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ABSTRACT

The problem of stationary, spherical accretion onto a Schwarzschild hole is here reinvestigated by the con-
struction of a self-consistent model which incorporates all relevant physical processes taking place in an astro-
physical plasma, apart from the presence of magnetic fields and dissipative processes. In particular, transfer of
radiation through the accreting gas is treated in full generality using a completely relativistic formalism. A
careful analysis of critical points and boundary conditions for radiation hydrodynamics equations is per-
formed. The complete topology of solutions in the accretion rate-luminosity plane is obtained, showing the
existence of two distinct branches of models with very different emission properties: stationary accretion
reveals, therefore, a bimodal behavior. By means of a self-consistent study of the effects of Compton heating,
both the upper and the lower bounds for the existence of high-luminosity solutions were derived. The stability
of the two possible accretion regimes is also briefly discussed.

Subject headings: accretion — black holes — hydrodynamics — radiative transfer — relativity

1. INTRODUCTION

In the last 20 years many aspects of stationary, spherical
accretion onto black holes have been investigated in great
detail. Starting from the pioneering work by Bondi (1952), who
first pointed out the existence of a critical point in accretion
flows, a great deal of work was devoted to understanding the
properties of accretion, allowing for more and more complex
input physics in the attempt to construct a satisfactory, self-
consistent description of this phenomenon. The final goal of
these studies was primarily to obtain the net energy output
emitted as electromagnetic radiation by the infalling gas in
connection with applications of black hole accretion to several
classes of astrophysical sources. In this respect preliminary
investigations on the hydrodynamics of spherical accretion
proved to be of key importance in shedding light on fundamen-
tal issues like the role played by the sonic point in determining
the uniqueness of the solution. The relativistic generalization of
the Bondi problem considered by Michel (1972) and Begelman
(1978) (see also Novikov & Thorne 1973) demonstrated, in fact,
that spherical accretion onto a Schwarzschild hole must be
necessarily transonic and that, once the state of the gas far
from the hole is specified, the accretion rate M is an eigenvalue
of the problem. Although their analysis was limited to poly-
tropes, this important result turns out to hold in general. The
first to study in some detail the emission properties of the
accreting gas was Shvartsman (1971), who pointed out that the
efficiency of converting gravitational potential energy into
radiation was discouragingly small A full analysis of the
properties of solutions in the presence of radiation was per-
formed by Shapiro (1973a) in the optically thin case and con-
firmed Shvartsman’s semiquantitative results: his models
showed both very low luminosity and very low efficiency.
Some attempts to increase the efficiency of optically thin
models by including magnetic fields and dissipative processes
(see, e.g., Shapiro 1973b; Mészaros 1975) were also proposed.
Actually Shapiro succeeded in constructing a self-consistent
model, because by considering only the optically thin regime
he bypassed the major difficulty of solving the full transfer

problem. On the other hand, if free-free is the dominant emis-
sion process, one can expect that an increase in M should
produce also an increase in luminosity. Clearly flows with
higher accretion rates are doomed to become optically thick,
and this stimulated new interest in the study of solutions which
contain at least an opaque core. The first attempts to solve the
accretion problem treating radiation in the diffusion approx-
imation (Tamazawa et al. 1974; Kafka & Mészaros 1976;
Vitello 1978; Begelman 1979; Gillman & Stellingwerf 1980)
were hindered by the apparent diverging behavior of lumi-
nosity in the inner region. It was only some years later that
Flammang (1982, 1984) gave a satisfactory explanation of this
pathology, pointing out that the same time that for optically
thick solutions the luminosity at infinity is a further eigenvalue
(see also Schmid-Burgk 1978 and Freihoffer 1981 for a dis-
cussion on relativistic transfer in spherical flows). A sequence
of models of this type characterized by very high values of the
accretion rate was studied by Blondin (1986). Although lumi-
nosities of optically thick solutions are higher with respect to
optically thin ones, the total emitted flux is still quite low and
efficiency is not improved at all by increasing M.

All these investigations did not take into account, however,
the effects of Comptonization, which, under certain conditions,
could be important. As noted by Buff & McCray (1974) and by
Ostriker et al. (1976), high-temperature radiation produced in
the internal region could, in fact, heat the gas far from the hole
via Compton scattering, and this, in turn, would cause internal
energy to become everywhere greater than gravitational poten-
tial energy, thus inhibiting the accretion flow (see also Shull
1979). This effect places an upper bound to the possible exis-
tence of stationary solutions on the (log M, log L)-plane,
where L is the emitted luminosity (preheating limit). A further
analysis on this subject, using a time-dependent numerical
code, was performed by Cowie, Ostriker, & Stark (1978) and
by Stellingwerf & Buff (1982), who reached conflicting conclu-
sions: considering also the presence of Compton cooling, as
originally suggested by Bisnovatyi-Kogan & Blinnikov (1980),
Stellingwerf & Buff found, in fact, solutions in almost all the
“forbidden ” regions of Cowie et al.
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A new class of models, in which Comptonization plays a
fundamental role, was discovered by Wandel, Yahil, &
Milgrom (1984); although their analysis was far from being
self-consistent, it is of particular importance, since it shows for
the first time that spherical accretion may also take place with
high enough values of luminosity and efficiency. Actually, by
increasing M, optically thin (a la Shapiro) and optically thick
(@ la Blondin) solutions form a continuous, low-luminosity
branch as discussed by Soffel (1982), while Wandel et al. solu-
tions appear to belong to a disconnected, new branch. In a very
recent work Park (1990a) presented a careful study on station-
ary, spherical accretion onto black holes, summarizing many
aspects of the problem, and giving a definite confirmation of
the existence of high-luminosity solutions, by means of a much
more rigorous treatment. However, a number of important
issues still remain to be clarified, such as the simultaneous
determination of the two branches as solutions of a unique,
self-consistent model or the effective limits imposed by
Compton heating if radiation temperature is not assigned a
priori but is computed together with the thermal balance of the
gas. Moreover, all previous investigations contained some
more or less drastic simplifications regarding a crucial aspect
of the problem, that is to say, the transfer of radiation through
the accreting gas. Here we present a complete analysis of sta-
tionary, accretion flows in which general relativistic radiative
transfer is correctly handled using Thorne’s (1981) moment
formalism. Our model can be regarded as a self-consistent one
in the sense that we included all the relevant physical processes
that can take place in an astrophysical plasma, apart from the
presence of magnetic fields and dissipative effects. The present
formulation of radiative transfer allowed us to construct for
the first time the whole set of accretion models, exploring all
possible regimes. In a certain range of M we have found both
high- and low-luminosity solutions for the same value of the
accretion rate, and we show that preheating places both upper
and lower bounds to the existence of high-luminosity models.
Stationary, spherical accretion can therefore have a bimodal
behavior, and this suggests that one of the two branches could
be unstable. Although no real stability analysis was attempted,
we present a simple argument, based on the minimum entropy
production principle, which indicates that the high-luminosity
branch might be unstable.

2. THEORY

In the following we deal with the problem of radial, station-
ary inflow of matter onto a Schwarzschild black hole. The hole
is at rest with respect to the gas far from it, and we assume that
the presence of a small magnetic field can always couple matter
particles in such a way that a fluid description is adequate even
in regimes where Coulomb collisions are ineffective. Both
dynamical and radiative effects of magnetic fields are neglected,
and dissipative processes, such as viscous heating, neutrino
cooling, and particle production, are not taken into account.
Moreover, we assume that electrons and ions are maintained
at the same temperature by local plasma instabilities. Two-
temperature models, which also include pair production, were
recently computed by Park (1990b) and show essentially the
same features as one-temperature models (Park 1990a), while
the role played by viscous dissipation was analyzed by Turolla
& Nobili (1989), and it was shown that quantitative departures
from the inviscid case are not very relevant unless turbulence is
almost supersonic. We consider, therefore, the accreting
material as a perfect, unmagnetized, one-temperature fluid

made of pure hydrogen. The hydrogen ionization state is deter-
mined both by particle-particle and by particle-photon inter-
actions. Since we treat, at present, only the gray, ie.,
frequency-integrated, radiative problem, photoionization
cannot be self-consistently computed, depending on the flux of
photons with energy greater than the first ionization potential
of the hydrogen atom, E,; = 13.6 eV. For this reason we chose
to include in our models only collisional ionization, although
we are aware that photoionization could be not negligible. On
the other hand, Park’s (1990a) models were obtained assuming
that photoionization is strong enough to keep the gas fully
ionized also beyond the sonic radius, and, as will be discussed
in § 4, his results are quantitatively very similar to ours; such
an agreement suggests that the global properties of accretion
models do not depend strongly on the details of the ionization
balance. The degree of collisional ionization can be computed
by equating the collisional and radiative recombination rates
(Buff & McCray 1974); using the interpolation by Stellingwerf
& Buff (1982), it can be expressed as

F
D=1F

T 1.58 x 10° K
SWEA N P}

Radiation is emitted by the infalling gas mainly via e-p, e-e
bremsstrahlung, free-bound and bound-bound transitions. All
these processes, including relativistic corrections to
bremsstrahlung emission, can be described by a single cooling
function,

ey

AT) = {[1.42 x 10727TY2(1 4+ 4.4 x 1071°T)

+60 x 10-227- /2]~

25 T e 3 -1
+ 10 15349 K ergscm”s . (2)

Relation (2) was obtained by replacing in the cooling function
of Stellingwerf & Buff (1982) the bremsstrahlung contribution
appropriate for a mixture of hydrogen and metals with one for
pure hydrogen (Novikov & Thorne 1973). We allow for both
coherent (Thomson) and incoherent (Compton) electron scat-
tering and assume that the latter can always be described by
the Kompaneets equation, although repeated Compton scat-
terings can be treated correctly within this approximation only
if electrons are nonrelativisitc, a condition that is not satisfied
in some of our models. The effects induced by considering the
full Boltzmann equation, which should be used if electrons are
relativistic, are not easy to access but, becoming electrons
mildly relativistic (¢T/m,c? < 5) only in the very inner region,
we expect the Fokker-Planck approximation to give a reason-
able quantitative answer.

The transfer of radiation was tackled using the projected
symmetric trace-free (PSTF) (Thorne 1981) moment formalism,
which is fully general relativistic and ensures a correct descrip-
tion of the radiation field all the way down to the hole horizon.
Although this approach to radiative transfer in differentially
moving media in a curved geometry is, in our opinion, the
more suitable for astrophysical applications, it did not receive
much attention in the past because the formalism was judged
so awkward as to be no practical use. However, in the case of a
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spherically symmetric, stationary spacetime, described by the
line element

R R\ !
ds? = — 1 — —2)c2de? j EE—_— R?
s < R)c +< R) d

+ RX(d6? + sin? 0d¢?), (3)

where R, = 2GM/c? is the gravitational radius, the complexity
of the formalism is greatly reduced. Moreover, if the flow
shares the same degree of symmetry and radiative processes
are isotropic in the fluid rest frame, as in the problem under
examination, the gray moment equations reduce to a system of
ordinary differential equations (Thorne, Flammang, & Zytkow
1981; Turolla & Nobili 1988) which govern the radial evolu-
tion of the radiation field. As in nonrelativistic transfer theory
(Chandrasekhar 1960), the infinite hierarchy of equations must
be truncated at a given maximum order, [,,,,, specifying at the
same time the closure relations for moments of order higher
than [ ,.. In this investigation we consider only the first two
moment equations (I = 0,1) for the radiation energy density
wo = 4nJ and the radiative flux w, = 4nH/c, both evaluated in
the fluid rest frame,

W) — owy — vwz[@ — 1] + 2w1<1 + y_)
vy y
3 vy y
, 4)
. oL y
w, — vw) +—w0+w2(3+;>
rR,s

3
’ 4 ’
—val[@+l]+—xwo=—u.
vy 3y y

Here and in the following, r = R/R, is the adimensional radial
coordinate, a prime denotes differentiation with respect to Inr,
v is the fluid spatial velocity measured by a stationary observer
in units of ¢, and y = [(1 — 1/r)/(1 — v?)]*/2 In equations (4) all
moments have the dimensions of an energy density, and the
radiative luminosity in the comoving frame L is related to w,
by L = 4nR?cw,. We stress that equations (4) do not contain
any approximation and hold the same for v and r arbitrary
close to unity. The only limitation comes from having used just
two moments to describe the radiation field; this introduces an
error which is typically ~15% in the determination of w, and
w; (Turolla & Nobili 1988). The moment equations must be
supplemented with a closure relating the radiation shear w, =
4n(K — J/3) (see eqs. [A1] and [A2]) either to w, or to w,.
Usually the closure is expressed as w, = f(t)w,, where 7 is the
electron scattering optical depth and f(r) is the variable
Eddington factor. Several different choices were proposed in
the literature for f, all of them, however, discussed in connec-
tion with static atmospheres. At present we use a simple rela-
tion of the form

2 1

W2 _ 1
w, =/@ 31+

G

which can reproduce different behaviors varying the integer n;
n = 4 was chosen in actual calculations.

The source moments s, and s, account for the energy and
momentum exchange between particles and photons; by intro-
ducing the emissivity €, the absorption and flux mean opacities
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Ko, K1, and the rest-mass density p,, we obtain

So = Pol€ — KoWo) + 5§ ,
(6)
Sy = —PokiWy.
The term s§ arises from inelastic scatterings and can be derived
by integrating over frequencies the corresponding nongray
source moment (eq. [6.14] of Thorne 1981):

4k
SS=KesPoWo_z(T_ T;r); (7)
m,c
in doing so we neglected the n* term in the Kompaneets equa-
tion (see Rybicki & Lightman 1979) and defined the radiation
temperature

T, = (4k)~! Jmhvwo(r, v)dv / foo w(r, v)dv K . 8)
o o

Equation (7), where k., is the electron scattering opacity, yields
the known result for the Compton heating-cooling of a plasma
at temperature T. By assuming that emitters and absorbers are
in local thermodynamic equilibrium, we can use Kirchhoff’s
law to write

2
Wo oA Wo
s0=poe<l—;1,—4)+sg=mzc<l—ﬁ>+sg. (9)

4

Since in our models scattering turns out to be the dominant
contribution to k,, we replaced the flux mean opacity with the
sum of scattering and Rosseland mean opacities, the latter
computed taking into account only free-free transitions:

R
K1 = Keg + Kt
Kt = 6.4 x 1022p, T~ "2 cm? g1 .

The equations of relativistic hydrodynamics are obtained by
projecting the 4-divergence of the total (gas plus radiation)
stress-energy tensor along and orthogonal to the fluid 4-
velocity # and adding the rest-mass conservation. After lengthy
manipulations (see Appendix for more details), they can be cast
in the form

(10)

! R
P+pL+P+54% 0 (Buler equation),
y y
, Po TR, .
pP—(P+p)2+—2=0 (energy equation), (11)
Po vy
©y) +Po +2=0 (continuity equation) ,
vy Po

where P and p are the gas pressure and energy density, includ-
ing rest-mass energy, respectively. Direct integration of the
continuity equation yields the baryon conservation in the fa-
miliar form

4nR%poyv =M ; 12)
moreover, by combining equations (11), it is possible to obtain
a second integral of motion (Thorne et al. 1981):

P+p+4w0/3+w2>=E. 13
Po Po

M and E are, respectively, the accretion rate and the total
luminosity, which is the sum of radiative, advective, and matter
flux contributions.

1 + v?)y*L — yM(

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991ApJ...383..250N

No. 1, 1991

By adopting yv, py, and T as independent variables, equa-
tions (11) can be written in a different form which is more
suitable to numerical integration and makes presence of a criti-
cal point apparent. Once a generic set of equations of state is
given, the gradients of p and P can be reexpressed as
(Flammang 1982)

4 Po T
——=A—+B—,
P+p Po T

P! ’ Tl
=Py,
P+p po T

(14)

where we have introduced the thermodynamical quantities

A=__p£_(6_p> , B=__T_<g£.> ,
P+p\0po)r P +p\0T),,

a= _Po_ <_6£> b= .T_ <Q> .
T P+p \Opo)r’  P+p\oT),,’

from the reciprocity relation it follows that 4 + b = 1. By
inserting equations (14) in equations (11) and recalling the defi-
nition of y, we finally get

()
2 _ 2 A ) 2
(v v7) o ve + 2
rR
+y_—Lv(P + ) [(T—1)sg+vs,]=0,
, , (15)
I__(l—._l)liq__"R_gjo_z ,
T po  Boy(P +p)
vy  Po

where I’ = 1 + b/B is the local adiabatic exponent and v? =
(0P/dp), = a + b*/B is the adiabatic sound speed squared. As
can be seen from the first of equations (15), the hydrodynami-
cal equations exhibit a critical point which coincides with the
sonic point where the flow velocity equals the matter sound
speed.

Since the temperature range spanned by typical accretion
models is such that hydrogen is neutral far from the hole and
electrons may become relativistic near the horizon, the equa-
tions of state must incorporate both the effects of ionization
and the contribution of relativistic electrons. As long as
protons are nonrelativistic, their expression is

P=(1+x)5’—°kT,

14

(16)
3 P P
2> x Po _nPop .
pP=poC +2(x+x)mka+(l x)mpEH’
here
kT K4(07Y)

x_2rp1 _
X 3 [9 (r’ 1) IJ’ 0 - mecz ’ ’7 - K2(0_1) )
and K, is the modified Bessel function of order n. The rela-
tivistic correction for electrons is contained in x*, while x,
given by equation (1), accounts for the varying degree of ion-
ization. Starting from equations (16), it is now possible to
compute all thermodynamical quantities of interest, like v? and
T'; the polynomial fit by Service (1986) was used to evaluate x*.
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Equations (4) and (15), together with the gas constituent
equations (16) and the expressions for the source moments (6),
describe stationary, spherical accretion onto a Schwarzschild
hole in a self-consistent way, within the hypothesis stated up to
now. It should be noted, however, that the radiation tem-
perature T, can be computed only if the frequency-dependent
transfer is solved, being defined as an integral over the actual
spectral distribution of the photon energy density. A correct
determination of T, is of key importance in understanding the
physical properties of accretion and is still one of the major
difficulties in the framework of gray models. A reasonable way
out of this problem was recently proposed by Park & Ostriker
(1989) and Park (1990a), who estimated the energy exchange
due to repeated Compton scatterings between a thermal, non-
relativistic electron gas and the radiation field. Following their
approach, we assume that the radiation temperature is gov-
erned by the equation

T T—-T,
L=y, — 17
T C T B ( )

b

where Y, = 4kT max (t, t2)/m, c? is the Compton parameter.

3. CRITICAL POINTS AND BOUNDARY CONDITIONS

The accreting flow and the radiation field generated by the
infalling gas are described by the radiative transfer and hydro-
dynamical equations, equations (4) and (15), coupled to the
radiation temperature equation (17) and supplemented by the
constituent relations (6) and (16). The resulting system is
formed by 6 differential equations in the 6 unknown functions
Wo, W1, Y0, po, T, and T, which have to be integrated subject to
suitable boundary conditions. As is well known and discussed
in the previous section, stationary, spherical flows possess a
critical point at v = v, where a regularly condition must be
imposed if the solution has to be transonic. Not so evident, and
far less appreciated, is the presence of a second critical point
which appears in the moment equations. This singular point
can be made explicit by solving equations (4) with respect to
either w, or w and substituting for w, the closure (5). After
some manipulation they take the form

0? —of — %)w; = G(r, wo, Wy, 0, V'), 1=0,1, (18)

which shows that whenever
V- —4=0, (19)

equations (4) develop a singularity. The existence of singular
points in stationary, spherically symmetric moment equations
was realized and discussed in detail by Turolla & Nobili (1988),
who proved that, for a generic truncation order [,,, there exist
l.ax + 1 critical points located where the Legendre polynomial
P,__.(v) vanishes; in the present case I, = 1 and P, = 3(v?
— 3)/2 is, in fact, proportional to the coefficient of moments
derivatives in equation (18), apart from the term uf’ this differ-
ence arises because they assumed a closure in which w, is a
known function of r, not related to moments of lower order. In
the accretion problem only the positive root of equation (19) is
meaningful, so just one critical point is to be expected, and its
location depends on the actual value of f(z). Similarly to what
happens in the case of the hydrodynamical critical point, a
regularity condition must be imposed at the radius where the
value of the flow velocity satisfies equation (19). For optically
thick flows (f— 0) the singularity appears at v = 37 /2 and
then moves toward higher values of v with decreasing optical
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depth, until it reaches v = 1 in the optically thin regime where
4 f—%. In the latter case the regularity condition becomes a
) boundary condition for the radiation moments at the horizon.
It can be proved that the generalization of equation (19) to an
arbitrary truncation order is

Zl,m +1
l

where now f(t) = w,_,_41/W,,,.. The requirement for a regular
behavior of the solutions at the critical points reduces by 2 the
number of boundary conditions that have to be imposed to
solve the complete system of differential equations (4), (15), and
(17). The exact form of such regularity conditions will be dis-
cussed later on.

As far as boundary conditions are concerned, we note that
the particular nature of the problem requires their specification
both at radial infinity and at the horizon. In particular, in the
hydrostatic region outside the sonic radius the gas must be in
radiative energy equilibrium, a condition which translates into
so = 0. Since the density gradient vanishes there, it follows
from the energy equation that the natural boundary condition
for T at radial infinity is

Pips®) = 75— fOP,,(0) =

max

TI
T 0. (20
At the same time we have to require that for r —» oo the radi-
ation field streams radially, that is to say, wo = w; oC r~2, or,
equivalently,
Yo_ 5. @1)
Wo
equation (21) is the Sommerfeld radiative condition and holds
if matter far from the hole is not illuminated by an external
source.

The form of the boundary condition for the radiation tem-
perature is a more delicate issue. Park (1990a) imposed either
T,= T or T, = T/4 at the horizon, depending on the value of
the Compton parameter there. If Yz > 1, Compton scattering is
effective in establishing thermal equilibrium between matter
and radiation, while in the opposite case the radiation spec-
trum remains a pure bremsstrahlung, characterized by T, =
T/4. Actually, in the context of gray accretion models, the
concept itself of radiation temperature is introduced only to
evaluate the Compton energy exchange between electrons and
photons and become meaningless if Comptonization is ineffec-
tive. For this reason we choose to use

T,=T, (22)

independent of the value of Yo atr = 1.

The last condition is used, then, to fix the value of the matter
density at some radius, this being the only degree of freedom of
the model. In particular, we assigned p, at the horizon:

Po=Pou; (23)

clearly condition (23) is completely equivalent to fixing the
accretion rate M.

The numerical integration of the system of differential equa-
tions (4), (15), and (17), subject to boundary conditions (20}~
(23) and to regularity conditions at the two critical points, was
performed using a generalized Henyey method (Nobili &
Turolla 1988). The main advantage of this relaxation-type
technique is that critical-point conditions can be handled on
the same footing as boundary conditions and need not to be
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specified with much accuracy, in the sense that any reasonable
condition which forces the solution to cross the critical points
with bounded derivative is usually enough to guarantee the
convergence of the numerical scheme. In the present case we
imposed

o) _
yv

at the sonic point, since the 4-velocity logarithmic gradient
switches from —2 (hydrostatic region) to — % (free-free region)
just around the sonic radius. The second regularity constraint
is provided by the request that either wy oc Tw,/y or wy oc r~2
at the radius where expression (19) vanishes, ift 2 1 ort < 1,
respectively (see Turolla & Nobili 1988); written in terms of
logarithmic derivatives, the two conditions become

~1 (24)

wl Wl TI !
w_0=w_1+ T _y;’
0 1

(25)
Wo

Wo

=-2.

The location of the critical points is automatically found by the
code, looking for the radii where the Jacobian of the system of
differential equations vanishes. The electron scattering optical
depth, needed to evaluate the first of equations (25) and the
function f(z), was computed replacing [ k. podR with a dis-
crete sum over the intervals into which the integration domain
is divided. Starting from the trial solution, all quantities,
including both the optical depth and the Jacobian, are then
upgraded as convergence proceeds. Logarithmic variables
were actually used apart from radiation moments; the latter
were replaced by new variables proportional to r?w,. The CPU
time for generating a model was typically ~5 minutes on a
VAX 8600.

Finally we note that the differential form of the continuity
equation can be replaced with the first integral (12), ass1gn1ng
M instead of (p,),. We preferred the former choice, however, in
order to provide a further accuracy check on our numerical
results by looking at the constancy of the accretion.rate along
the solution. In principle the same considerations can be
applied to the energy equation, which can be replaced by the
integral (13). There are, however, two major drawbacks in this
case: M and E are related to each other, but this relation is not
a priori known, and moreover equation (13) is so awkward
numerically as to be of little practical use. In actual models, in
fact, M was found to be constant up to few parts in 10, while
the fractional variation of E can be as high as 4%.

4. NUMERICAL MODELS AND DISCUSSION

In this section we present the results of numerical integra-
tion of the coupled flow and radiative transfer equations. We
constructed accretion models characterized by a density at the
horizon in the range 5.0 x 10~ <(p0),, <25 x 1074, cor-
responding to 0.03 < < 200; here m = M/Mgy,, being
Myyq = Lgga/c?, the Eddmgton accretion rate. In all cases the
radial coordinate spans the range 1 < r < 10'°, and 130 mesh
points are used, equally spaced on a logarithmic scale; the
fractional accuracy of the solution is less than 103, this being
the largest fractional correction on variables at the final iter-
ation. Our results depend on the hole mass at least when
bremsstrahlung absorption, which is not scale-free (Chang &
Ostriker 1985), becomes important; at present a reasonable
value for a stellar mass hole was chosen, M =3 M. The
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TABLE 1
CHARACTERISTIC PARAMETERS FOR SELECTED MODELS ALONG THE LOwW-LUMINOSITY BRANCH
(Pol (Polu
(gem™3) T 1 e=l/m (gem™3) m 1 e=l/m

S5x 1078 0.035 30x 1078 8.6 x 1077 4x1076 ... 2.85 44 x 1077 1.5 x 1077

Ix1077 0.071 35x1078 49 x 1077 6x 107 ... 427 9.2 x 1077 22 x 1077

13x1077 i, 0.092 25x1078 27 x 1077 Ix1075 i, 7.12 1.5 x 107¢ 21 x1077

1L7x 1077 i, 0.12 1.1 x 1078 94 x 1078 4x 1075 28.5 48 x 107¢ 1.7 x 1077

2x 1077 0.14 14 x 1078 9.7 x 1078 6x 1075 42.7 6.6 x 107° 1.6 x 1077

S5x 1077 0.36 35x1078 9.8 x 1078 Ix107% . . 71.2 8.8 x 107° 1.2 x 1077

1x107% i, 0.71 7.6 x 1078 1.1 x 1077 25 x107% 178 1.5 x 1073 84 x 1078

TABLE 2
CHARACTERISTIC PARAMETERS FOR SELECTED MODELS ALONG THE HIGH-LUMINOSITY BRANCH
(Poln (Pl

(gcm™3) m 1 e=l/m log (T,),, (gcm™3) m 1 e=lm log (T),,
37x107%............. 2.51 20 x 1074 82 x 1073 9.3 2x 1073 ... 14.1 7.7 x 107 55x 1073 8.6
4x 107 ... 2.85 2.1 x 107# 73 x 1073 9.3 4x107% ... 28.5 1.8 x 1073 64 x 1073 83
6x107%. .............. 4.27 27 x 107# 6.4 x 1073 92 6x 1075 ...l 427 3.5%x 1073 8.1x 1073 8.2
8x107%............... 5.55 34 x 1074 62 x 1073 9.0 8x 1075 ...l 55.5 59 x 1073 1.1 x 1074 8.1
L1x107%............. 7.68 4.5 x 1074 59 x 1073 8.9 I1x107%. . 71.2 94 x 1073 1.3 x 1074 8.1
1.5x 1075, ..., 10.5 59 x 1074 56 x 1073 8.8 13x107%............. 91.6 19 x 1072 2.1 x 1074 8.1

values of some characteristic parameters of selected models are
summarized in Tables 1 and 2, where | = L/Lg4, is the lumi-
nosity in units of the Eddington luminosity and the efficiency
e = l/m has been introduced. Figure 1 shows the position of
our solutions in the (log ri, log I)-plane (crosses), where some
models of Park (1990a) (open triangles) are also shown for
comparison. From the figure there appears the existence of two
separated branches with very different emission properties: a
low-luminosity (LL) and a high-luminosity (HL) branch. Our
HL models are in good agreement with those of Wandel et al.
(1984) and Park (1990a), who first proved the existence of high-
luminosity solutions. Although the possible presence of two
distinct accretion regimes characterized by the same value of
the accretion rate was already realized by Park (1990a), the

TT T T [ T T T T [ T T T T T 7 T T T o7

;o
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log |
T

x%
- *& .
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a
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-2. -1. 0.0 1. 2. 3.
log m

FiG. 1.—The (log m, log l)-diagram for our solutions (crosses); some of
Park’s (1990a) models (open triangles) are also shown for comparison.

simultaneous determination of both the branches within the
framework of a unique, self-consistent model of accretion is
here presented for the first time.

In the following we briefly discuss the main properties of our
accretion models. In this respect it is useful to introduce the
effective optical depth, 7. = [37p(t + 15)]'/%, where 1, and 15
are the optical depths computed using Planck and Rosseland
mean opacities, respectively. In all our models the temperature
at radial infinity is close to 10 K, the value at which radiative
energy equilibrium is attained when free-bound cooling domi-
nates; we stress that this particular value for T, was not
imposed “a priori” but is a natural consequence of boundary
condition (20). For low 1, n ~ 0.035, models are optically thin
and show the distinctive features of Shapiro’s (1973a) solu-
tions: adiabatic temperature profile interior to the sonic
radius, electrons becoming relativistic near the horizon where
T ~ 10'° K, hypersonic and completely ionized flow, no
Comptonization, and radial streaming of the radiation field.
The run of variables for a typical model of this class is plotted
in Figure 2. As m increases up to ~0.1, the external region
becomes more and more isothermal because of the increasing
efficiency of cooling processes; this in turn drives a decrease of
the temperature in the inner region and hence of the total
luminosity, which reaches a local minimum (Soffel 1982; Park
1990a). Around m ~ 0.1 bremmstrahlung absorption is no
longer negligible, and models start to become effectively opti-
cally thick near the horizon. The quantitative difference of our
solutions with respect to those of Park in this region (see Fig. 1)
most likely arises because he did not include true absorption in
his calculations. For the same reason, Park could not find
numerical solutions in the range 0.1 < < 3, where models
form an optically thick core. Now the temperature profile is
almost isothermal everywhere at T ~ 10* K, apart from the
inner region where 7., 2 1 and heating exceeds cooling (Fig.
3); the temperature at the horizon is, however, much smaller
with respect to the optically thin case. When the internal
region becomes thick, matter and radiation approach equi-
librium (w, ~ aT*; again see Fig. 3), and an increase in
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FiG. 2.—Top left to bottom right : the run of 4-velocity u = yv, sound speed v,, and matter density p,; radiation energy density w, and radiation flux w,, both in
ergs cm ™ 3; gas and radiation temperatures, T and T,; electron scattering and effective optical depths, 7 and 7.4; ionization degree x; and the ratiowy/aT*. Here

(Po)y =1 x 1077 gem ™3, = 0.071.

again produces an increase in luminosity. With increasing
the effective optical depth becomes higher and higher and the
core starts to be thick also for electron scattering. As a conse-
quence a trapping radius does form, below which photons are
dragged into the hole, and the rise in luminosity becomes
slower. For m = 3 the models are similar to Blondin’s (1986)
hypercritical solutions and exhibit a thermalized, diffusive core
with wy ~ aT*, 3w, ~ ywy/t; Comptonization is still negligi-
ble everywhere, and the flow is hypersonic with a wide region
of partial ionization. An example of such a solution is shown in
Figure 4. Introducing the thermalization radius r,,, where w,
starts to equal aT#, any increase in luminosity requires a corre-
sponding increase in r,,, as can be seen by comparing Figures 3
and 4, since optically thick models radiate a luminosity L =
4nR% o T(R)*. The emergent radiation spectrum should be
almost exactly blackbody because the last scattering radius is
always smaller than r,,, and the infall velocity of the emitting
photosphere is ~0.01 or less, so that Comptonization due to
both bulk and thermal motions is negligible (Blandford &
Payne 1981; Payne & Blandford 1981; Colpi 1988).!

! Preliminary results of frequency-dependent calculations show, however,
that the emergent spectrum could be significantly different from a pure black-
body, owing to bremsstrahlung emission in the outer layers.

High-luminosity solutions are characterized by a much
more complex thermal behavior in which Comptonization
plays a fundamental role, as first noted by Wandel et al. (1984).
These models are effectively optically thin, becoming margin-
ally thick only for m ~ 70, although they always contain an
inner region which is optically thick to scattering. Free-bound
cooling still dominates the outer region, keeping temperature
close to ~10* K until Compton heating overwhelms cooling,
producing a sudden increase in T around r,, = 10*3~10%5, the
exact location depending on rh. Temperature must reach a
value between 10° and 107 K before bremsstrahlung cooling
becomes competitive, after which a (pseudo-)adiabatic regime
is established, as discussed by Wandel et al. and Park. In the
inner region, which is truly adiabatic, electrons are mildly rela-
tivistic and Comptonization succeeds in maintaining matter
and radiation in thermal equilibrium. Figures 5 and 6 show the
run of variables for two models of the high-luminosity (HL)
branch. Hydrogen becomes completely ionized for r <r,
while it is only partially ionized outside, where the sonic point
is located. The Mach number never gets much greater than
unity, owing to the high value of the sound speed, and reaches
a minimum around r,. For m < 70, wy < aT* at any radius,
while models with higher sz do have a thermalization radius r,
where wy = aT*. Numerical integration of all HL models
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FIG. 3.—Same as Fig. 2, but for the (po)y = 1 x 1076 gcm ™3, 7 = 0.71 model

proved rather troublesome, and we were forced to use a finer
grid around r, inserting ~40 new mesh points, to avoid prob-
lems connected with the steep temperature gradient there.

As we have seen, low-temperature, optically thick models
are expected to emit blackbody radiation from a photosphere
of radius r,, at an effective temperature ~10* K. It is inter-
esting to note that the most luminous HL solutions, which are
characterized by very different physical properties, could turn
out to be quite indistinguishable from low-luminosity (LL)
models with the same m for a distant observer. Radiation,
mostly produced in the inner region and strongly Comp-
tonized, is in fact reprocessed by outer layers that have higher
and higher true opacity owing to decreasing temperature, and
is progressively thermalized until LTE is reached at r,, (Fig. 6).
The emergent spectrum should again be blackbody, since the
effective temperature at r, coincides with the matter tem-
perature at the same radius, T ~ 4 x 10* K, as can be easily
verified by a direct calculation. As seen from infinity, accretion
onto a black hole with m = 70 will therefore have the same
observational appearance irrespective of the details of the
process, apart from the luminosity produced, which is about
1000 times greater along the HL branch. This large variation in
the energy output can be interpreted in terms of the different
thermalization radii of the two solutions; for example, the

m = 71 models have (ry)q. ~ 15(rn)LL, While the effective tem-
peratures are almost equal. The old suggestion by Shvartsman
(1971) that isolated, accreting holes should appear similar to
DC white dwarfs seems therefore to be put on a firmer footing
by our analysis. All these considerations do not hold, however,
for HL models with 1 < 70 that have only a scattering but no
thermalization radius because of lower density and higher tem-
peratures; in this case the properties of the emitted radiation
are very different and should show the features of a super-
position of Comptonized bremsstrahlung spectra at different
temperatures.

As already noted by Park, the HL branch is not smoothly
connected to the LL branch, and HL solutions seem to exist
only for 2 < m < 100 (again see Fig. 1). It was realized long ago
by Ostriker and coworkers (Ostriker et al. 1976, Cowie et al.
1978) that if Comptonization is very efficient, high-energy
photons generated in the inner region can heat up the gas
around the accretion radius to the point at which matter inter-
nal energy becomes greater than gravitational potential
energy, thus inhibiting a sonic transition (preheating effect); if
this condition is satisfied, no stationary flow can exist. The
most natural explanation of the nonexistence of models with
very high radiation temperature should therefore be sought in
terms of preheating effects. From the first of equations (15) it is
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possible to derive an implicit expression for the sonic radiusr,,

1 2r:R

re= e {1 + yvshpoycz [T — Dsq + vss,]} ,  (26)
where h = (P + p)/p, c? is the (adimensional) enthalpy per unit
mass. Since in all models the sonic point is well within the
region where radiation streams radially, we can put w, =w,
L/4nR*c in equation (26), obtaining

1 Poyr’R, A
ry = 4y203 {1 + (r 1) Ushcz m:c
yi[4 kT T)
= — r—-nt1-—=2)—1{r. (27
+ h [vs ecz( )< T 27)

The requirement that r; be positive leads to the “classical”
result for the preheating limit,

L4+ (F — 1) sy it
es"'p s
T —1 4kT T
+[ - mcz(l——TZ)—1]1=0, (28)

where we assumed y = h = 1; in both equation (27) and equa-
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tion (28) true absorption was neglected. However, besides the
limit given by equation (28), a further condition must be satis-
fied in order to avoid the appearance of a second sonic point,
which will be catastrophic, since there is no free parameter left
that can be adjusted to make this new sonic transition smooth.
Interior to the sonic radius gravity prevails and the flow is
practically in free fall. The only effect that could produce a
deviation from free fall is a sharp enhancement of the gas
internal energy, as can be easily seen by computing the log-
arithmic rate of change of the velocity gradient D = (yv)/(yv)
starting from the first of equations (15),

oln|D|  v2 2+D
dlnv?  v®—0v2 D

s

(29)

Since the right-hand side of equation (29) is always negative,
because, for r <r,, v is greater than v,, D is negative, and
2+ D = —py/po > 0, any increase of the sound speed, that is
to say, of matter energy, produces a flattening of the velocity
profile which becomes pronounced as v, approaches v. More-
over, under such conditions, the rise of the sound speed cannot
be stopped by any modification in the flow dynamics, depend-
ing almost entirely upon radiative heating-cooling balance, so
that a second sonic transition would be unavoidable. Station-
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FiG. 4—Same as Fig. 2, but for the (p,)y = 1 x 107* gem ™3, m = 71, low-luminosity model
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F1G. 5—Same as Fig. 2, but for the (p,)y = 6 x 1076 gcm 3, i = 4.27, high-luminosity model

ary, regular solutions exist, therefore, only if heating inside the
sonic point is not so drastic as to produce an excess of internal
with respect to gravitational energy, as was discussed by Cowie
et al. in connection with time-dependent models. All previous
considerations can be put on a more quantitative ground by
assuming that D < 0 represents a safe condition for the exis-
tence of solutions. From the first of equations (15), this
amounts to asking that

1 rR
2 _ 9 _
2! = " yep 4y L~ Dso+os,1<0 - (30)

for r < r,. As was discussed, HL models show a steepening of
the temperature profile at r, where the gas internal energy
sharply rises; condition (30) should therefore be checked there.
For typical values of r,, radiation streams radially, y = h = 1,
v < kT,/m,c* v} < 1/r, and we can neglect bremsstrahlung
emission and absorption with respect to Compton heating.
With these simplifications the limit implied by equation (30)
can be written as

2Kesp0 rs?t Rg(r - 1) ;rTEL

e

4KkT,
2

l—m=0. 31)

Both equations (28) and (31) are represented by a curve in
the (log m, log I)-plane, which is an upper bound to the exis-

tence of regular solutions; it should be noted that they are not
necessarily linear relations between 1 and | because all quan-
tities, in particular T,, entering equations (28) and (31) depend
on the accretion rate. We have computed the two limits for
each HL model using the actual values of all variables at r, and
r,,. The result is shown in Figure 7, where the curve a denotes
the “classical ” preheating limit (eq. [28]) and curve b the limit
given by equation (31). Both these curves were obtained by a
polynomial fit to single points; the result was extrapolated to
visualize better the behavior of equations (28) and (31) outside
the explored range of ri. The shaded area in the picture is the
forbidden region where no stationary, regular solution to the
present model of accretion can be found. As can be seen from
Figure 7, the solution with the lowest m, m = 2.51, lies very
close to the “classical” preheating limit, while that with the
highest accretion rate, i = 91.6, is near the “ generalized ” pre-
heating limit; the better agreement at low i is quite naturally
interpreted as due to the rather steep behavior of both equa-
tion (31) and the -l relation at high . The previous finding of
Park, confirmed by our results, that HL solutions exist only in
a limited interval of accretion rates can therefore be explained
in terms of the twofold action of the preheating effect. On one
side, solutions with m < 2 cannot exist because of too high a
radiation temperature, which produces an overheating of the
gas around the accretion radius; on the other side, the presence
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of models with 1 2 100 is forbidden by the high radiation flux
combined with an increasing scattering optical depth which
makes Compton heating more and more effective interior to
the sonic radius. We note once again that all previous con-
siderations apply only to regular solutions, while flows which
develop a shock transition are not necessarily limited by pre-
heating effects. The possible existence of such solutions was
explored by Chang & Ostriker (1985), who actually found that
stationary shocks can form in accreting flows. Shocked solu-
tions seem very promising owing to their high efficiency and
luminosity, but their appearance still needs confirmation
within a self-consistent accretion model. Our numerical code
can handle standing shocks using relativistic Rankine-
Hugoniot jump conditions, but, despite an intensive search, we
were not able to find any shocked solution, at least near the
low end of the HL branch where the flow seems naturally on
the edge of forming a shock ; models with i ~ 3 show, in fact, a
deep minimum around r,, in the Mach number where the ratio
v/v, gets extremely close to 1.

A major open question remains the stability of solutions,
and in particular of those along the HL branch. The bimodal
pattern of accretion models for ri1 2 2 suggests, in fact, that at
least one of the branches could be unstable. If proved to be
true, such a possibility would be of extreme interest in connec-
tion with the theoretical interpretation of phenomena like

log r
FIG. 6—Same as Fig. 2, but for the (po)y = 1 x 10™* gcm ™3, 7 = 71, high-luminosity model

0.0

log |
Illll]lle[l’lllll'Il

U U N N U TR TN N WA NN SO TN (A T TN SN N N O N B |

0.0 1. 2.
log m

w

F16. 7—The (log 1, log )-diagram for the HL solutions; curve a marks the
“classical ” and curve b the “ generalized ” preheating limits. The shaded area is
the forbidden region where no stationary solution can be found (see text for
details).
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flaring emission from compact objects. In the past, several
investigations (see, e.g., Stellingwerf & Buff 1978; Moncrief
1980; Gilden & Wheeler 1980; Vitello 1984) were devoted to
the stability analysis of spherical flows under special assump-
tions; even if no definite conclusion can be reached in the case
of the self-consistent accretion model considered here, several
clues seem to indicate that LL models should indeed be stable.
Both optically thin and optically thick solutions are, in fact,
almost adiabatic, while models with m ~ 1 are nearly isother-
mal, and the stability of such regimes was proved by Moncrief
(1980) and by Stellingwerf & Buff (1978), respectively. None of
these considerations can actually be applied to HL models,
and although no thorough stability analysis will be attempted
here, we present a simple argument supporting the idea that
HL solutions might be unstable. According to Prigogine’s cri-
terion, the steady state (when it exists) is characterized by the
minimum rate of entropy production. Nobili, Calvani, &
Turolla (1985) suggested that when several stationary solutions
exist, the stable steady state might be the one with the
minimum rate of entropy production among them. Actually,
an application of the minimum entropy production criterion to
radiation hydrodynamics is a delicate issue because photons
can be quite far away from thermodynamical equilibrium even
if matter is always near to it (see Essex 1984 for a complete
discussion). If we assume, nevertheless, that in the present case
the conditions for the validity of Prigogine’s criterion are ful-
filled and follow the original idea of Nobili et al., the stability of
solutions can be tested evaluating the entropy production rate
for each model along the two branches and comparing the
results. For a non-perfect fluid characterized by a heat flux
4-vector ¢' and by a shear viscosity coefficient #, the entropy
generated per unit volume and per unit time is (Novikov &

Thorne 1973)
. 1 AT,
Si.=—1|2 2 _ i st .
. T[ no q<T +a,>], (32)

where a' is the 4-acceleration, ¢¥/ is the shear tensor, and o2 =
0'a;;. By considering the total stress-energy tensor T = T%
+ T}, we can assimilate radiative terms to dissipative contri-
butions (see Appendix):

d= M= wiel,

N o 3\ P w, . (33)
= gi=\= —=d".
27’0‘ M (2) p ag

The entropy generation is then obtained by integrating equa-
tions (32) over the 4-volume bounded by the two hypersurfaces
7 and t + dr, where now 7 is the proper time of the comoving
observer. Apart from a dimensional constant, the entropy pro-
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duction rate is then

s— _ | TL ) 00| 0T
S = —J; T{vf[ o 1]+ T }dlnr, 34)

where f'is defined in equation (5). § was evaluated for each HL
and LL model; for the same ri the former always show a much
larger entropy production rate, and this can be regarded as a
hint of the instability of HL solutions. We are aware that this
analysis gives by no means a definite proof, and an investiga-
tion of the full time-dependent problem is needed.

5. CONCLUSIONS

In this paper we have presented a self-consistent model for
stationary, spherical accretion onto a Schwarzschild black
hole. By making use of a fully general relativistic approach and
solving the complete transfer problem under no simplifying
assumption, we were able to compute solutions in a wide range
of accretion rates, ranging from optically thin to optically thick
regimes. We discussed carefully the presence of critical points
in the coupled system of equations describing radiation hydro-
dynamics and their role in freezing free conditions; in particu-
lar we stressed the existence of a second critical point, besides
the hydrodynamical one, connected with the radiation field.
Several models were computed in a range of 1 spanning more
than four decades. Results were then used to construct a com-
plete and consistent (log i, log l)-diagram which, confirming
previous analysis, shows that two distinct branches of solu-
tions with very different emission properties are present. The
nonexistence of high-luminosity models outside a defined
range of i, 2 < < 100, is explained as the result of Compton
heating of the gas near or interior to the sonic radius, by
evaluating both “classical” and “generalized” preheating
limits in a consistent way with the actual value of the radiation
temperature. We briefly addressed also the issue of stability of
solutions, giving some hints about the instability of HL
models.

Finally we point out that some important aspects concern-
ing stationary, spherical accretion are still open to further
investigations, even leaving aside fundamental problems like
the presence of magnetic fields and dissipation, which require
an approach rather different from that presented here.
Although we discussed in a semiquantitative way the proper-
ties of the emitted spectrum, a precise answer to this important
question can be given only by solving the full, nongray trans-
fer; such an approach is also needed for an exact determination
of the radiation temperature and to take into account photo-
ionization. A careful time-dependent analysis, incorporating all
the physical inputs of the present stationary model, should be
also undertaken to assess the stability of the two possible ac-
cretion modes. Both of these issues are presently under investi-
gation.

APPENDIX

In this Appendix we derive hydrodynamical equations in the form of equation (11), starting from the conservation laws TY,;=0.
The general expression for the radiation stress-energy tensor can be written in terms of the first three PSTF moments as

T{ =3 M0 + SMg7 + 2.4uD + Y (A1)

where u' is the flow 4-velocity and g” is the metric tensor. In the particular case of spherical symmetry the PSTF moments take the

simple form

M=wy, M =wel,

MY = wie el — Jejel — jejel) (A2)
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where

eb=u, e =dla,

¢, =(0,0,r"1,0), €5=(0,0,0,(r sin 6)™") (A3)

is the tetrad carried by the comoving observer (Thorne 1981; Thorne et al. 1981). By introducing the fluid spatial velocity v as
measured by a stationary observer and y = [(1 — 1/r)/(1 — v?)]*/2, the 4-velocity and the 4-acceleration become

. d
u’=< 4 ,vy,0,0>, ai=—y<"—y,y,0,0>, (Ad)
—9Yo00 dr \ —goo
a = dy/dr. The total stress-energy tensor for the gas plus radjation medium is given by T¥ = T% + T, and
TY = (P + py'’ + $Pg" (AS)

if matter can be treated as a perfect fluid. The hydrodynamical equations are then obtained by taking the 4-divergence of T and
projecting it along e} and ¢;, to obtain the local energy and r-momentum component conservation, respectively. After some algebra,
by making use of the baryon conservation law

(Po ui);i = (po).i U +p®=0 (A6)
and recalling that
, 1d
®= u;i "_“ﬁa(rzvy) s
the equations can be written as
dy dP 4 dy 1 dw, 1 d ,,, 14 , _
BAD G I G T3 G ¥V T gVt 5 ) =0, (
A7)
dp P+pdp, dw, 4 w, d ) 1 d ,, rd(yv
r po dr  dr 3yortar (yor®) + y2or? dr Wriw) + w, ydr\r) 0.
The final step consists in eliminating the radiation terms in equations (A7) via the radiative transfer equations (4), written as
1 d 2. 4w d o D T d(y)_%
y2or? dr Woriwy) + 3 yor? dr yor’) + dr M ywdr\r) w’ A8)
1 d 220 1 dwo 4 dy 1d ., _
yor? dr(y vr w1)+3y ar T3y th dr(r ywg) = 51 -
Upon this substitution, equations (A7) yield precisely equations (11).
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