one
has to take in account the fact that if for some x in 7/rZ we have
N(x) = 3, then we have one of the following situations. There may exist a
unique y in Z/r’Z such that y =x modr and N,(y) # 0 (so that
N,(y) = 3), or there may exist 3 different y, z,f = x mod r, for which
N, =1

We conclude this section by proving the announced result that every
simple algebraic group G of type 4, over F‘p (i.e., G isomorphic either to
SL(F,) or to PGL4(F,))) has autoprojectivities not induced by any auto-
morphism. We shall also consider the behaviour of tori under exceptional
autoprojectivities.

We make use of a result of A. Schinzel [14, Theorem 5]. For the
convenience of the reader we state this result in the form we shall use it.

Tueorem. Let f(t) be a polynomial over Q and a an element of Q™. If
the congruence

f(a*) =0 mod r

has a solution for almost all primes r, then the equation f(a*) = 0 has a
solution in Q.
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For our purposes we may assume that “almost all” means all but a finite
number, even though the statement is true with wider assumptions.

TueoreMm 3.20.  For every prime p the group SL 3(1_7,,) has autoprojectiti-
ties not induced by any automorphism.

Proof. 1t is equivalent to prove that I“(SL}(I_?I,)) is non-trivial.

Let f(r)=(t+a Xt —a Xt + a, Xt —a, Xt +a;Xt —a;) with a, =
5/2, a,=1/2, ay=17/5, anda = p. If the congruence f(p*) =0 mod r
has a solution for al primes r greater than 13, then therc exists y in Q
such that p¥ = t+a, for some i. In particular y is an integer, so that a, is
an integral power of p. This is a contradiction. Hence there exists a prime
r greater than 13 for which N(2) = 0. By Corollary 3.8 the element
s = diag(u, 1®, u™*), with u of order r, satisfies (*#'). The fact that
r > 13 ensures that <s) is not fixed by any nontrivial clement of W. Hence
(s is “free,” and by Theorem 3.18, 1‘(SL3(F,,)) is non-trivial.  §

Remark. In fact using Schinzel's thecorem we can say much more.
Given any x in Z\{0, -1, =2, =3,1, —4,3, —6} (cf. Observation 3.10)
there always exists a prime r (even an infinite family of such primes) for
which {(diaglee, u**", 1 =*"2), with u of order r, is “free.”

To prove the existence of primes r for which the group A, of automor-
phisms of M(H,) induced by F(SL3(i‘I,)) is non-trivial, we can follow an
alternative way. Let us consider the Galois extension M = Q(¢, p'/*) of
Q), where £ is a primitive 3-root of 1 in C. It is well known (cf. Exercise 30
on page 91 or Theorem 43 in [10]) that there are infinitely many primes r
which completely split over M /Q. (They can be obtained in the following
way. Let a be an algebraic integer generating of M over @, for instance
a = ¢+ p'?, u the minimum polynomial of « over @, and # an integer.
Then, excluding the primes 3 and p (Theorems 31, 24, and 34 in [10]), any
prime divisor of p(n) completely splits over @, and these are all.) Let r be
one of these. Then we must have r = 1 mod 3, and p is a cube in Z /rZ)™.
By Proposition 3.19(iv) we get A, # {1} {(in the next section we shali
consider in more detail this situation).

CorouLary 3.21.  For every prime p, PGL3(FP) has autoprojectivities
not induced by any automorphism.

Proof. Since F, is algebraically closed, PGL3(FI,) and PSL;(l_?p) are
isomorphic (as abstract groups). Then we are done by Theorem 2.15. ||

Tueorem 3.22. I'(SLy(F,)) and I'(PGLA(F,)) are infinite and non-
soluble.

_ Proof.  Let r be a prime greater than 13 such that if u is an element of
E of order r, then s = diag(u, u®, u™*) satisfies (xx'). If we apply
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Observation 3.16 with E, = E = (s), we get that I'(SL.(F,) (and
I’(PGL;(F ))) contains a copy of (S )V, and we are done. |

We can also show that I"(SL;(F,,)) and F(PGL3(F,,)) are non-periodic
groups. One way to see this is the following. From Schinzel’s theorem, we
get an infinite sequence of primes r; <r, < ..., such that for each i
there exists a “free” subgroup (s;> of order r,. By Observation 3.16 and
Theorem 2.13, we can construct an exceptional autoprojectivity ¢ such
that the restriction of ¢ to H, has order r,. Then ¢ has infinite order, and
the same holds for the autoprojectivity & of F(PGL;(F ).

We have another possibility. From the description of A, as an inverse
limit of the system (A, ,, 7, ), cn» and of A, ., as the semidirect product
of T, ,,, and A, ,, whenever H, is infinite and it contains “free”
subgroups, it is possible to show that there exists an element A in A, of
infinite order.

We finally make an observation on the behaviour of tori of SLz(I_?p)
under exceptional autoprojectivities.

In [5] we proved the following fact. If A4 is an abelian divisible subgroup
of a connected reductive group G over Fp, then the closure cl( 4¥) of AY
is a torus for every autoprojectivity  of G (Lemma 2.6). It then follows
that the image of a maximal torus is a maximal torus (Proposition 2.7).
Here we show that there exists a 1-dimensional torus § and an element ¢
of F(SL3(F )) such that S¥ is not closed, hence is not a torus.

Let r be a prime bigger than 13 such that if « is an element of FX of
order r, then s = diag(u, u?, u™*) satisfies ( *’). We put u, = u, and for
every n in N, we choose an element u, of F such that u, ., = u,. Let
z=3+ar+a,y’+... be an r~adlc mteger To z we associate the
following subgroup of H,. Let s, = diag(u,, uZ,u, ' %), where the mean-
ing of uZ,u; '™ is the obvious one. We put X, = U{s,). X, is isomor-
phic to C,-, and every such subgroup of 7, containing {s) is of that form
for a certain z. We take z = 3, and for z’ any r-adic integer of the form
3+ayr+ azr2 + ..., for which there do not exist coprime integers a, b
such that a = bz". Therefore cl(X,) = § is a 1-dimensional subtorus of T,
while cl(X,.) = T. By Observation 3.16, there exists ¢ in I'(SL,(F,)) such
that X¢ = X .. Then §¢ is not closed, otherwise we would have S% = T.
Hence S is not a torus of SL(F,). Note that on the other hand the image
of a torus under any (abstract) automorphism of SL4(F,) is a torus.

4. FINAL REMARKS

In this section we shall give some examples which show how the results
obtained so far may be used to describe I'(G) in some concrete cases. We
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TABLE 1.
r" = 27, C the Subgroup of Order 6 in (Z /277)*

¢ X, X3 X5
1 — 24 0
10 — 24 0
8 12 5,14,23 1,10,19
-1 12 -1,8,17 -2,7,16
- 10 12 2,11, 20 4,13,22
-8 — 24 0
TABLE 11

=18, C = (2/82)*

¢ X, X5 X3 X4 X5 X
1 — — S 7 0 6
3 — — 3 1 2 4
5 — — 1 3 4 2
7 — — 7 5 6 0

shall also make use of a result from the theory of elliptic curves to give an
estimate on the number of “free” r-subgroups of H in a particular
situation. We shall therefore obtain necessary and sufficient conditions
between the primes p and r such that A, | is trivial. First see Tables I and
II to justify the assertions given in the proof of Corollary 3.4 and Proposi-
tion 3.19 about the behaviour of 2-subgroups and of 3-subgroups of H (cf.
Observation 3.10).

From Table 1 for each element x in the W-orbit {3,6,9, 15, 18,21} we
have Nj(x) = 0. If p = +1 mod9, and there is an element v of order 27
in K*, then there exists ¢ in I'(G) such that {diag{v,v'? ¢v'%))¢ =
{diag(r, v'%, v7)) (cf. Proposition 3.19(v)).

From Table I, if p = 3 mod 8, then every element of order 8 does not
satisfy (* =') (cf. Corollary 3.4). On the other hand, if p = +1 mod 8, we
have N,(2) = 0. Suppose K* contains an element ¢ of order 16. There
exists ¢ in I'(G) such that (diag(v,c? v'2))¢ = (diag(v, ', ¢*)) (cf.
Proposition 3.19()).

As usual, we assume K to be a subfield of F‘p, and r a prime different
from p. We write 8 = (r — 1) /d, for the order 8 of p in(Z /rZ)*. In our
discussion we shall always assume » > 5, since we have already described
the behaviour of 2- and 3-subgroups of H. We shall describe for which d
A, | is trivial. When » = 1 mod 3, we shall also determine for which d we
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have N(x) # 0 for every integer x. We use the notation we introduced in
the previous section. '

Lemma 4.1, Suppose § is even, and d is different from 1,2,3. Then there
exists I such that N(y;) = 0.

Proof. Suppose for a contradiction that N(y;} # 0 for each i. Since
is even, we get N(y;) > 2 for each i, so that § = 2(1 + m) by the
equations (..). In both cases r = +1 mod 3, we get a contradiction. |

We are in the position to describe the situation when r = 2 mod 3.

ProrosiTion 42, Let r =2 mod3, r > 5. Then A, | is trivial if and
only if

de(1,2,4} if r = 5modS8,
d e {1,2} if r # 5mod8.

Proof. Suppose d € {1,2,4} if r=5 mod8, or d (1,2} if r#5
mod 8. Then we conclude by Proposition 3.13. Now assume A, | is trivial.
By Proposition 3.11 and Theorem 3.18, we get 6 > m + 1, so that d < 6.
Hence d €{1,2,4,5}. If d =5, orif d =4 and r = 1 mod 8, then & is
even, and by Lemma 4.1 we get A, , = {1}. |

To deal with the case » = 1 mod 3, we argue as follows.. We give an
estimate on the number of integers x mod r for which N(x) = 0. Suppose
d=(—1/3, andlet X ={x e Z/rZIN(x) = 0}.

We fix an element a in (Z/rZ)* which is not a cube and we consider
the elliptic curves

A:a’w? —azt =1

B:aw? —a%z? =1
over Z/rZ. Let S(A), S(B) be respectively the set of solutions of A, B.
For each (w, z) in S(A4) we put a(w,z) =3/(az® — 1), and for each

(w, z) in S(B) we put B(w, z) = 3/(a*z* — 1). Suppose x = 3/(az” — 1)
lies in a(S(A4)). It then follows that

(x +3)/x =az’, (2x + 3) /x = a’w?, (2x +3)/(x + 3)
= a(w/z)",

so that N(x) = 0. Similarly one can prove that if x lies in B(S(B)), then
N(x) = 0. Moreover the subsets a(85(A)) and B(S(B)) are disjoint subsets
of X, and for every x in a(S(A4)) (respectively in B(S(B)), a '(x)



148 MAURO COSTANTINI

(respectively 87 '(x)) consists of 9 elements. We now prove that X =
a(5(A4)) U B(S(B)). Let x be in X. Then we have x # 0, —3, —=3/2, so
that each a,(x) is defined and non-zero. If C is the set of cubes of
(Z/rZ)* (in our case C = {p)), we have (Z/rZ) = C U aC U a*C. Since
a(x)a(x) = a,(x), we must have cither a,(x) in aC and a,(x) in a’C, or
a(x)in a’C and a,(x) in aC. Suppose we are in the first case. Then there
exist z,w in Z/rZ such that a(x) = az*® and a,(x) = a’*w’. Then (w, z)
lies in S(A), and x lies in a(S(A)), and similarly for the second case.
Hence we get |X| = 2|S(A)| /9. By the Gauss—Hasse—Weil theorem (cf.
[15, Chap. V, Theorem 1.1]), we have r + 1 — 22 < |S(A)| <+ + 1 +
2r'/2 so that

2r+1 =272 /9 < |X| <2(r + 1+ 2r72) /9.

ProrosiTion 4.3. Let r=1 mod3, r > 19. If & divides (r — 1)/3,
then A, | is non-trivial.

Proof. Suppose 6 = (r — 1)/3. By the above argument, if r > 19, it
follows that there are at least 3 elements x for which N(x) = 0. Hence
there exists i such that N(y;) = 0. By Lemma 3.9, we have N(y,) = 0 for
every & dividing (r — 1)/3, and we are done. |

THeorREm 4.4, Let r = 1 mod3. Then A, | is trivial if and only if

de{1,2,3,6} ifr=7,
de{1,2,3,4) ifr =13.
de{l1,2,4) ifr=5mod8, r # 13,
de{1,2} ifr#35mod8, r+7.

Proof. Suppose A, | is trivial. By Proposition 3.11 we get § > m + 1,
so that d < 6. By Lemma 4.1, d is not 5. If r = 7, we are done. If r = 13,
then d is not 6 by Proposition 3.19(ix). So we assume r > 19. By Proposi-
tion 4.3 d is not 3 or 6. Moreover, if r # 5mod 8, d is not 4 by Lemma 4.1.
On the other direction, if r > 19, we are done by Proposition 3.13. If
r = 13 we note that for d = 3 we get N(1) = 2, so that there are no “free”
subgroups of order 13. Since there are no W-orbits of length 6 in 2(H),
we are done. ||

When r =1 mod3, it is also useful to know in which cases besides
having N(y,;) # 0 for each i, we also have N(@ — 1) = 0. It is only in this
situation that if r* + p~' — 1 and v, > 2, we have A, = {1}.
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ProrosiTiON 4.5, Let r = 1 mod 3. Then N(x) # 0 for each integer x if
and only if

de{1,2,4} if r = 5mod8,
de{l1,2} ifr #5mod8.

Proof. Suppose N(x) # 0 for each integer x. From (..) we get d < 6.
By Lemma 4.1, d is not 5, and it is not 4 if r # 5 mod 8. Morecoverif d = 3
and N(y;) # 0 for each i, then we have N(y,) = 2 for each i, so that
N(9 — 1) = 0, and this is a contradiction. The other implication comes
from Proposition 3.13. ||

One way of analysing the equations (.~) is to calculate for a fixed 8, how
many x in Z/rZ U {=} have N(x) = 6. Since N(x) is even if and only if &
is even, we assume & even (otherwise we consider 28). We know that
N(0) = N(—3) = N(—=3/2) = 2. So assume x different from 0, —3, =3 /2.
Since a(x)ay(x) = a)(x), it is equivalent to studying for which x we have
a(x)and aXx)in {p). Let y =1+ 3/x. Then a,(x) =y and a,(x) =y
+ 1. Therefore the number M of x in Z/rZ U {x} for which N(x) =6
equals the cardinality of the set { p) N ({p} — 1) (and this is of course in
relation with the number of solutions of the equation w¢ — z¢ = 1). Since
we have N(x") = N(x) for every x in 7 /rZ U {«} and every w in W, and
N(x) = 6 if and only if 2 lies in {p), we get the following relations (+).

If »r = 2 mod 3, then

M =3mod6 if2e (p),
M = 0 mod 6 if2e& {py.

If r = 1 mod 3, then N(8 — 1) = 6 if and only if 3|8. Hence

M=0mod6 f2e&(prand3 + 34
M = 3modé6 if2e (p>and3 + 6
M=2mod6 if2¢ {(p)and3|
M= 5mod6 if 2 € {p) and 335.
In particular, if r = 1 mod3 and & = (r — 1)/3, we get information on
the number of solutions of the elliptic equation w* — z* = 1.
We conclude by giving a list of examples. We consider the prime r

rather than p. We give Table I1I to justify the first example. For the others
we just state the results. We always assume », > 1.

(1) We consider r = 5.
Hence from Table I1I, Ny(4) = N,(19) = 0. Suppose p = 7. We get
5 = 4, and 25]7* — 1. Since K* contains elements of order S, it contains



150 MAURO COSTANTINI

TABLE III. r" = 25, C the Subgroup of Order 4 in (7 /254)*

¢ X X3 X
i — -3 0

7 13 — —
-1 i1 -1 -2
-7 9 8 14

an element ¢ of order 25. There exists ¢ in ['(G) such that
(diag(e, 0%, 0'))¥ = (diag(r, v?, 0*)} (cf. Proposition 3.19(iii)). Therefore
As | is trivial, while A4, is not.

(2) r = 7. A, is always trivial. Suppose v, > 2 and 7° + p® — 1. If
8 =23,6,then A, ={1}.1f § = 1,2, we get A, , =(C, X C3) X C,.

(3) r=13. 1If § =3,6,12, we have A;;, ={1}. If & = 1,2, then
Ay, =Sy If 8=4, we get N(©O) = N = N(1) =2, N@—1)=0.
Hence A,y is trivial, but A3, > (C)* XS, if vi3 > 2 (A3, =(C)* X
S, if and only if 132 + p'2 — 1).

(4) r =521. If 8 = 260, we have N(0) =2, N(x)=06, N(y)=

=Ny =6, Ny, )= - =Ny,)=25s=21,1=651f 5=
130, then N(O) =2, N(x) =2, N(y)= --- =N(y) =6, Ny, ) =
=Ny, )=2 Ny, ,,0= " =Ny,,,.)=0, where s =6, ¢

= 46, u = 34. The number of x in Z /rZ U {e} for which N(x) = 6 is 129
if 8 = 260, and 36 if 5 = 13 (cf. the list (+)).

(5) r =3, p=109. Let u be an clement of order 9 in K™, and let
s = {diag(u, u’,u™*)). Then s is almost determined but every cyclic
subgroup of order 27 containing s is generated by an element satisfying
(+#'). There exists ¢ in I'(G) such that (diaglu, «’, u )% =
(diag(u,u® 1u™7)). We have I'(SLy(109)) =(S; X C,) X C, X C, and
T(PSLL(109)) = C, X C,.

(6) p=2, r=31. Then 8 =5. We already know that N(1)=
N(—4)# 0 and N@3) = N(—-6) # 0. We have N() =1, N(=») =3,
N8 — 1) = 0, N(2) = 0, and N(1) = N(3) = N(10) = 1. A, , = S,.

(7) p=23, r=41. Then & = 8. We know that N(3) # 0. We have
NQ) = N(x) = 2, N(0) = N3) =N(1) =2, N(1)=N(2)=N(5)=0.
Ay, = (8% XS, If r = 1093, we get 8 = 7, N(3) = 1, N(1) = 0. There
are 6 W-orbits of length 6 for which N = 1, and 175 W-orbits of length 6
with N = 0.

(8) p=75, r=23L Then & = 3. We know that N(1) # 0. We have
N(0) = N(o) = 1, N(§ — 1) = 3, N(1) = 1, and N(2) = N(3) = N(10) = 0.
Az = (8 xS,
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(9) I(SLL17) = C, x C, (cf. [3). T(SL,27) = {1} (cf. [4].
I'(SL{(19)) = C, and I'(PSL,(19) = {1}.

(10) We consider the number M(r) of x in Z/rZ U {«} for which
N(x) = 6. Suppose & =(r — 1)/3. We have M(67) =6, M(31)=3,
M(19) = 2, and M(109) = 11.
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