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Inverse Image for the Functor /ihom
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Andrea D'AGNOLO*

§0. Introduction

Let /: 7-> X be a morphism of real C°° manifolds and let F, K be sheaves
on X (more precisely objects of the derived category Db(X)).

In this paper we study the microlocal inverse images of sheaves.
In particular we recall the construction of the functors f ^ p , f^p of [K-S 4]

(which makes use of the categories of ind-objects and pro-objects on the
microlocalization of Db(X)) and study some of their properties.

Then we give a theorem, namely Theorem 2.2.3 below, which asserts that
the natural morphism:

(0.1) tihom(f~pK, / ' ,PF® cof ~1). —> juhom(K, F® cof"1),, ,

is an isomorphism as soon as a very natural hypothesis, similar to that of
"microhyperbolicity" for microdifferential systems, is satisfied (here c% denotes
the dualizing complex on X and /xhom the microlocalization bifunctor of [K-S
4]).

In fact, one could say that this theorem is a statement of the microlocal well
poseness for the Cauchy problem.

As an application, we then state and prove a theorem, namely Theorem
3.1.1, on the well poseness for the Cauchy problem, in a sheaf theoretical frame.

This theorem generalizes what was obtained in [D'A-S] and will allow us
not only to recover the classical results on the ramified Cauchy problem (cf. [H-
L-W], [K-S 1], [Sc]), but also the result of [K-S 2] on the hyperbolic Cauchy
problem.

The author likes to express his gratitude to P. Schapira for frequent and
fruitful discussions.
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§1. Review on Sheaves

In this chapter we collect the notations that will be used throughout this
paper.

We also give some basic results on ind-objects and pro-objects that are
necessary for the proof of the main theorem.

The frame is that of the microlocal study of sheaves as developped in [K-S
3] and [K-S 4].

Until chapter 4 all manifolds and morphisms of manifolds will be real and
of class C00.

§1.1. Geometry

To a manifold X one associates its tangent and cotangent bundles noted
tx: TX^X and nx: T*X^>X respectively. One notes f*X the cotangent
bundle with the zero-section removed and denotes by nx the projection f*X
-*X.

If M is a closed submanifold of X, one denotes by T£X the conormal
bundle to M in X. If A is a subset of X, one denotes by N*(A) the strict
conormal cone to A, a closed, proper, convex conic subset of T*X.

If /: F-» X is a morphism of manifolds, one denotes by *f and fn the
natural mappings associated to /:

T*Y*-^- Yx XT*X-^T*X.

One sets: TfX = tf-l(TfY).
If N (resp. M) is a closed submanifold of Y (resp. X) with f(N) a M, one

denotes by f/# and fNn the natural mappings associated to /:

T* Y^L. ff x MT*X ^ T£X.

If A is a closed conic subset of T*X, one says that /is non-characteristic for
A iff '/' " 1 (Ty* Y) n/~ 1 (A) c= Y x XT£X. If V is a subset of T * Y, we refer to [K-
S 3] for the definition of / being non-characteristic for A on V.

§L20 The Category

We fix a commutative ring A with finite global dimension (e.g. A = Z).
Let X be a manifold. One denotes by Db(X) the derived category of the

category of bounded complexes of sheaves of ^4-modules on X.
If FeOb(D&(JO), one notes by SS(F) the micro-support of F (cf. [K-S

3]). This is a closed conic involutive subset of T*X that describes the
directions of non propagation for the cohomology of F.

If M is a closed submanifold of X9 one denotes by nM(F) the Sato's
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microlocalization of F along M, an object of Dfc(T$ X). If G is another object
of Db(X), following [K-S 3], one defines the microlocalization of F along G by:

fi horn (G, F) = HA R #*** fa l G, q\ F),

where A is the diagonal of X x X and gl9 q2 denote the projections from X x X
to A". This is an object of Db(T*X) with the following properties:

(1.2.1) Rnx*nhom(G, F) = R JfW(G, F),

(1.2.2) ,xhom(>lM,F) = A£M(F),

(1.2.3) suppjuhom(G, F) c SS(G)nSS(F).

Here, as general notation on sheaves, for Z a locally closed subset of X, one
denotes by Az the sheaf which is 0 on X\Z and the constant sheaf with stalk A
on Z.

If Fis another manifold and FeOb(Db(X))9 GeOb(Db(F)), one defines the
external product of F and G by :

where ^ (resp. g2) is
 tne projection from X x 7 to X (resp. F). This is an

object of Db(X x 7).
Let /: F-> X be a morphism of manifolds. One denotes by COY/X the

relative dualizing complex defined by (%/x = f'Ax. One sets a)x = axA, where
ax: X -> {pt}. If orx is the orientation sheaf, one has an isomorphism
a>x ^ orx [dim X], and hence, for local problems, CDX plays essentially the role of
a shift.

If F is an object of Db(JQ, one says that / is non-characteristic for F if / is
non-characteristic for SS(F).

§1.3. The Category Vb(X;px)

Let X be a manifold and let Q be a subset of T*X. One denotes by
Db(X;Q) the localized category Db(X)/Db

n(X), where Db
Q(X) is the null

system: Db
n(X) = (FeOb(D6pO); SS(F)nO = 0}. Recall that the objects of

Db(X; Q) are the same as those of Db(X) and that a morphism u: F-»G in
DbpO becomes an isomorphism in Dftpf; Q) if OnSS(H) = 0, /f being the third

M +1

term of a distinguished triangle: F —> G —> H —>. Such an u is called an
isomorphism on Q. If pxeT*X one writes Dfc(Jf; px) instead of Db(X; {px}).

A question naturally arising is whether a functor, acting on derived
categories of sheaves, still has a "microlocal" meaning, i.e. if it is well defined as
a functor acting on these localized categories. In this section we will mainly be
concerned in giving an answer to this problem for several well known functors.

Let F be another manifold and denote by q1 (resp. q2) the projections from
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X x Y to X (resp. 7). Let M be a closed submanifold of X. Take a point
pxeT*X (resp. pyeT*7) and set pXxY = (px, py)e T*(X x Y).

Proposition 1.3.1. The functors:

' : D*(JSQ x Db(Y) — > D*(JT x 7),

Db(Xx 7),

are microlocally "well defined, i.e. extend naturally as functors (that we denote by
the same names):

•m-: V(X; Px) x Db(Y; pY) -> Vb(X x 7; PxxY),

( • ) ,<?! ( • ) ) :

D"(Y; PY)° x D"(* ; px) -» D"(X x F; Pxxy),

/i horn ( - , - ) : D"(X ; px)° x V(X ; px) -» Dft(T* X ; Pl).

Here D6(y)° denotes the opposite category to D6(F), i.e. the category whose
objects are the same as those of Db(Y) and whose morphisms are reversed.

Proof. Let F, GeOb(D6pO) and HeOb(D6(7)). Recall the following
estimates of the micro-support (cf[K-S 3, Proposition 4.2.1, 4.2.2, Theorem
5.2.1]):

L

SS (F m H) c SS (F) x SS (H),

SS(F) x SS(H)a
5

(G, F)) c= C(SS(F), SS(G)),

where a denotes the antipodal and C the Whithey normal cone.

Since the proofs are similar we will treat only the first functor. The hypothesis
FeDb

[Px](X) or HeDb
(pY}(X) means that px$SS(F) or py£SS(H). Then it

JU

follows from the first estimate that pXxy<£SS(F[x]H). Q.E.D.

§1.4. Complements on Ind-objects and Pro-objects

Let /: 7-» X be a morphism of manifolds. Take a point pe 7x XT* X and
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set px=fn(p), PY = tf'(p)- Contrarily to the case of the functors treated in
Proposition 1.3.1, the functors R/^, R/J (resp. f ~ l , f l ) are not microlocal, i.e. are
not well defined as functors from Db(7; pY) (resp. T>b(X\ px)) to Db(X; px) (resp.
Db(7; PY)). To give a microlocal meaning to these functors one must enlarge
the category Db(X;px) and work with ind-objects and pro-objects. In this
section we recall the definition of ind-objects and pro-objects and, as a
preparation for the next section, we give some of their basic properties.

Let us first recall some basic notions on ind-objects and pro-objects due to
Grothendieck [G] (for an exposition e.g. cf. [K-S 4, Chapter 1, §11]).

Let ^ be a category. Denote by ^A (resp. ^v) the category of covariant
(resp. contravariant) functors from ^ to the category of sets. Notice first that ^
may be considered as a full subcategory of ^A or ^v via the fully faithfull
functors :

-, X)

An object <j) of ^A in the image of foA is called representable. An object X of ^
such that 0 = /ZA (X) is called a representative of 0. Representatives are defined
up to an isomorphism.

A category J is called filtrant if for i, ;eOb(=/) there exist fceOb(,/) and
morphisms i -> fc, j -> fe and if for two morphisms /, ^eHomJF(i,j) there exists a
morphism h:j-+k such that h°f=h°g.

Let 0 be a covariant functor from a filtrant category ./ to #. Recall that
the object "Inn" 0(i) of ̂ v is defined by "Inn" 0(i)(X) - limHon%(X, 0(i)) for

ZeOb(^). Here lim denotes the classical inductive limit in the category of
^

sets. Similarly, if </> is a contravariant functor from «/ to #, "lim" </>(i) is the

object of ^A defined by "lim" <t>(i)(X) = limHom^(0(i), X). The category of
ind-objects (resp. pro-objects) is the full subcategory of ^v (resp. ^A) consisting
of those objects isomorphic to "lim" c/)(i) (resp. "lim" </>(i)) for some covariant
(resp. contravariant) functor 0 from «/ to #.

We will give now some results on ind-objects and pro-objects which will be
useful in section 2.

Let J, «/' be two filtrant categories and, for simplicity, assume Ob(</) and
Ob(e/') being sets. One defines the filtrant category J x «/' in the obvious
way. Let V, <€' be two categories and let 0, 0' be two covariant functors from
«/ to # and from </' to #' respectively. One can prove the following result as in
[K-S 4, Corollary 1.11.8].

Proposition 1.4.1. Keeping the same notations as above, let The a bifunctor
from <6 x <ff to a category <€" . If "lim" 0(i) and "lim" 0'(0 ar^ representable
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then so is " lim" T(00), 0'(0)> a representative being given by T("!mf 00),
./XT' *

"Hnf 0'(0).

A similar result holds if 0 or $ or both of them are contravariant.
Let * be a category. Let </ and ./' be filtrant categories and let / : J -> </'

be a functor. Let 0 be a covariant (resp. contravariant) functor from </' to ^.

Definition 1.4.2. One says that J and </' are cofinal with respect to 0 by z
if the following properties hold:

(a) For any i'eObG/') there exists ieOb(./) and a morphism 00")-»000))
(resp. 0(i(i))-* 0(0).

(b) For any ieOb(./), i'sObf./') and a morphism /: i(i) -> i", there exists
a morphism g:i-^i1 in / such that 00(0)) factors trough 0(/).

If </ and </' are cofinal with respect to the identical functor of J' for z, we
will say that J and </' are cofinal (by 0- This is the classical definition (cf. [K-S
4, Exercice 1.38]). Note that if J and J' are cofinal by i then they are cofinal
with respect to any 0 : «/' -> # by /.

Let us now state a proposition that extends to this more general definition a
result of [K-S 4, Exercice 1.38].

Proposition 1.43. With the same notations as above, if </ and J' are cofinal
with respect to 0 by i, the natural morphism :

"Inn" 0 o i — > "lim" 0

(raS/7.

"lim" 0 —

is an isomorphism.

Proof. For JfeOb(^) set ̂  = InnHom^pr, 000))), Bx =
0(0). We have to show that Ax ~ 5/for every X. Let [u: X -/00")] be an
element of Bx (here [u] denotes the equivalence class of u in Bx). Due to (a) of
Definition 1.4.2 we can find a morphism v: i' -n(i) in ,/' with ieOb(./). We
define a map F: ^ -> Bx by F([u]) = [0(i?)°ii]. We then have to show that F
is well defined, injective and surjective. Since the proofs of these facts are
similar, we will assume that the definition of F does not depend on the choice of
the representative v of [v] and we will only prove that it does not depend on the
choice of u either. Let [u : X -> 0(0] = [u';X-+ 0(/)] in Bx and let be given
morphisms i' -> i(i)9 f -» i(j) in J'. In what follows -x+will denote a morphism
induced by a morphism in «/' and •&* a morphism induced by one of </. [w]
= [M'] means that there is a commutative diagram :
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0(0

X

\

Due to (a) of Definition 1.4.2 and to the fact that J> and J*' are filtrant, it is then
easy to get the following commutative diagram:

00(0)

X
00(n)),

\ / "
00") -*- 00(7))

i.e. we have a commutative diagram:

00(0)

/ \
X 00(n)).

\ /
0001)

Using (b) of Definition 1.4.2 one then easily get the diagram:

00(0) -&* 00(o)) 00(s))

00W) c 0(i(«))-*-» 00W),

\ / \
where all the diagrams, except c, are commutative. Nevertheless e°c is
commutative. Hence we have the commutative diagram:

00(0)

/ X
X 00(s)),

\ /
000))

which means that F ([«]) = F([w'])- Q.E.D.
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§2. Microlocal Inverse Image Theorem

§2.1. Mkrohyperbolk Theorem for Sheaves

Let /: 7-> X be a morphism of manifolds. Let M (resp. N) be a closed
submanifold of X (resp. 7), with f(N) c M.

In [K-S 4] (or [K-S 3]) the main result on the comparison between inverse
image and microlocalization is the following.

Theorem 2.1.1. (cf. [K-S 4, Theorem 6.7.1] or [K-S 3, Theorem
5.4.1].) Let V be an open subset of T/ Y and let FeOb(Db(X)). Assume:

( i ) f is non-characteristic for F on V9

(ii) /Nn is non-characteristic for Crkx(SS(F)) on ff{rl(V)9

(iii) tr1(VW-1(SS(F)) cz 7x XT*X.

Then the natural morphism:

(2.1.1) /

is an isomorphism.

§2.2. Inverse Image for /xhom

In this section we aim at giving our main result, i.e. Theorem 2.2.3 below,
which is a variation of Theorem 2. 1. 1. To this end, let us recall the definition of
microlocal images.

Let /: Y->X be a morphism. Let peYx XT*X and set px
=fn(p)> PY

= T(P).
Definition 2.2.1. Let F be an object of Db(X). We denote by ^^ F(px)

(resp. Jnd F(px)) the filtrant category whose objects consist of the morphisms
u:F'-*F (resp. u:F-+F') in Db(X) which are isomorphisms at px. A
morphism (u: F' -»F)-»(w': F" ->F) of 0*t&f F(px) is defined by a morphism
v: F" ^>F' in Db(X) with u' = u°v (and similarly for J>nd F(px)).

Definition 2.2.2. (cf [K-S 4, Definition 6.1.7].)

(i) Let FeOb(Db(X; px)). One denotes by f~$F (resp. f ^ p F ) the pro-
object (resp. ind-object) " lim " f~1F' (resp. " lim '9/!F'). Here

^^^F(PX) ^-ndF(px)

f~l is the functor from &*#/ F(px) to Db(Y; pY) which associates f~1Fr

to F; ->• F (and similarly for /!). One calls /M7p F the microlocal inverse
image of F at p.

(ii) Let GeOb(D*(F; py)). One denotes by ff>pG (resp. ff'G) the pro-
object (resp. ind-object) " lim " R/jG' (resp. " Inn " RLG').

^W/G(PY) ' ^^G(PY)

Here R/j is the functor from ^W/"G(py) to Dfc(^; px) which associates
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R/JG' to G' -> G (and similarly for R/J. One calls /£'PG the microlocal
direct image of G at p.

From now on, for a given pe7x XT*X we will set px = L(p) and
= f/'(p)- We shall now give a variation of Theorem 2.1.1.

For F and X objects of D&(JQ, there is a natural morphism:

(2.2.1) 11 horn (rlK,fF)-^Vftfin horn (X, F).

Theorem 2.2.3. Ler F 0«rf K be objects of Db(X) and take peY
x XT*X. Let K be an open neighborhood of pY and assume:

(i) p
(ii) fapK ana fl,pF are representable in Db(7; pF),
(iii) f^ is non-characteristic for C(SS(F), SS(X)) on '/"'

/ze morphism (2.2.1) induces an isomorphism:

(2.2.2) /i horn (£1 X, fitpF ® ̂ ~\Y ^ ^om(K9 F ® CD^1)^.

In the left hand side of (2.2.2) we consider ^hom acting microlocally as
remarked in Proposition 1.3.1. Taking the germ at pY we get a bifunctor
/xhom: Db(Y;pY)° x Db(Y; pY)^Db(J?#d(A)). Hence the isomorphism in
(2.2.2) holds in Db(J?#d(A)), the derived category of the category of ^4-modules.

Let us explain how the morphism (2.2.2) is deduced from (2.2.1). Consider
the maps:

T*Y<^- Yx XT*X -^ T*X

Y ^- Y - X.

By adjonction, the morphism (2.2.1) induces the morphism:

(2.2.3) </'- VhomCT 1K, fF) -^£nhom(K, F).

By (iii), the natural morphism : f~ 1 \L horn (K, F)(x)7r~1o;y/x->/7J juhom(K, F) is
an isomorphism on '/'"^K) (cf. [K-S 3, Proposition 5.3.2]). Composing (2.2.3)
with the inverse of this last morphism and recalling that n~la>Y,x ^ n'1^
® Tr"1/"1^!"1 we then get the morphism:

Taking the fiber at p and via the natural morphisms /j,pF->>/!F and f^pK
<-/~1K, we obtain the morphism of (2.2.2).

In order to prove Theorem 2.2.3, we shall need Theorem 2.2.4 below.
Let M (resp. N) be a closed submanifold of X (resp. Y) such that f(M)
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c= N. For pEN x MT$X we will denote px=fNn(p)> PY = tfif(p)^ coherently
with the previous notations. Recall that for FeOb(D6(JQ) there is a natural
morphism corresponding to (2.2.1):

(2-2.4) n N ( f F ) — R^/^Mn

Theorem 2.2.4. Let FeOb(Db(X)) and take peN x MT^X. Lef V be an
open neighborhood of pY in Tjf Y and assume :

( i )
(ii) fl,PF is representable,
(m) fNn is non-characteristic for Cr^x(SS(F)) on

Then the morphism (2.2.4) induces an isomorphism:

(2.2.5) HN(fi.P

The isomorphism holds once more in D&(^^^(^4)), and (2.2.5) is deduced
from (2.2.4) similarly as (2.2.2) was deduced from (2.2.1).

§2.3. A Particular Case

Let us first recall some results of [K-S 4] on microlocal images. Let /: Y
-> X be a morphism of manifolds and take p e F x XT*X. Set px = fn(p) and
PY = !f (P).

Proposition 2.3.1. (cf. [K-S 4, Proposition 6.1.8].) L^ FeOb(D6(JT; p^))
a/irf GeOb(Db(Y; pY)). The following equalities hold:

(2.3.1) HomD>(X:Px), (ff-'G, F) = HomDb(r:pyr (G,£PF),

(2.3.2) Homn.^.,,,. (G./jf-'F) = HomDl)(y;Pr) . (/J G, F).

Moreover there are canonical morphisms:

(2.3.3) ffl'pG^fS'"G,

(2-3.4)

Proposition 2.3.2. (c/. [K-S 4, Proposition 6.1.10].) Le? GeOb(D6(7)).
If supp (G) iy proper over X and if:

(2-3.5) r1(

f/ze« ff'pG and f£'pG are representable and one has the isomorphisms:

ff-'GsifZ-'GsiRftG,
mDh(X;Px).

We are now ready to prove a particular case of Theorem 2.2.4.
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Proposition 2.3.3,, Let f: Y-+X be a closed embedding and set M
= f ( N ) . Take a point peN x MT£X ^ 7$ X and set px = fNn(p), pY

= yji(p). Let FeOb(Db(X)) and assume that f^pF is representable. Then the
natural morphisrn (2.2.4) induces an isomorphism:

Proof. It is enough to prove the isomorphism for the cohomology
groups. One has:

^ HomDb(y;py)V

Here the first isomorphism follows from [K-S 4, Theorem 6.1.2], the second
expresses the fact that Db(Y; pY) is a full subcategory of Dfc(7; pY)y , the third
follows from Proposition 2.3.1 and the forth from the fact that, since fn is
injective, we can apply Proposition 2.3.2 and get: f f ' p A N = Rf^AN = AM.

Q.E.D.

§2.4. The Microlocal Cut-Off Lemma

First let us recall the definition of cutting functors as it has been given in
[K-S 4, chapter 6].

Since we are concerned with problems of a local nature, we will assume X
being a vector space. In what follows we will often identify X with T0X.

Let 7 be a (not necessarly proper) closed convex cone of T0X. Let CD be an
open neighborhood of 0 in X with smooth boundary. We shall denote by q^
and q2 the projections from X x X to X, by 7° the polar to 7 and by s the map
s(xl9 x2) = *i — x2. The following definition is a slight modification of that of
[K-S 4, Proposition 6.1.4, 6.1.8].

Definition 2.4.1. Let 7 and CD be as above and let F be an object of
We set:

<DX(7, a); F) = Rq2^(s-1

Notice that for / c 7, CD' => co, one has the following natural morphisms in
Db(X):
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(2.4.1) <&x(7, o>;F) ->«,(/, a/

^
In particular, recalling the isomorphisms Rq2#(s~l A^^g^1 F)^> F,

Rq2lRrs-i(0)(q\F), we get natural morphisms:

(2.4.2) ®x(y,co;F)->F,

One has the following result.

Proposition 2.42. (cf. [K-S 4, Theorem 5.2.3] or [K-S 3, Proposition 3.2.2])
/ze same notations as above:

a) SS(F) is contained in co x 7°° z/ aw^f ow/y z/ r/ze morphism ®x(y, co; F)
->F (ras/7. F ->*¥x(y, co; F)) w a« isomorphism.

b) <px(y, co; F)-»F (re.s/7. -F-^^x(y, co; F)) is an isomorphism on CD x
Inty°fl.

In particular one has the following estimates :

SS (^(7,0; ; F ) ) ^ a > x yoa.

In order to give a sharper result on the cutting of the microsupport one
should take care of the relation between y and co. Refining [K-S 4, Proposition
6.1.4], we give the following definition:

Definition 2.4.3. Take £0e T f X . Let 7 c T0X and co c X be such that:

( i ) y is a closed proper convex cone,
( i i ) 8y\{0} is C1,
(iii) ^Oelnt70f l,
(iv) co is an open neighborhood of 0,
( v) dco is C1,
(vi) co d {x; \x\ < e} for some e > 0,
(vii) Vx e 5co n 5y , AT * (cw)fl = N * (y) .

We will call a pair (y, co) satisfying (i)-(vii) a refined cutting pair on Jf at (0; £0).

Note that since dco and dy are smooth, condition (vii) means that dco and dy
are tangent at their intersection. More precisely, if g(x) < 0 (resp. h(x) < 0) is a
local equation for co (resp. y) at xe3cof)3y, this means that -d#(x)eR+ dh(x).

Let S be a vector space and take ps e T0* S. If (y, co) is a refined cutting pair
on X at (0; £0), and if co is defined by co = {x; g(x) < 0} for a C1 function g with
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d g 7^ 0, we can find an open neighborhood cos of 0 in X x S with smooth
boundary such that:

(243)
(x, s);

The following proposition is an extension of Proposition 6.1.4 of [K-S 4].

Proposition 2.44 Let HeOb(Db(X x S)) and let (y, CD) be a refined cutting
pair on X at (0; £0), £0 ^ 0. Tafo? pse T0* S a«J sef H' - ®XxS(y x {0}, cos; H)
(resp. H' = *¥Xxs(y x {0}? ̂ s? ^)) /or ^s defined as in (2.4.3). The following
estimate holds'.

We will give a proof based on the same line as the one of [K-S 4,
Proposition 6.1.4].

Proof. By Proposition 2.4.2 we know that H s H' on cos x Int((y
x {0})°") and that SS(H') c ~m^ x (y x {0})°". It then remains to show that

x {0}D\{0}, ((0; Q, Ps)eSS(lf')

(2.4.4) j

J, ((x; Q,ps)eSS(H).

The map q2 : supp (s~ 1 Ayx{0} (x) ^fj~ x Hms) -> X x S is proper due to (2.4.3) and (i)
of Definition 2.4.3. One may then apply Propositions 5.4.4, 5.4.5 and 5.4.14
of [K-S 4] and get the estimate:

(2.4.5)

Let us then prove (2.4.4) using (2.4.5). Since f / 0 and ((x; £), ps)eSS(/lyx{0})
fl,

we have xedy.
If xEX\a> then SS(H08)nnxts((x9 0)) = 0.
If XECO then H^ ^ H at (x, 0).
If xedco, by (vii) of Definition 2.4.3 we get: N(*t 0) (cos) n N(* 0) (7 x {0})a

= R^o(^Ps).
Assume ((x; {), ps)£SS(H), then one may estimate SS(#Ws) as

ss^jnTc^ax, 0)) c: - R^O(£ Ps) + (SS(H)n^x
1

s((x, 0)))
which implies ((x; ^), ps)eSS(H). This is a contradiction and this completes
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the proof. Q.E.D.

Corollary 2.45. (cf. [K-S 4, Proposition 6.1.4, 6.1.8]) Keep the same
notations as above. Let K be a proper closed convex cone of T^ X and let U a K
be an open cone. Let FeOb(D6(JO) and let W be a conic neighborhood of
Kfl(SS(F)\{0}). Then:

a) (Refined microlocal cut-off lemma). There exists F'eOb(Dfc(X)) and a
morphism u : F' -» F satisfying :

(1) u is an isomorphism on U;
(2) ^1(0)nSS(F /)c=Pru{0}.
b) (Dual refined microlocal cut-off lemma). Same as a) with u: F-»F'.

Proof. It is not restrictive to assume U c= {0} U Int K. Take £0 G 17 and
choose a refined cutting pair (7, co) on X at (0; £0) with Koa c 7 c Uoa. It then
remains to apply Proposition 2.4.4 to the case S = {pt}. Q.E.D.

§2.5. Complements on the Microlocal Inverse Image

As a preparation to the proof of the theorems of § 2. 2 we need to give some
results concerning microlocal inverse images.

Let /: 7-> X be a morphism of manifolds. Take p e Y x XT*X and set px

= f*(p)> PY = T(P)- Assume px^T/X. Set x0 = nx(px), y0 = nY(pY). Fix a
local system of coordinates (x)eX in a neighborhood of x0 = 7rz(px) and let
(x; £) be the associated symplectic coordinates in T*X. Since all statements in
what follows are of a local nature, we may assume X is a vector space. Let px

= (xo'-> £o) and recall that we assumed £0 / 0. Let 7 c Ii0^T be a cone and let
G> c: X be an open set such that :

(2.5.1)
(X0€Q).

Let ^^x(Px) be the category whose objects are the pairs (7, co) satisfying (2.5.1)
and whose morphisms are defined as:

Let <!>F(PX)'' (^^x(Px)~> ^*^F(PX) be the functor associating to an object (7, CD)
of ^Wx(Px) the morphism u: <Px(y, co; F)-»F defined in (2.4.2) (note that y
belongs to Ob(0W/'F(px)) due to Proposition 2.4.2) and to a morphism (7, co)
> (y', 0)') the morphism defined in (2.4.1). Similarly, let \lsF(px): ^W x(px)

px) be defined by ^F(px)((7, co)) = (F ^ fx(y, co; F)).

Proposition 2.5.L Let F6Ob(Dfe(^)) and take peYx xT*X\TfX. The
following isomorphisms hold:
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Here /"1 O^(y, co ; F) is the functor from ^^x(Px) to D&(^; PY) which
associates the object /"^O^fy, co; F) to (7, d)

Proof. Since the proofs of (i) and (ii) are similar we will treat only the case
(i). Denote by f~l F' the functor from ^^ F(px) to D&(7; pY) which associates
f~1Fr to F'-*F. Due to Proposition 1.4.3 we have to show that ^^ x(px)
and &it>j p(px) are cofinal with respect to f~lF' by (j)F(px). Let u: F' ->F be
an object of ^W '̂ F(px). In order to prove that (a) of Definition 1.4.2 holds, we
have to find a pair (7, a>) satisfying (2.5.1) and a morphism /~1(£x(y, co; F)
-> f~lF' in D&(7; py). To this end, embed u in a distinguished triangle F' — >

F — > F0 — > . Since ue^t^ F(px), we have px <£SS(F0). Take a proper closed
convex cone K and an open convex cone U such that px e C7 c K and SS (F0)
nK d {0}. Following the proof of Corollary 2.4.5 we can find a refined
cutting pair (7, co) on X at px such that / is non-characteristic for ®x(y, co; F0)
at x0 and /' 1 SS (*,(?, co ; F0)) n T ~ 1 (pr) = 0. Hence py ̂  SS (/' 1 «, (y, CD ; F0))
and this means that the morphism v\f~l ®x(y, co; F') •^/~1^(7, co ; F), obtain-
ed by applying /~1Ox(<y, co; •) to u, is an isomorphism at pY. Composing, in
Dft(7; PY), v~l with the natural morphism f~19x(y9 co; F')-^f~lF\ we get the
desired morphism /"1*x(y, co; F)-*f~lF'. As for (b) of Definition 1.4.2 we
have to show that for any (7, co) as in (2.5.1), any (F -> Fr)eOb(^^ F(px)) and
any morphism u: F' -> 0^(7, co; F), there exists (7', co')eOb(^Wx(px)) such
that the natural morphism $^(7', co'; F)-> 0^(7, co; F) obtained from (2.4.1)
factors as:

r1®,!/, co'; F) — >rl&x(y, ®; F)

Reasoning as for part (a), one can find a refined cutting pair (7', co') > (7, co) so
that the natural morphisms:

/- 1ox(/, co'; F') ->r1®,(/, <*>'; **(y, ®; ̂ ))

are isomorphisms at py. Composing, in Db(7; py), the inverse of this composite
with the natural arrow /~1®x(7/, co'; F'}^f~lF', we get the claim. Q.E.D.

Let S be another manifold and consider the map:

f=fx ids: Yx S— >JT x S.
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We will identify T*(X x S) with T*X x T*S. For pe Yx XT*X and pseT*S,
set fi = (p, ps) and define px = fK(p), pY = </'(p), Px = UP) and pY = f(p). Set
XQ = nx(px), y0 = 7cr(py), s0 = ns(ps). Fix a local system of coordinates (s) on S
at s0 and consider it as a vector space.

Proposition 2,5.2. Let Fe Ob (£>*(*)), GeOb(Db(S)) and take peY
x XT*X\TY*X, pseT*S. Assume that f'^F (resp.fitpF) is representable. Then
the following isomorphisms hold in Db(Yx S; pY):

(ii) j^RjrWter1*1, q2G) ̂  Hjr*m(qilfc$F, q2G)

(resp.

(iii) fitKjr»mfalG, q[ F) ^ Rjf^fe1 G, q\flPF)).

Here q1 and q2 denote the projections from X x S to X and S respectively
and we remark that (i)-(iii) make sense due to Proposition 1.3.1.

Proof. Since the proofs are similar we will treat only the case (i). For a
pair (y, o>)eOb(^W x(Px)) and an open subset CD' c 5, it is easy to check that

rl®x(y, ®; F)RGm. *f-l9Xxs(y x {0}, u x a>'\ FMG).

We then have the isomorphisms in Db(Yx S; pY):

(F)®G*r lim nrl<l>x(y,<

. , " /~ 1 4> ; rxs (yx{0} , a>XQ> ' ;F |x |G) .

Here co' ranges over an open neighborhood system of s0. Notice that the first
isomorphism follows from Proposition 2.5.1 and the second one from
Proposition 1.4.1.

We need now a lemma.

Lemma 2.5.3. Keeping the same notations as above and for cos as in (2.4.3),
the following isomorphism holds for HeOb(Db(X x S)):

iV (H) * " Jirn^"/-1 ®xxs(y x {0}, cos; H).

Proof. Let be given a morphism in Db(X x S) H'^H which is an isomor-
phism at px. Let H0 be the third term of a distinguished triangle: H'-»H-*H0

—>. By the same proof as in Proposition 2.5.1 it is enough to show that there
exists a pair (y, co)£Ob(^Wx(px)) such that ^y^SS(/"1 ̂ XxS(y x {0}, a>s; H0)).
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For that purpose it is enough to prove that SS(OXxS(y x {0}, c%; H0))njtt/'"1

(pY) c {0}. Since If'1^) = /*'/' ~ * (Pr) x {Ps}> this follows from Proposition
2.4.4. Q.E.D.

End of the proof of Proposition 2.5.2. The only thing which is left to prove
is the isomorphism

s" lim " / - ' O j x s f o x f O j . o j x e B ' j F I E l G ) ,
#*/x(Px)xw'

but this follows from the fact that both cos and CD x CD' describe a fundamental
neighborhood system of (x0, s0). Q.E.D.

Let g : F-» X x S be a morphism of manifolds. Consider the composite :

/: Y-^X x S-^+X.

For peyx^T*^ we will set pY = tf'(p), Px=fn(p)> )>o = tfy(Pr)e ^ (*o>
= 0(yo), Ar = Vi((*o,*o),ftr)eT*(XxS) and ^ = (y0, fe)e 7x (jrx

xS).

Proposition 2.5.4 Let FeOb(Db(X)) and take peYxxT*X\TfX. The
following isomorphisms hold:

(i) fcjFSg-Kq^F),

Proof. Since the proofs are similar we will treat only the case (i). Due to
Proposition 2.5.1 we have to prove the isomorphism:

" im "<r 1 «r 1 <lMy.<B;f)s" lim "g-iQxxsF.Qiq^F).

Let /: t&ut x(Px)~^^^^ x*s(Px) be the functor of filtrant categories defined by
j((y9 oj)) = (y x {0}, co x S) for (7, o>)eOb(^W x(Px))- One has the following
evident isomorphism:

3W? x {0}, 0} x S; FmAs) ^ q;l®x(y, co; F),

and hence the proposition is proven if we show that <8W x(Px) and ^^ x*s(Px)
are cofinal with respect to ^"^^xsCr, O; ^r1^7) by /. To this end it is
enough to prove that they are cofinal by /. In order to prove that (a) of
Definition 1.4.3 holds, for a given (F, Q)e Ob (^WXxS (£*)), we have to find

L
(7, co)eOb(^W x(Px)) and a morphism OXxS(y x {0}, co x S; F |x) As) -* OXxS(r,

Q; F[x]^4s) in Db(Jf x 5; (x0, s0)). It is not restrictive to assume (F, Q) being
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a refined cutting pair on X x S at px. Consider a distinguished triangle:
L L +1

®XxS (r, Q ; F El AS) -> F El yls -> H — > . Choose a refined cutting pair (y, CD) on
X at px such that

~{(x, So)} x (y x {0})0flnSS(H) c= {0} for xed>,
-N*(co) c (7 x {0})0fl Vxed)ny .

Set H' = OXxS(y x {0}, eo x S; H). Due to [K-S 4, Proposition 5.4.8] we have
the estimate : SS (HmxS) c AT* (o> x S)a + SS (H). Due to (vii) of Definition 2.4. 3,
we have: AT(*>so)(co x S) = N*(y)a x {0} for any xedyndco, and hence we get
the estimate:

SS(HmxS)(](n^(x0) x {5o})n(7 x {0})°* c: {0}

From the estimate:

we then get:

and hence H' is a complex of constant sheaves. Moreover, since the stalks at
(XQ, s0) of both sides of the morphism:

(2.5.2) ®xxs(y x {0}, CD x S; O,x5(r, O; F S ^5)) -*

are isomorphic to the stalk of F^AS at (x0, s0), then H' = 0 at (x0, s0). This
means that (2.5.2) is an isomorphism at (x0, s0) and to conclude it is then enough
to compose the inverse of this morphism with the natural morphism ®Xxs

(y x {0}, co x S; <DXx5(r, O; F®AS)) ^®XxSF, &;FmAs).
Part (b) of Definition 1.4.2 is similarly proven. Q.E.D.

§2.6, Proof of the Theorems

We are now ready to prove the theorems stated in §2.2.

Proof of Theorem 2.2 A: Let us decompose / as:

where j is the graph map, q denotes the second projection and we identified N
and j(N). We will divide the proof in several steps.
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The first step will concern the map q for which we shall use Theorem
2.1.1. Remark that fNn = (j x M^Tifx)*^*- Then one checks easily that the
hypothesis (iii) of Theorem 2.2.4 implies the corresponding hypothesis:

(iii)' there is an open neighborhood W of (y0, px) in T/(Yx X) such that qNn is
non-characteristic for CnfX(^S(F)) on tqr

]i
1(W).

Here y0 is the projection of pY on Y.
Since q is smooth the hypotheses of Theorem 2.1.1 are all satisfied.

Applying this theorem we get:

Moreover, since *q'N is a closed embedding one has the isomorphisms:

One then gets:

(2-6.1)

As for the second step let us apply Proposition 2.3.3 to the closed embedding
j. We get the isomorphism:

(2-6.2) ^N(il^'F)pY -^ VN(<l'F)(y0,px),

where p = (y0, V((j>o?/0>o))> Px))- Notice that in Yx (yxX)(T*Fx T*X), p is
written as p = (y0, (j0, px)). Finally remark that

(2.6.3) f-,pF^JltqlF

due to Proposition 2.5.4. By combining (2.6.1), (2.6.2) and (2.6.3) the proof is
complete. Q.E.D.

Proof of Theorem 2.2.3: Decompose the map /=/ x / as follows:

Yx F-Xyx X-t+X x Xi i i
AY - » A - » Ax,

where 2f=idY*f, 1f = fxidx, dY is the diagonal of Y x l ^ and A
= 2f(AY). One has the chain of isomorphisms:
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coAIAx

Here q± and g2 denote the projections from 7x1^ 7x X or X x Jf to the
corresponding factor, the meaning being clear from the context. The second
and the forth isomorphisms follow from Proposition 2.5.2 applied to 2/ and lf
respectively. The third and the fifth one follow from Theorem 2.2.4. Q.E.D.

§3. The Inverse Image Theorem for Sheaves

In [D'A-S] is given a theorem on the well poseness for the Cauchy problem
in a sheaf theoretical frame that allows to recover classical results as those of [H-
L-W], [K-S 1] or [Sc].

In the statement of this theorem, among the others, there are some
hypotheses concerning microlocal inverse images. When dealing with micro-
local images there are two ways that may be taken: to work with ind-objects
and pro-objects or else to restrict the attention to a class of complexes with
prescribed conditions on the micro-support. The first choice is the one of §2.2,
while the second is the one of [D'A-S] . Using the results of section 2, we are
then able to state here a sharper result than that of [D'A-S] that will allow us to
recover also the result of [K-S 2] on the hyperbolic Cauchy problem.

§3.1. Cauchy Problem in Sheaf Theory

Let X be a manifold. We say that KeOb(Db(X)) is weakly cohomologi-
cally constructive (w-c-c for short), if the following conditions are satisfied:

(i) For any xeX, "Km" Rr(t7; F) is represented by F_,
UBX

(ii) For any xeX, "lim" RTC(U ; F) is represented by RT(X}F.
UBX

Here U ranges over an open neighborhood system of x.
In particular, weakly R-constructible complexes on a real analytic manifold

are w-c-c (cf. [K-S 3, §8.4]).
Let /: 7-> X be a morphism of manifolds. Let Z be a subset of Y (e.g. Z

= {3;} for ye 7).

Theorem 3.1.1. Let F and K be objects of Db(X), let L be an object of
D&(7). Assume to be given a morphism ^:L->/~1K. Let V be an open
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neighborhood of n?l(Z). Assume that:
( i ) f is non- char act eristic for F on V,
( i i ) fK is non-characteristic for C(SS(F), SS(X)) on lf'^(V).

Assume that for every pYEn?l(Z) there exist Pi,...,pr in tfr~1(pY) with:
(in) y-1(Pr)a/;-1(ss(F)) c {Pl,...,Pr},
( iv ) fn, p X is representable for j = 1, . . . , r,
( v ) the morphism induced by \l/, L-*f~p.K, is an isomorphism in Db(Y; pY)

for j = l,...,r.
Finally assume:

(vi) K and L are w-c-c,
(vii) the morphism induced by \l/9 RT(j;}(L® coy) ->RF{x}(X (x) cox), is an

isomorphism for every yeZ, x = f(y).
Then the natural morphism induced by \l/ :

(3.1.1) f-1RjP*»t(K9F)\z—+liJtf'#»t(L9f-
lF)\Z9

is an isomorphism.

The only difference between this statement and that of Theorem 2.1.1 of
[D'A-S] is the hypothesis (iv) which is actually weakened.

Proof. One has a morphism induced by if/:

As in [D'A-S], following an idea of [K-S 1], we consider the commutative
diagram :

1 I I
+ 1

where A = Ryj'/c~
1^hom(X, F) and B = [thorn (L,f~1F).

Due to (1.2.1), we are easily reduced to prove that the first and the third
vertical arrows are isomorphisms on Z.

The proof of the first vertical arrow being an isomorphism follows from
hypotheses (vi) and (vii) and is given in [D'A-S].

Let us consider the third vertical arrow.
We have to prove that the natural morphism:

, F)PY

is an isomorphism for every pYEnY(Z). Due to the assumption (iii) we can find
refined cutting pairs (y,-, co,-) on X at pxj (where pxj =fn(pj

:)) such that:
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Of course, ^(y,-, ft),-; F) is isomorphic to F in Db(Jf ; pXjj), and hence, due to
Proposition 2.3.2:

f i . P J F = f l V x ( y j 9 a > j 9 F ) .

Set FJ = *Px(yj9 cOji F). One has the isomorphism F ^ ®jFj in
D6pf ;/,//' ̂ (py)). Since / is non-characteristic for F one also has the
isomorphism f~1F ^ ® j f ~ l F j in Db(7; py) and hence we get the following
chain of isomorphisms :

, F)PY * ( R t f f - 1 ®r
j= PY

^®]=lli horn (f-$3 K, f~p\ FJ)PY

Here the first isomorphism is due to the fact that / is non-characteristic for F
and that /jhom is a microlocal functor, the fourth to Theorem 2.2.3 and
assumptions (ii), (iv), the fifth to assumption (i) and the sixth to assumption (v).

Q.E.D.

§4 Applications to the Cauchy Problem

We said that Theorem 3.1.1 generalizes the corresponding result of [D'A-
S]. As it was for [D'A-S], we are then able to recover (and even extend to
general systems) the classical results of [H-L-W] (cf. also [K-S 1]) on the initial
value problem for a linear partial differential operator when the data are
ramified along the characteristic hypersurfaces as well as a result of [Sc] that
shows how the holomorphic solution for the Cauchy problem can be expressed
as a sum of functions which are holomorphic in domains whose boundary is
given by the real characteristic hypersurfaces issued from the boundary of a
strictly pseudoconvex domain where the data are defined.

Moreover we get the following results.

§41 Other Applications

a) Our aim here is to recover the results of [K-S 2] concerning hyperbolic
systems (cf. [B-S] for the case of a single differential operator).

Let N and M be two real analytic manifolds, and let / be a real analytic
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map from N to M, which extends to a holomorphic map from Yto X. Here Y
and X are complexifications of N and M respectively. Let M be a left coherent
^-module.

Definition 4.1.1. One says that M is hyperbolic with respect to / if the
following conditions are satisfied.

( i ) /is non-characteristic for Jt,
( ii ) '/' - 1 (TN* Y) n/,T x (char (Jf)) c /,- 1 (73 X),
(iii) /B is non-characteristic for C(T£X, char (^)).

Recall that the sheaf of Sato's hyperfunctions on M is defined by $u

:= RFM(0x)(x) coffjx- (Here (9X denotes the sheaf of holomorphic functions
on X.)

We can now state the well-poseness for the hyperbolic Cauchy problem in
the hyperfunction frame (cf. [K-S 2, Corollary 2.1.2]).

Proposition 4.1.2. Let Ji be a hyperbolic system with respect to f. Then
the natural morphism:

/ ~ 1 T> -^? ( M /W \K Jr &<m @x (cJz , z0 M)

is an isomorphism.

Proof. One has the isomorphisms:

= R ffl &tn ((OM/XI

(CDN/Y,

(in the second isomorphism we used the hypothesis (i) of Definition 4.1.1 and the
Cauchy-Kowalevski-Kashiwara's theorem). We then have to show that we can
apply Theorem 3.1.1, for the choice F = R Jti?#mgx(Jf, @x), K = a)M/x, L
= CON/Y- Hypotheses (i)-(iii) as well as (vi) are easily verified, hypotheses (iv) and
(v) follow from the next Lemma 4.1.3, while hypothesis (vii) follows from Lemma
4.1.4. Q.E.D.

Lemma 4.1.3. Let peN x MT£X\TfX, then f~p(AM) is represented by
AN in D6(7;py).

Proof. We can choose a refined cutting pair (y, CD) on X at px so that
f n l ( y ° a } R Ty*X c {0}. The map / is then non-characteristic for Ox(y, co; AM)
and hence we have:

Here the last inclusion follows from the fact that / is induced by a map from N
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to M. Due to [K-S 3, Proposition 6.2.2] we then have the isomorphism at
pY:f~1^x(y, co; AM)^ MN for a complex of ,4-modules M'. Computing the
fiber, we get the result. Q.E.D.

Lemma 4.1.4 One has the isomorphism: Rr{y}(L(x) COY) ^ Rr(x}(X ® cox).

Proof. One has the isomorphisms: R T{y} (L ® CDY) = R T{y} a>N ̂  A ^ R T(X}CDM

(K®G)x). Q.E.D.

Remark 4.1.5. It would be possible to treat micro-hyperbolic systems and
recover Theorem 2.3.1 of [K-S 2] by exactly the same method. Details are left
to the reader.

b) A similar result to that of [Sc] holds in the real case. Let AT be a real
analytic hypersurface of an open subset M of Rn and co an open subset of N with
smooth boundary. Let P be a linear differential operator with analytic
coefficients for which N is hyperbolic. Assume P to have real characteristics
with constant multiplicities transversal to N x MT*M. Following the same line
as above one can get a statement analogous the theorem of [Sc] mentioned at
the beginning of §4 in the frame of hyperfunctions.
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