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Convergence to the Time Average
by Stochastic Regularization

Olga Bernardi, Franco Cardin, Massimiliano Guzzo

Dipartimento di Matematica
Università degli Studi di Padova

Via Trieste, 63 - 35121 Padova, Italy

obern@math.unipd.it, cardin@math.unipd.it, guzzo@math.unipd.it

In Ergodic Theory it is natural to consider the pointwise convergence of finite time averages of functions with
respect to the flow of dynamical systems. Since the pointwise convergence is too weak for applications to
Hamiltonian Perturbation Theory, requiring differentiability, we first introduce regularized averages obtained
through a stochastic perturbation of an integrable Hamiltonian flow, and then we provide detailed estimates. In
particular, for a special vanishing limit of the stochastic perturbation, we obtain convergence even in a Sobolev
norm taking into account the derivatives.

Keywords: Stochastic regularization techniques; approximated first integrals; Hamiltonian Perturbation Theory;
Ergodic Theory.

1. Introduction

In the last decades, complex non–linear dynamics turned out to be important in many fields of
Physics. In particular, dynamics which exhibit an intermediate behaviour between integrability and
ergodicity are still largely under investigation. Indeed, in Celestial Mechanics, Statistical Physics,
Plasma Physics and Quantum Mechanics, one may typically find examples of orbits which visit,
in a long time interval, several resonances displaying different transient chaos behaviors, tempo-
rary captures into resonances or stickiness phenomena (see, for example, [13], [15], [2], [7], [6]).
Since in these cases random–phase approximations as well as the averaging principle are not effi-
cient at all, these orbits are usually difficult to formally study with traditional tools. In this context,
we find useful to utilize averaging techniques which are resonance independent, i.e. global in the
phase–space, inspired by standard viscosity and stochastic regularizations of PDEs (see, for exam-
ple [11], [5]). We remark that, in the last years, a completely new approach to Hamiltonian dynamics
motivated by regularization techniques has been represented by the so–called weak KAM theories
(see [10], [14], [9]), which focus on the existence of the Aubry–Mather invariant sets.

In this paper, we propose to use stochastic regularizations to generate global canonical transfor-
mations and approximated first integrals. Our starting point is a class of globally defined approx-
imate first integrals previously introduced in [4], which generalize the usual time average of any
phase–space function.

We recall that the time averages of functions with respect to the flow of Hamiltonian sys-
tems are extensively studied in Ergodic Theory and Hamiltonian Perturbation Theory. In particular,
averages over integrable flows are commonly used as generating functions of averaging canon-
ical transformations. In this setting it is well–known since Poincaré that resonances related to
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O. Bernardi, F. Cardin, M. Guzzo

the so–called small divisors represent topological obstructions to the regularity of the time aver-
ages, which may be highly irregular in phase–space. The celebrated KAM and Nekhoroshev Theo-
rems [12], [1], [16], [17] overcame this problem with a refined use of algebraic as well as geometric
treatment of small divisors. More recently, the so–called weak KAM theories (see [10], [14], [9])
have studied the problem by new perspectives, based on variational and PDE regularizations by
viscosity techniques.

In this paper, we obtain regularization by further averaging with respect to a stochastic per-
turbation (see [11], and also [4]) in order to deal with smooth functions. To use such regularized
functions in any perturbation framework, we need estimates which include also the derivatives.
We here provide such estimates with norms obtained by averaging over open domains of the phase–
space. Therefore, our result has a probabilistic interpretation (probabilistic results in the weak KAM
framework have been recently obtained by Evans, see [8], [9] and also [3]), whereas classical Hamil-
tonian Perturbation Theory provides uniform estimates valid for all initial conditions. The strength
of the stochastic perturbation is a parameter of our construction. With evidence, it is interesting the
limit of vanishing stochastic perturbations, which we study in detail by providing estimates based
on Sobolev norms taking into account the first derivatives.

The paper is organized as follows. In Section 2 we define in detail the class of regularized
approximated first integrals and we discuss their relation with resonances and small divisors. In
Section 3 we introduce specific norms for phase–space functions and we state convergence results
about the regularized averages. Section 4 is devoted to proofs.

2. Relations between time averages, resonances and stochastic regularization

Let us consider the integrable Hamiltonian system with Hamilton function H(I,ϕ) := h(I), defined
on the action–angle phase–space A×T

n, where A ⊆ R
n is open bounded and g(I) := ∇h(I) is a

diffeomorphism over A such that

|g(I)| ≤C, max
i, j

∣∣∣∣∂gi

∂ I j
(I)
∣∣∣∣≤ D,

∣∣∣∣det
∂g
∂ I

(I)
∣∣∣∣≥ m (2.1)

∀I ∈ A, for some constants C,D,m > 0. We also denote by λ > 0 a Lipschitz constant for g in the
set A. For any smooth phase–space function f (I,ϕ), we consider its finite time average

GT (I,ϕ) :=
1
T

∫ T

0
f (φ t(I,ϕ))dt, (2.2)

where φ t(I,ϕ) = (I,ϕ +g(I)t) is the flow of the integrable Hamiltonian h(I). By denoting with

f (I,ϕ) := ∑
k∈Zn

fk(I)eik·ϕ , GT (I,ϕ) := ∑
k∈Zn

GT
k (I)e

ik·ϕ

the Fourier expansions of f and GT , we have

GT
k (I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fk(I) if k ·g(I) = 0

fk(I)
eik·g(I)T −1
ik ·g(I)T if k ·g(I) �= 0
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Convergence to the Time Average by Stochastic Regularization

With evidence, if fk �= 0 for a suitably large –that is generic– set of indices k ∈ Z
n, the presence of

small divisors k ·g(I) represents an obstruction to the regularity both for GT and for its limit

f̄ (I,ϕ) := lim
T→+∞

GT (I,ϕ). (2.3)

We remark that the Fourier coefficients GT
k (I) are similar to the Fourier coefficients of

χ(I,ϕ) =− ∑
k∈Zn\0

fk(I)
ik ·g(I)eik·ϕ ,

whose ε–time flow φε
χ formally conjugates the quasi–integrable Hamiltonian system

Hε(I,ϕ) = h(I)+ ε f (I,ϕ)

to its first order average

(Hε ◦φε
χ)(I,ϕ) = h(I)+ ε f0(I)+O(ε2).

Of course, χ and GT are affected by the same convergence problems.
We assume from now on that f is smooth and with generic Fourier expansion. Precisely, let us

introduce for any k ∈ Z
n the resonant manifold

Rk = {I ∈ A : k ·g(I) = 0}, (2.4)

as well as

Rk( f ) = {I ∈ A : k ·g(I) = 0 and | fk(I)|> 0}. (2.5)

Then, we assume that the set

R( f ) =
⋃

k∈Zn\0

Rk( f ) (2.6)

is dense in A.
We now consider the regularization of GT based on a vanishing stochastic perturbation, previ-

ously introduced in [4] by following a technique described in [11]. First, we consider the interme-
diate function

Fμ(I,ϕ) := μ
∫ +∞

0
f (φ t(I,ϕ))e−μtdt, (2.7)

with μ = 1/T , which represents an unusual finite time average of f , in the sense that it is an expo-
nentially damped average of f with respect to the integrable flow φ t . Then, for any μ ,ν > 0,
we introduce the regularized function Fμ ,ν as follows. Let (Ω,F ,P) be a probability space and
wt : Ω → R

n a n–dimensional Wiener process. Then, we obtain a stochastic differential equation by
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O. Bernardi, F. Cardin, M. Guzzo

perturbing the Hamilton equations with a white noise{
İt = 0

ϕ̇t = g(I)+2νẇt
(2.8)

whose flow is Φt
ν(I,ϕ ,ω) = (I,ϕ +g(I)t +2νwt(ω)). As in [4], for μ ,ν > 0 we introduce

Fμ ,ν(I,ϕ) := μM(I,ϕ)

(∫ +∞

0
f (Φt

ν (I,ϕ ,ω))e−μtdt
)
. (2.9)

In the previous formula, M(I,ϕ) represents, for (I,ϕ) fixed, the average on all the trajectories of
the Brownian motion (2.8), while the exponential damping e−μt allows us to interpret Fμ ,ν as an
effective average over a time interval of some multiples of 1/μ (see [4]).

3. Convergence results

Inspired by Birkhoff–Kinchin Theorem, which considers the (pointwise) convergence of the finite
time averages GT , it is natural to study also the convergence of the regularized functions Fμ ,ν for
vanishing μ ,ν . Since the pointwise convergence is too weak for applications requiring at least a
C 1 smoothness, we introduce specific norms on A×T

n. In more detail, for any function u(I,ϕ) =

∑k∈Zn uk(I)eik·ϕ on A×T
n, the uniform Fourier norm

|u|∞ := ∑
k∈Zn

sup
I∈A

|uk(I)| (3.1)

as well as the norms obtained with averages over the action space

|u|0 := ∑
k∈Zn

∫
A
|uk(I)|dI (3.2)

anda

|u|1 := |u|0 + ∑
k∈Zn

n

∑
j=1

∫
A

(∣∣∣∣∂uk

∂ I j
(I)
∣∣∣∣+ ∣∣k juk(I)

∣∣)dI. (3.3)

Let us remark that, by considering the usual L1 and Sobolev W 1,1 norms on A×T
n, in particular

‖u‖W 1,1 = ‖u‖L1 +
n

∑
j=1

(∥∥∥∥ ∂u
∂ I j

∥∥∥∥
L1
+

∥∥∥∥ ∂u
∂ϕ j

∥∥∥∥
L1

)

and we have

1
(2π)n ‖u‖W 1,1 ≤ |u|1 ≤ 1

(2π)n ∑
k∈Zn

∥∥uk(I)eik·ϕ∥∥
W 1,1

For any phase–space function f , we discuss the convergence of the approximated first integrals GT ,
Fμ and Fμ ,ν to the time average f̄ both in the uniform Fourier norm | · |∞ –see (3.1)– and in the
action–averages based norm | · |0 given in (3.2). In particular, we prove the next

aThe notation |u|0, |u|1, |u|∞ has been here chosen in order to avoid any confusion with the standard uniform and Sobolev
norms.
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Convergence to the Time Average by Stochastic Regularization

Proposition 3.1. Let us consider a smooth phase–space function f (I,ϕ). The functions GT , Fμ and
Fμ ,ν converge to f̄ in the | · |0 norm on A×T

n. Precisely, we have

|GT − f̄ |0 ≤ 4Cn−1

m ∑
k∈Zn\0

| fk|∞ 3+ log(‖k‖TC)

T
(3.4)

|Fμ − f̄ |0 ≤ 2Cn−1

m ∑
k∈Zn\0

| fk|∞ μ
‖k‖

(
1+ log

‖k‖C
μ

)
(3.5)

|Fμ ,ν − f̄ |0 ≤ 2Cn−1

m ∑
k∈Zn\0

| fk|∞ μ
‖k‖

(
1+ log

‖k‖C

μ +ν ‖k‖2

)
. (3.6)

Instead, if the set R( f ) defined in (2.6) is dense in A, the functions GT , Fμ and Fμ ,ν do not uniformly
Fourier converge to f̄ in any set B×T

n with B ⊆ A open.

As it arises from the previous proposition, the three different finite time approximations GT , Fμ

and Fμ ,ν behave in the same way with respect to the | · |∞ and | · |0 norms. Indeed, the difference
consists in the convergence in the | · |1 norm given in (3.3). In such a case, the GT , Fμ do not
converge to f̄ , and it is remarkable that the convergence of Fμ ,ν is obtained only in a special limit
of vanishing stochastic perturbation, as stated in the proposition below.

Proposition 3.2. Let us consider a smooth phase–space function f (I,ϕ). For any μ ,ν > 0 the
function Fμ ,ν satisfies

∣∣Fμ ,ν − f̄
∣∣1 ≤ 2Cn−1

m ∑
k∈Zn\0

(
μ

[
1+ log

‖k‖C

μ +ν ‖k‖2

](
(1+n) | fk|∞+

+
n

∑
j=1

∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞)

+
1
2

n2πD
μ

μ +ν ‖k‖2 | fk|∞
)

(3.7)

on A×T
n. In particular, for any sequence μi, νi > 0 converging to zero and such that

lim
i→+∞

μi

νi
= 0,

we have

lim
i→+∞

|Fμi,νi − f̄ |1 = 0.

Differently, if R( f ) defined in (2.6) is dense in A, the functions GT and Fμ do not converge to f̄ in
the | · |1 norm on any set B×T

n with B ⊆ A open.

Let us remark that the convergence of Fμ ,ν to f̄ requires a restriction of the sub-sequences
μi,νi because in (3.7) we find contributions proportional to μ/μ + ν ‖k‖2, while the contributions
μ log

(
‖k‖C/μ +ν ‖k‖2

)
which are dominant in (3.6) converge for (μ ,ν)→ (0,0).

The proofs of Propositions 3.1, 3.2 are reported in Section 4.
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O. Bernardi, F. Cardin, M. Guzzo

4. Proofs

The different time averages (2.2), (2.7) and (2.9) can be alternatively expressed in terms of their
Fourier coefficients, as discussed in the following technical

Lemma 4.1. Let us consider

f (I,ϕ) = ∑
k∈Zn

fk(I)eik·ϕ . (4.1)

The Fourier coefficients of

GT (I,ϕ) = ∑
k∈Zn

GT
k (I)e

ik·ϕ , Fμ(I,ϕ) = ∑
k∈Zn

Fμ
k (I)eik·ϕ , Fμ ,ν(I,ϕ) = ∑

k∈Zn

F μ ,ν
k (I)eik·ϕ

are respectively

GT
k (I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fk(I) if k ·g(I) = 0

fk(I)
eik·g(I)T −1
ik ·g(I)T if k ·g(I) �= 0

(4.2)

Fμ
k (I) =−μ

fk(I)
ik ·g(I)−μ

(4.3)

and

Fμ ,ν
k (I) =−μ

fk(I)
ik ·g(I)−μ −ν‖k‖2 (4.4)

Proof. The first equality easily follows from (2.2) and (4.1) by direct calculations. Indeed

GT (I,φ) =
1
T

∫ T

0
f (φ t(I,ϕ))dt =

1
T

∫ T

0
∑

k∈Zn

fk(I)eik·ϕ eik·g(I)t dt

=
1
T ∑

k∈Zn

fk(I)eik·ϕ
∫ T

0
eik·g(I)t dt.

Moreover, from

1
T

∫ T

0
eik·g(I)t dt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if k ·g(I) = 0

eik·g(I)T −1
ik ·g(I)T if k ·g(I) �= 0

we immediately obtain formula (4.2). Similarly for (4.3)

F μ(I,ϕ) = μ
∫ +∞

0
f (φ t(I,ϕ))e−μtdt = μ

∫ +∞

0
∑

k∈Zn

fk(I)eik·ϕ eik·g(I)t−μt dt

= μ ∑
k∈Zn

fk(I)eik·ϕ
∫ +∞

0
e(ik·g(I)−μ)tdt =−μ ∑

k∈Zn

fk(I)
ik ·g(I)−μ

eik·ϕ .

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                        14

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

i P
ad

ov
a]

 a
t 0

6:
18

 0
2 

M
ay

 2
01

3 



Convergence to the Time Average by Stochastic Regularization

We conclude by proving the equality (4.4). We first take into account (2.9), so that∫ +∞

0
f (Φt

ν(I,ϕ ,ω))e−μtdt = ∑
k∈Zn

fk(I)eik·ϕ
∫ +∞

0
e(ik·g(I)−μ)t e2iνk·wt (ω)dt.

As a consequence –see (2.9)– we obtain

F μ ,ν(I,ϕ) = μM(I,ϕ)

(∫ +∞

0
f (Φt

ν(I,ϕ ,ω))e−μtdt
)

= μ ∑
k∈Zn

fk(I)eik·ϕ
∫

Ω

[∫ +∞

0
e(ik·g(I)−μ)t e2iνk·wt (ω)dt

]
P(dω)

= μ ∑
k∈Zn

fk(I)eik·ϕ
∫ +∞

0

[
e(ik·g(I)−μ)t

∫
Ω

e2iνk·wt (ω)P(dω)

]
dt. (4.5)

Since wt : Ω →R
n is a n–dimensional Wiener process, the corresponding covariance matrix R(t) =

Ri j(t) = tδi j and therefore ∫
Ω

e2iνk·wt (ω)P(dω) = e−ν‖k‖2t .

Therefore, from equation (4.5) we have

F μ ,ν(I,ϕ) = μ ∑
k∈Zn

fk(I)eik·ϕ
∫ +∞

0
e(ik·g(I)−μ−ν‖k‖2)tdt =−μ ∑

k∈Zn

fk(I)
ik ·g(I)−μ −ν‖k‖2 eik·ϕ .

The next sections are devoted to the convergence results, in three different norms, of GT , Fμ and
Fμ ,ν to the time average f̄ defined in (2.3). From (4.2), we immediately obtain f̄ = ∑k∈Zn f̄k(I)eik·ϕ ,
with

f̄k(I) =

{
fk(I) if k ·g(I) = 0

0 if k ·g(I) �= 0
(4.6)

4.1. Proof of Proposition 3.1

We start by proving that GT does not converge to f̄ in the uniform Fourier norm. Let us consider

(GT − f̄ )(I,ϕ) := ∑
k∈Zn

(GT − f̄ )k(I)eik·ϕ .

From (4.2) and (4.6) we immediately obtain

(GT − f̄ )k(I) =

⎧⎪⎨
⎪⎩

0 if k ·g(I) = 0

fk(I)
eik·g(I)T −1
ik ·g(I)T if k ·g(I) �= 0

(4.7)

Since the set R( f ) defined in (2.6) is dense, there exists a dense set of points Ī ∈ A such that
k̄ ·g(Ī) = 0 and | fk̄(Ī)|> 0 for some k̄ ∈ Z

n\0. Since g is a diffeomorphism, we have

lim
I /∈Rk̄ , I→Ī

∣∣∣∣∣e
ik̄·g(I)T −1
ik̄ ·g(I)T

∣∣∣∣∣= lim
J→0

∣∣∣∣eiJT −1
iJT

∣∣∣∣= lim
J→0

√
2[1− cos(JT )]

|JT | = 1,
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O. Bernardi, F. Cardin, M. Guzzo

and also

sup
I∈A\Rk̄

∣∣∣∣∣ fk̄(I)
eik̄·g(I)T −1
ik̄ ·g(I)T

∣∣∣∣∣≥ lim
I /∈Rk̄ , I→Ī

∣∣∣∣∣ fk̄(I)
eik̄·g(I)T −1
ik̄ ·g(I)T

∣∣∣∣∣= | fk̄(Ī)| .

As a consequence,

|GT − f̄ |∞ = ∑
k∈Zn

sup
I∈A

∣∣(GT − f̄ )k(I)
∣∣≥ | fk̄(Ī)|> 0

that is, GT does not uniformly Fourier converge to f̄ in any set B×T
n with B ⊆ A open.

We proceed with the same discussion for Fμ . By denoting

(Fμ − f̄ )(I,ϕ) := ∑
k∈Zn

(Fμ − f̄ )k(I)eik·ϕ ,

from (4.3) and (4.6) we have

(Fμ − f̄ )k(I) =

⎧⎨
⎩

0 if k ·g(I) = 0

−μ
fk(I)

ik ·g(I)−μ
if k ·g(I) �= 0

(4.8)

By considering as before Ī ∈ R( f ) such that k̄ ·g(Ī) = 0 and | fk̄(Ī)|> 0, for some k̄ �= 0, from

lim
I /∈Rk̄, I→Ī

∣∣∣∣−μ
fk̄(I)

ik̄ ·g(I)−μ

∣∣∣∣= | fk̄(Ī)|

we have

|F μ − f̄ |∞ = ∑
k∈Zn

sup
I∈A

∣∣(Fμ − f̄ )k(I)
∣∣≥ | fk̄(Ī)|> 0

that is, Fμ does not uniformly Fourier converge to f̄ in any set B×T
n with B ⊆ A open.

We conclude the first part of the proof by showing that also Fμ ,ν does not uniformly Fourier
converge to f̄ . Indeed, in such a case, formulas (4.4) and (4.6) give

(Fμ ,ν − f̄ )k(I) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fk(I)
[

μ
μ +ν‖k‖2 −1

]
if k ·g(I) = 0

−μ
fk(I)

ik ·g(I)−μ −ν‖k‖2 if k ·g(I) �= 0

(4.9)

By considering again k̄ ·g(Ī) = 0 and | fk̄(Ī)|> 0 with k̄ �= 0, and sequences (μi,νi)→ 0, we discuss
the following two cases.

(i) If limi→+∞ νi/μi = 0, we have

lim
i→+∞

lim
I /∈Rk̄, I→Ī

|(F μi,νi − f̄ )k̄(I)|= lim
i→+∞

∣∣∣∣μi
fk̄(Ī)

μi +νi‖k̄‖

∣∣∣∣= | fk̄(Ī)|.
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Convergence to the Time Average by Stochastic Regularization

(ii) On the contrary, if the sequence νi/μi does not converge to zero, we consider

∣∣(F μi,νi − f̄ )k̄(Ī)
∣∣= | fk̄(Ī)|

∣∣∣∣
[

μi

μi +νi‖k̄‖2 −1
]∣∣∣∣= | fk̄(Ī)|

νi
∥∥k̄
∥∥2

μi +νi
∥∥k̄
∥∥2

which does not converge to zero as i tends to infinity.

As a consequence of all previous cases, we conclude that F μ ,ν does not uniformly Fourier converge
to f̄ in any set B×T

n with B ⊆ A open.
We proceed by discussing the convergence to f̄ in the | · |0 norm. Since g : A → R

n is a diffeo-
morphism, the set of all resonances R :=

⋃
k∈Zn\0 Rk has measure zero. Consequently, the norm

| · |0 can be rewritten as

|u|0 = ∑
k∈Zn

∫
Ã
|uk(I)|dI

where

Ã := A\R = {I ∈ A : k ·g(I) �= 0 for all k ∈ Z
n\0}. (4.10)

We first prove limT→+∞ |GT − f̄ |0 = 0. From (4.2) and (4.6) we immediately obtain

(GT − f̄ )k(I) = fk(I)
eik·g(I)−1
ik ·g(I)T ∀I ∈ Ã

so that

∫
Ã
|(GT − f̄ )k(I)|dI =

∫
Ã

∣∣∣∣∣ fk(I)
eik·g(I)T −1
ik ·g(I)T

∣∣∣∣∣dI

≤ | fk|∞
∫

Ã

√
sin2(k ·g(I)T )+ [cos(k ·g(I)T )−1]2

|k ·g(I)|T dI = | fk|∞
∫

Ã

√
2[1− cos(k ·g(I)T )]

|k ·g(I)|T dI.

Using the change of variables

I �→ J := g(I) (4.11)

and assumption (2.1), we obtain

∫
Ã
|(GT − f̄ )k(I)|dI ≤ | fk|∞

∫
Ã

√
2[1− cos(k ·g(I)T )]

|k ·g(I)|T dI ≤ | fk|∞
m

∫
g(Ã)

√
2[1− cos(k · JT )]

|k · J|T dJ.

(4.12)
Let now ẽ1, . . . , ẽn be an orthonormal basis of Rn with k ∈ 〈ẽ2, . . . , ẽn〉⊥ and R a rotation matrix such
that Rk = ‖k‖ẽ1 (the dependence of the basis and the rotation matrix on k ∈ Z

n is here omitted). By
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O. Bernardi, F. Cardin, M. Guzzo

the further change of variables

J �→ x := RJ (4.13)

the quantity k · J in (4.12) becomes k · J = ‖k‖x1, and for any x in the integration domain Rg(Ã) we
have x = Rg(I) with I ∈ Ã and ‖x‖ ≤ ‖g(I)‖ ≤C. As a consequence, we obtain

∫
Ã
|(GT − f̄ )k(I)|dI ≤ | fk|∞

m

∫
g(Ã)

√
2[1− cos(k · JT )]

|k · J|T dJ

=
| fk|∞

m

∫
Rg(Ã)

√
2[1− cos(‖k‖x1T )]

‖k‖|x1|T dx1 . . .dxn

≤ | fk|∞Cn−1

m

∫ C

−C

√
2[1− cos(‖k‖x1T )]

‖k‖|x1|T dx1 =
| fk|∞Cn−1

m‖k‖T

∫ ‖k‖CT

−‖k‖CT

√
2(1− cosy)

|y| dy

=
2| fk|∞Cn−1

m‖k‖T

∫ ‖k‖CT /2

−‖k‖CT/2

∣∣∣∣sin y
y

∣∣∣∣dy =
4| fk|∞Cn−1

m‖k‖T

∫ ‖k‖CT /2

0

∣∣∣∣siny
y

∣∣∣∣dy

≤ 4| fk|∞Cn−1

m‖k‖T

∫ 2π

0

∣∣∣∣ siny
y

∣∣∣∣dy+
4| fk|∞Cn−1

m‖k‖T

∫ ‖k‖TC/2

2π

1
y

dy ≤ 4| fk|∞Cn−1

m‖k‖T
[l0 + log(‖k‖TC)] (4.14)

with l0 :=
∫ 2π

0

∣∣∣ siny
y

∣∣∣dy ≤ 3. Consequently,

|GT − f̄ |0 ≤ ∑
k∈Zn\0

4| fk|∞Cn−1

m‖k‖T
[3+ log(‖k‖TC)]

proving that GT converges to f̄ in the | · |0 norm.
We conclude the proof with the convergence of Fμ and F μ ,ν to f̄ . By using formulas (4.4) and

(4.6), we have

(Fμ ,ν − f̄ )k(I) =−μ
fk(I)

ik ·g(I)−μ −ν‖k‖2 ∀I ∈ Ã.

Hence ∫
Ã
|(Fμ ,ν − f̄ )k(I)|dI = μ

∫
Ã

| fk(I)|√
(μ +ν‖k‖2)2 +(k ·g(I))2

dI

≤ μ | fk|∞
∫

Ã

1√
(μ +ν‖k‖2)2 +(k ·g(I))2

dI

The same changes of variables of the previous case, see (4.11) and (4.13), provide
∫

Ã
|(F μ ,ν − f̄ )k(I)|dI ≤ μ | fk|∞Cn−1

m

∫ C

−C

1√
(μ +ν‖k‖2)2 +‖k‖2x2

1

dx1
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Convergence to the Time Average by Stochastic Regularization

=
μ | fk|∞Cn−1

m‖k‖
∫ ‖k‖C

μ+ν‖k‖2

− ‖k‖C
μ+ν‖k‖2

1√
1+ x2

dx =
2μ | fk|∞Cn−1

m‖k‖
∫ ‖k‖C

μ+ν‖k‖2

0

1√
1+ x2

dx

=
2μ | fk|∞Cn−1

m‖k‖

[∫ 1

0

1√
1+ x2

dx+
∫ ‖k‖C

μ+ν‖k‖2

1

1√
1+ x2

dx

]
≤ 2μ | fk|∞Cn−1

m‖k‖

[
l1 +

∫ ‖k‖C
μ+ν‖k‖2

1

1
x

dx

]

=
2μ | fk|∞Cn−1

m‖k‖
[

l1 + log
‖k‖C

μ +ν‖k‖2

]
(4.15)

with l1 := arcsinh 1 ≤ 1. Consequently

|Fμ ,ν − f̄ |0 ≤ 2Cn−1

m ∑
k∈Zn\0

| fk|∞ μ
‖k‖

[
1+ log

‖k‖C
μ +ν‖k‖2

]

and for ν = 0 we obtain also (3.5).
Inequalities (3.6) and (3.5) respectively prove that Fμ ,ν converges to f̄ for (μ ,ν)→ (0,0) and

Fμ converges to f̄ for μ → 0 in the | · |0 norm. �

4.2. Proof of Proposition 3.2

Let us consider any open set B ⊆ A. Since g : A → R
n is a diffeomorphism, the | · |1 norm in B×T

n

–see (3.3)– can be rewritten as

|u|1 = ∑
k∈Zn

{∫
B̃
|uk(I)|dI +

n

∑
j=1

∫
B̃

(∣∣∣∣∂uk

∂ I j
(I)
∣∣∣∣+ ∣∣k juk(I)

∣∣)dI

}

with B̃ = B∩ Ã, see (4.10).
We first prove that GT does not converge to f̄ in the set B×T

n. It is sufficient to prove that there
exists ε > 0 such that for any large T we have

n

∑
j=1

∑
k∈Zn

∫
B̃

∣∣∣∣
(

∂GT
k

∂ I j
− ∂ f̄k

∂ I j

)
(I)
∣∣∣∣dI > ε . (4.16)

From (4.2) and (4.6), for any I ∈ B̃ we have

(GT − f̄ )k(I) =

⎧⎪⎨
⎪⎩

fk(I)
eik·g(I)T −1
ik ·g(I)T if 0 �= k ∈ Z

n

0 if k = 0

so that

(
∂GT

k
∂ I j

− ∂ f̄k

∂ I j

)
(I) =

⎧⎪⎨
⎪⎩

∂ fk

∂ I j
(I)

eik·g(I)T −1
ik ·g(I)T + fk(I)

∂
∂ I j

(
eik·g(I)T −1
ik ·g(I)T

)
if 0 �= k ∈ Z

n

0 if k = 0
(4.17)
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O. Bernardi, F. Cardin, M. Guzzo

We notice that the first addendum in (4.17) tends to 0, that is

lim
T→+∞

∫
B̃

∣∣∣∣∣∂ fk

∂ I j
(I)

eik·g(I)T −1
ik ·g(I)T

∣∣∣∣∣dI = 0.

Indeed, by using the changes of variables (4.11) and (4.13) as in the proof of Proposition 3.1 –see
also (4.14)– we obtain

∫
B̃

∣∣∣∣∣∂ fk

∂ I j
(I)

eik·g(I)T −1
ik ·g(I)T

∣∣∣∣∣dI ≤
∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞ 4Cn−1

m‖k‖T
[l0 + log(‖k‖TC)].

As a consequence, it remains to study the other term of the equality (4.17), precisely

n

∑
j=1

∑
k∈Zn

∫
B̃
| fk(I)|

∣∣∣∣∣ ∂
∂ I j

(
eik·g(I)T −1
ik ·g(I)T

)∣∣∣∣∣dI

=
n

∑
j=1

∑
k∈Zn

∫
B̃
| fk(I)|

∣∣∣∣ ∂
∂ I j

(ik ·g(I))
∣∣∣∣
√

2+(k ·g)2T 2 −2k ·gT sin(k ·gT )−2cos(k ·gT )

(k ·g)2T
dI

= ∑
k∈Zn

∫
B̃
| fk(I)|

∥∥∥∥∥∂g
∂ I

T

k

∥∥∥∥∥
1

√
2+(k ·g)2T 2 −2k ·gT sin(k ·gT )−2cos(k ·gT )

(k ·g)2T
dI

where ∥∥∥∥∥∂g
∂ I

T

k

∥∥∥∥∥
1

:=
n

∑
j=1

∣∣∣∣∣
(∂g

∂ I

T

k
)

j

∣∣∣∣∣=
n

∑
j=1

∣∣∣∣∣
n

∑
i=1

∂gi

∂ I j
ki

∣∣∣∣∣=
n

∑
j=1

∣∣∣∣ ∂
∂ I j

(ik ·g(I))
∣∣∣∣ .

Since R( f ) is dense in A, there exists Ī ∈ B∩R( f ) such that k ·g(Ī) = 0 and | fk(Ī)| > 0 for some
k ∈ Z

n\0. In particular, there exist δ ,λ1,λ2 > 0 (independent of T ) such that the closed ball

Bδ (Ī) = {I : ‖I− Ī‖ ≤ δ}

is contained in B, and also for any I ∈ Bδ (Ī) we have

| fk(I)| ≥ λ1

and

min
‖u‖=1

∥∥∥∥∥∂g
∂ I

T

u

∥∥∥∥∥
1

≥ λ2.

Let us remark that the constant λ1 satisfies 0< λ1 ≤ | fk|∞. The constant λ2 is indeed strictly positive,

since otherwise there would exist u �= 0 with ∂g
∂ I

T
u = 0, which is in contradiction with (2.1). From
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Convergence to the Time Average by Stochastic Regularization

(2.1), there exists also a constant M > 0 such that∣∣∣∣det
∂g
∂ I

(I)
∣∣∣∣≤ M (4.18)

for any I ∈ A. As a consequence, we have

n

∑
j=1

∑
k̃∈Zn

∫
B̃
| fk̃(I)|

∣∣∣∣∣ ∂
∂ I j

(
eik̃·g(I)T −1
ik̃ ·g(I)T

)∣∣∣∣∣dI

≥ λ1λ2 ‖k‖
∫

Bδ (Ī)

√
2+(k ·g)2T 2 −2k ·gT sin(k ·gT )−2cos(k ·gT )

(k ·g)2T
dI.

By performing the change of variables J := g(I) and using (4.18), the above term has the lower
bound

λ1λ2

M
‖k‖

∫
g(Bδ (Ī))

√
2+(k · J)2T 2 −2k · JT sin(k · JT )−2cos(k · JT )

(k · J)2T
dJ,

which, using the additional change of variables x := RJ as in (4.13), equals to

λ1λ2

M
‖k‖

∫
Rg(Bδ (Ī))

√
2+‖k‖2 x2

1T 2 −2‖k‖x1T sin(‖k‖x1T )−2cos(‖k‖x1T )

‖k‖2 x2
1T

dx.

We consider δ̃ > 0 possibly depending on k, Ī (but independent of T ) such that{
x : max

j=1,...,n

∣∣x j −Rg(Ī) j
∣∣≤ δ̃

}
⊆ Rg(Bδ (Ī)),

so that we have

λ1λ2

M
‖k‖

∫
Rg(Bδ (Ī))

√
2+‖k‖2 x2

1T 2 −2‖k‖x1T sin(‖k‖x1T )−2cos(‖k‖x1T )

‖k‖2 x2
1T

dx

≥ λ1λ2

M
‖k‖ δ̃ n−1

∫ Rg(Ī)1+δ̃

Rg(Ī)1−δ̃

√
2+‖k‖2 x2

1T 2 −2‖k‖x1T sin(‖k‖x1T )−2cos(‖k‖x1T )

‖k‖2 x2
1T

dx1

=
λ1λ2

M
δ̃ n−1

∫ ‖k‖T (Rg(Ī)1+δ̃ )

‖k‖T (Rg(Ī)1−δ̃ )

√
2+ y2 −2ysin y−2cosy

y2 dy.

We remark that, since the change of variables (4.13) is performed by a matrix R such that Rk =

‖k‖ ẽ1, so that

Rg(Ī)1 = ẽ1 ·Rg(Ī) =
1
‖k‖Rk ·Rg(Ī) =

1
‖k‖k ·g(Ī) = 0,

we have

λ1λ2

M
δ̃ n−1

∫ ‖k‖T (Rg(Ī)1+δ̃ )

‖k‖T (Rg(Ī)1−δ̃)

√
2+ y2 −2ysin y−2cosy

y2 dy

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                        21

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

i P
ad

ov
a]

 a
t 0

6:
18

 0
2 

M
ay

 2
01

3 



O. Bernardi, F. Cardin, M. Guzzo

=
λ1λ2

M
δ̃ n−1

∫ ‖k‖T δ̃

−‖k‖T δ̃

√
2+ y2 −2ysiny−2cosy

y2 dy.

Since for any y ∈ R we have

2+ y2 −2ysiny−2cos y ≥ y4

4(1+ y2)
,

we conclude

λ1λ2

M
δ̃ n−1

∫ ‖k‖T δ̃

−‖k‖T δ̃

√
2+ y2 −2ysiny−2cos y

y2 dy ≥ λ1λ2

2M
δ̃ n−1

∫ ‖k‖T δ̃

−‖k‖T δ̃

1√
1+ y2

dy

=
λ1λ2

M
δ̃ n−1

∫ ‖k‖T δ̃

0

1√
1+ y2

dy =
λ1λ2

M
δ̃ n−1arcsinh(‖k‖T δ̃ ).

Since

lim
T→+∞

arcsinh(‖k‖T δ̃ ) = +∞,

with a suitable definition of ε , one immediately obtains (4.16).
We proceed by proving that F μ does not converge to f̄ in the set B×T

n. It is sufficient to prove
that there exists ε > 0 such that for any small μ we have

n

∑
j=1

∑
k∈Zn

∫
B̃

∣∣∣∣∣
(

∂F μ
k

∂ I j
− ∂ f̄k

∂ I j

)
(I)

∣∣∣∣∣dI > ε . (4.19)

From (4.8), for any I ∈ B̃ we have

(F μ − f̄ )k(I) =

⎧⎨
⎩Fμ

k (I) =− μ fk(I)
ik ·g(I)−μ

if 0 �= k ∈ Z
n

0 if k = 0

so that we have to estimate

n

∑
j=1

∑
k∈Zn\0

∫
B̃

∣∣∣∣∣∂Fμ
k

∂ I j
(I)

∣∣∣∣∣dI.

By direct computations we obtain

n

∑
j=1

∑
k∈Zn\0

∫
B̃

∣∣∣∣∣∂Fμ
k

∂ I j
(I)

∣∣∣∣∣dI

=
n

∑
j=1

∑
k∈Zn\0

μ
∫

B̃

1

|ik ·g(I)−μ |2
∣∣∣∣∂ fk

∂ I j
(I)(ik ·g(I)−μ)− fk(I)

∂
∂ I j

(ik ·g(I))
∣∣∣∣dI

=
n

∑
j=1

∑
k∈Zn\0

μ
∫

B̃

1

|ik ·g(I)−μ |2
√

μ2
(∂ fk

∂ I j

)2
+
(

k ·g(I)∂ fk

∂ I j
− fkk · ∂g

∂ I j

)2
dI
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Convergence to the Time Average by Stochastic Regularization

≥
n

∑
j=1

∑
k∈Zn\0

μ
∫

B̃

1

|ik ·g(I)−μ |2
∣∣∣∣k ·g(I)∂ fk

∂ I j
− fkk · ∂g

∂ I j

∣∣∣∣dI. (4.20)

As before, we consider Ī ∈ B̃∩R( f ), so that there exists k ∈Z
n such that k ·g(Ī) = 0 and | fk(Ī)|> 0.

In particular, there exist δ ,λ1,λ2 > 0 (independent of T ) such that the closed ball

Bδ (Ī) = {I : ‖I − Ī‖ ≤ δ}
is contained in B, and also for any I ∈ Bδ (Ī) we have

| fk(I)| ≥ λ1,

and

min
‖u‖=1

∥∥∥∥∥∂g
∂ I

T

u

∥∥∥∥∥
1

≥ λ2.

Since λ > 0 is a Lipschitz constant for g in the set A, for any I ∈ Bδ (Ī) we also have

|k ·g(I)| ≤ ‖k‖λδ .

The series in (4.20) has therefore the lower bound

μ
n

∑
j=1

∑
k̃∈Zn\0

∫
B̃

1∣∣ik̃ ·g(I)−μ
∣∣2
∣∣∣∣k̃ ·g(I)∂ fk̃

∂ I j
− fk̃k̃ · ∂g

∂ I j

∣∣∣∣dI

≥ μ
n

∑
j=1

∫
Bδ (Ī)

1

|ik ·g(I)−μ |2
∣∣∣∣k ·g(I)∂ fk

∂ I j
− fkk · ∂g

∂ I j

∣∣∣∣dI

≥ μ
∫

Bδ (Ī)

1

|ik ·g(I)−μ |2 | fk|
∥∥∥∥∥∂g

∂ I

T

k

∥∥∥∥∥
1

dI −μ
n

∑
j=1

∫
Bδ (Ī)

1

|ik ·g(I)−μ |2 |k ·g|
∣∣∣∣∂ fk

∂ I j

∣∣∣∣dI

≥ λ1λ2 ‖k‖μ
∫

Bδ (Ī)

1

|ik ·g(I)−μ |2 dI −μ ‖k‖δλ
( n

∑
j=1

∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞)∫

Bδ (Ī)

1

|ik ·g(I)−μ |2 dI

=

(
λ1λ2 −δλ

n

∑
j=1

∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞
)
‖k‖μ

∫
Bδ (Ī)

1

|ik ·g(I)−μ |2 dI.

First, we remark that in the case ∑n
j=1

∣∣∣∂ fk
∂ Ij

∣∣∣∞ > 0, it is not restrictive to choose δ satisfying

δ ≤ λ1λ2

2λ ∑n
j=1

∣∣∣∂ fk
∂ Ij

∣∣∣∞ ,

so that we have
n

∑
j=1

∑
k̃∈Zn\0

μ
∫

B̃

1∣∣ik̃ ·g(I)−μ
∣∣2
∣∣∣∣k̃ ·g(I)∂ fk̃

∂ I j
− fk̃k̃ · ∂g

∂ I j

∣∣∣∣dI ≥ λ1λ2

2
‖k‖μ

∫
Bδ (Ī)

1

|ik ·g(I)−μ |2 dI.

Then by performing the change of variables J := g(I) and using (4.18) we obtain the lower bound

λ1λ2

2
‖k‖μ

∫
Bδ (Ī)

1

|ik ·g(I)−μ |2 dI ≥ λ1λ2

2M
‖k‖μ

∫
g(Bδ (Ī))

1

|ik · J −μ |2 dJ
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=
λ1λ2

2M
‖k‖μ

∫
g(Bδ (Ī))

1√
(k · J)2 +μ2

dJ

which, by the additional change of variables x := RJ as in (4.13), can be written as

λ1λ2

2M
‖k‖μ

∫
Rg(Bδ (Ī))

1√
‖k‖2 x2

1 +μ2
dx.

Since there exists δ̃ > 0 possibly depending on k, Ī (but independent of μ) such that{
x : max

j=1,...,n

∣∣x j −Rg(Ī) j
∣∣≤ δ̃

}
⊆ Rg(Bδ (Ī)),

we obtain the lower bound

λ1λ2

2M
‖k‖μ

∫
Rg(Bδ (Ī))

1√
‖k‖2 x2

1 +μ2
dx ≥ λ1λ2

2M
‖k‖ δ̃ n−1μ

∫ δ̃

−δ̃

1√
‖k‖2 x2

1 +μ2
dx1

=
λ1λ2

2M

∫ ‖k‖
μ δ̃

−‖k‖
μ δ̃

1
1+ y2 dy =

λ1λ2

M
arctan

‖k‖
μ

δ̃ .

Since we have

lim
μ→0+

arctan
‖k‖
μ

δ̃ =
π
2
,

with a suitable definition of ε one immediately obtains (4.19).
We conclude our proof by showing the convergence of Fμ ,ν to f̄ in A × T

n on sequences
(μi,νi)→ (0,0) such that

lim
i→0

μi

νi
= 0. (4.21)

We first provide an estimate on the different contributions to

∣∣F μ ,ν − f̄
∣∣1 = ∣∣Fμ ,ν − f̄

∣∣0 + ∑
k∈Zn

n

∑
j=1

∫
A

∣∣∣∣ ∂
∂ I j

(Fμ ,ν − f̄ )k

∣∣∣∣dI + ∑
k∈Zn

n

∑
j=1

∫
A

∣∣k j
∣∣ ∣∣(Fμ ,ν − f̄ )k

∣∣dI.

The first term
∣∣Fμ ,ν − f̄

∣∣0 has been already estimated (see (3.6))

|F μ ,ν − f̄ |0 ≤ 2Cn−1

m ∑
k∈Zn\0

| fk|∞ μ
‖k‖

(
1+ log

‖k‖C

μ +ν ‖k‖2

)
. (4.22)

Then, for any I ∈ Ã, from (4.9) we have

(Fμ ,ν − f̄ )k(I) =

⎧⎨
⎩Fμ ,ν

k (I) =−μ
fk(I)

ik ·g(I)−μ −ν‖k‖2 if 0 �= k ∈ Z
n

0 if k = 0
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so that we need to estimate

∫
Ã

∣∣∣∣∣∂F μ ,ν
k

∂ I j
(I)

∣∣∣∣∣dI = μ
∫

Ã

∣∣∣∣∂ fk

∂ I j
(I)

1
ik ·g(I)−μ −ν‖k‖2 + fk(I)

∂
∂ I j

(
1

ik ·g(I)−μ −ν‖k‖2

)∣∣∣∣dI

for any k ∈ Z
n\0. By using the changes of variables (4.11) and (4.13) as in the proof of Proposition

3.1 –and proceeding as in estimate (4.15)– we obtain

μ ∑
k∈Zn\0

n

∑
j=1

∫
Ã

∣∣∣∣∂ fk

∂ I j
(I)

1
ik ·g(I)−μ −νi‖k‖2

∣∣∣∣dI

≤ 2Cn−1

m ∑
k∈Zn\0

(
n

∑
j=1

∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞
)

μ
‖k‖

[
1+ log

‖k‖C
μ +ν‖k‖2

]
. (4.23)

Using (2.1) we first obtain

∑
k∈Zn\0

n

∑
j=1

μ
∫

Ã

∣∣∣∣ fk(I)
∂

∂ I j

(
1

ik ·g(I)−μ −ν‖k‖2

)∣∣∣∣dI

≤ ∑
k∈Zn\0

n

∑
j=1

μ | fk|∞
∫

Ã

1

|ik ·g(I)−μ −ν‖k‖2|2
∣∣∣∣ ∂
∂ I j

(ik ·g(I))
∣∣∣∣dI

≤ ∑
k∈Zn\0

μ | fk|∞n2 ‖k‖D
∫

Ã

1
(k ·g(I))2 +(μ +ν‖k‖2)2 dI,

then using the change of variables (4.11) and (4.13) we have

∑
k∈Zn\0

μ | fk|∞n2 ‖k‖D
∫

Ã

1
(k ·g(I))2 +(μ +ν‖k‖2)2 dI

≤ ∑
k∈Zn\0

n2D
m

| fk|∞ ‖k‖μ
∫

g(Ã)

1
(k · J)2 +(μ +ν‖k‖2)2 dJ

≤ ∑
k∈Zn\0

n2Cn−1D
m

| fk|∞ ‖k‖μ
∫ C

−C

1

‖k‖2 x2
1 +(μ +ν‖k‖2)2

dx1

≤ ∑
k∈Zn\0

2n2Cn−1D
m

| fk|∞ ‖k‖
(μ +ν‖k‖2)2 μ

∫ C

0

1
‖k‖2

(μ+ν‖k‖2)2 x2
1 +1

dx1

= ∑
k∈Zn\0

2n2Cn−1D
m

| fk|∞ μ
(μ +ν‖k‖2)

∫ ‖k‖C
μ+ν‖k‖2

0

1
1+ y2 dy

= ∑
k∈Zn\0

2n2Cn−1D
m

| fk|∞ μ
(μ +ν‖k‖2)

arctan
( ‖k‖C

μ +ν‖k‖2

)
.

From the previous inequality, we obtain

∑
k∈Zn\0

n

∑
j=1

μ
∫

Ã

∣∣∣∣ fk(I)
∂

∂ I j

(
1

ik ·g(I)−μ −ν‖k‖2

)∣∣∣∣dI ≤ n2πCn−1D
m ∑

k∈Zn\0
| fk|∞ μ

μ +ν ‖k‖2 . (4.24)
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In order to conclude the estimate of
∣∣F μ ,ν − f̄

∣∣1 it remains to consider

∑
k∈Zn\0

n

∑
j=1

∫
Ã

∣∣∣∣k j
μi fk(I)

ik ·g(I)−μi −νi‖k‖2

∣∣∣∣dI.

This term is estimated by using the changes of variables (4.11) and (4.13), so that

∑
k∈Zn\0

n

∑
j=1

μ |k j|
∫

Ã

∣∣∣∣ fk(I)
ik ·g(I)−μ −ν‖k‖2

∣∣∣∣dI ≤ ∑
k∈Zn\0

n

∑
j=1

2μ |k j| | fk|∞Cn−1

m‖k‖
[

l1 + log
‖k‖C

μ +ν‖k‖2

]

≤ 2nCn−1

m ∑
k∈Zn\0

| fk|∞ μ
[

1+ log
‖k‖C

μ +ν‖k‖2

]
. (4.25)

By collecting inequalities (4.22), (4.23), (4.24) and (4.25), we obtain

∣∣Fμ ,ν − f̄
∣∣1 ≤ 2Cn−1

m ∑
k∈Zn\0

(
μ
‖k‖
[
1+ log

‖k‖C

μ +ν ‖k‖2

]
| fk|∞+ μ

‖k‖
[

1+ log
‖k‖C

μ +ν‖k‖2

]( n

∑
j=1

∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞
)

+
1
2

n2πD
μ

μ +ν ‖k‖2 | fk|∞ +nμ
[

1+ log
‖k‖C

μ +ν‖k‖2

]
| fk|∞

)

≤ 2Cn−1

m ∑
k∈Zn\0

(
μ
[
1+ log

‖k‖C

μ +ν ‖k‖2

](
(1+n) | fk|∞ +

n

∑
j=1

∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞)

+
1
2

n2πD
μ

μ +ν ‖k‖2 | fk|∞
)

so that (3.7) is proved. Since for μ ,ν > 0 and ‖k‖ ≥ 1, we have

μ log
‖k‖C

μ +ν ‖k‖2 ≤ μ log
C
ν
≤ μ

ν

(
ν log

C
ν

)

and

μ
μ +ν ‖k‖2 ≤ μ

ν
,

from (3.7) we obtain

∣∣Fμ ,ν − f̄
∣∣1 ≤ (μ

ν

)2Cn−1

m ∑
k∈Zn\0

((
ν +ν log

C
ν

)(
(1+n) | fk|∞ +

n

∑
j=1

∣∣∣∣∂ fk

∂ I j

∣∣∣∣
∞)

+
1
2

n2πD | fk|∞
)
.

Therefore, for any sequence μi,νi > 0 converging to zero with μi/νi converging to zero, we have

lim
i→+∞

∣∣Fμi,νi − f̄
∣∣1 = 0.

The proof of Proposition 3.2 is concluded. �
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