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Green fluorescent protein was first used as a marker of protein expression in vivo 18 years
ago, heralding the beginning of what became known as the Green Revolution. Since then,
there has been an explosion in the number of transgenic lines in existence, and these
transgenic tools are now being applied to skeletal research. Advances in transgenesis are
also leading to increasing use of new model organisms for studying skeletogenesis. Such
new models include the small teleosts zebrafish and medaka, which due to their optical
translucency offer imaging possibilities in the live animals. In this review, we will introduce
a number of recent advances in genetic engineering and transgenesis and the new genetic
tools that are currently being developed. We will provide examples of how zebrafish and
medaka transgenic lines are helping us to understand the behavior of skeletal cells in vivo.
Finally, we will discuss future prospects for the application of transgenic technology to
skeletal research.
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GENERAL INTRODUCTION
Skeletal tissues have proved particularly difficult to image at a cel-
lular level in live animals due to the depth and mineralization of the
tissues. In recent years, there have been advances in hard tissue and
skeletal imaging in live organisms, for example the increased sen-
sitivity of high resolution magnetic resonance imaging (HR-MRI;
Patsch et al., 2011) and improvements to CT scanning (Chappard
et al., 2011). However, while these techniques give improved detail
about bone structure and micro-architecture, they do not tell us
much about the behavior of cells within the skeletal tissues.

The first mouse transgenic line was created in 1974 (Jaenisch
and Mintz, 1974). Since then, transgenic mice have been instru-
mental in increasing our understanding of the lineages in skeletal
development, via the use of lacZ reporters for lineage analysis and
to assess the requirement of specific genes in skeletal lineages. The
further introduction of conditional gene deletion techniques has
considerably facilitated the analysis of target bone and cartilage
related genes. In these cases a driver line carrying a recombinase
(Cre) driven by cartilage or bone-specific promoters is crossed
to a genetically modified mouse strain carrying a “floxable” cas-
sette to be targeted to the gene of interest. Through this technique
for example Col2a1-Cre and Col1a1-Cre lines have been used to
drive recombination in chondrocytes and osteoblasts, respectively
(Terpstra et al., 2003; Zha et al., 2008). From these studies using
transgenic lines we have garnered a wealth of information on the
genes required for the specification and maturation of chondro-
cytes (e.g., Leung et al., 2011) and osteoblasts (reviewed by Long,
2012). However, despite the increasing availability of genetic tools,
generating transgenic lines in mice by injection into the pronu-
cleus, or more commonly by injection of engineered stem cells
into blastocysts remains technically demanding, time consuming
and relatively expensive (Miller, 2011).

Since mice develop in utero, following dynamic signaling events
in real time during bone development is technically almost impos-
sible. As such, studies at a cellular level typically require post
mortem analysis of the skeleton by histology or immunohisto-
chemistry. Therefore, much of what we know about the real time
in situ dynamics of chondrocyte and osteoblast behavior, gene
expression, migration, and maturation has come from in vitro
studies. However, it is difficult to know to what extent these fea-
tures mirror the environment in vivo, which is rich in cues from
the surrounding tissues, and from the complex in vivo mechanical
environment. Attempts to replicate this environment in culture
have been made through seeding of cells onto biomimetic scaf-
folds (Tampieri et al., 2011). However, the development of tools to
dynamically track gene expression and signaling pathway activity
in live animals has remained highly desirable.

TELEOST BONE DEVELOPMENT
Zebrafish, along with another teleost species medaka, have long
been used as model organisms for developmental biology. In the
early stages of skeletal research in fish, research focused primar-
ily on lineage tracing (Schilling and Kimmel, 1994) and forward
genetic screening (Driever et al., 1996; Haffter et al., 1996). More
than 50 mutants with defective cartilage and skeletal development
were identified from the first large-scale screens (Neuhauss et al.,
1996; Piotrowski et al., 1996; Schilling et al., 1996). However, a par-
ticular advantage to using teleosts comes from the ability to image
skeletal development in real time in developing larvae (or even
increasingly in more mature fish), using fluorescent transgenic
reporter lines.

The zebrafish craniofacial skeleton contains bones of both
dermal and chondral origins, which arise from different pro-
genitor cells, such as neural crest cells and mesodermal cells
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(Schilling and Kimmel, 1994). By contrast, some the vertebrae
originate through the mineralization of the notochord sheath,
while other bones, such as those located in fins, arise through
a cartilage template (Bird and Mabee, 2003). Both key reg-
ulators of skeletal development and the control of the major
signaling pathways are highly conserved between mammals and
teleosts (reviewed by Apschner et al., 2011). Therefore, find-
ings in fish are highly likely to be applicable to mammalian
osteogenesis.

ADVANCES IN TRANSGENESIS
In recent years there have been multiple advances in our ability
to generate transgenic reporters in zebrafish, radically reduc-
ing the time to generate new lines. Traditionally, transgenic
reporters were generated by microinjection of linearized plas-
mid DNA, containing the coding sequence of a reporter protein
[typically green fluorescent protein (GFP)] immediately down-
stream of a minimal promoter fragment for the gene of interest
(Higashijima et al., 1997). However, this approach suffered from a
number of limitations, in particular the low efficiency of germline
integration.

Advances to the technology have included the introduction
of the Gateway system and the production of compatible plas-
mids that can be used in zebrafish (Kawakami et al., 2004;
Villefranc et al., 2007), I-SceI cloning, whereby introduction of
meganuclease sites increased the efficiency of germline integra-
tion (Grabher and Wittbrodt, 2008). More recently, improvements
have been achieved by bacterial artificial chromosome (BAC)
recombineering, in which fluorophores and Tol2 transposase sites
are introduced into a BAC containing the gene or promoter
of interest. The frequency of germline integration is improved
by this method, while the constructs for transgenesis can be
generated and injected into zebrafish embryos in less than 3
weeks (Bussmann and Schulte-Merker, 2011; Suster et al., 2011).
As such, the number of available transgenic lines generated
through these methods is likely to increase exponentially in the
future.

Tol2 transgenesis has also been used in recent years for enhancer
trapping. An Enhancer Trap construct drives a reporter, often
eGFP, controlled by a minimal promoter in a vector that can be
inserted into the genome at random; if the insertion occurs near
to an enhancer it will produce tissue-specific expression of the
reporter. Various enhancer trap screens have been documented in
fish (see Table 1) and a number of these lines show specific reporter
expression in skeletal tissues, for example, the line ET 33-1B
(http://plover.imcb.a-star.edu.sg/webpages/ET33-1B.html), which
is specifically expressed in the craniofacial skeleton (of both der-
mal and chondral origins). In fish and frog models, site-directed
transgene integration is a more recent development; however,
systems are now established for these model organisms. In frog
this is accomplished via a FLP-FRT recombinase-mediated trans-
genesis method (Zuber et al., 2012), while in fish site-directed
intramolecular transgenesis can be achieved using the Cre-Lox
system (Mosimann and Zon, 2011) or by using PhiC31 integrase
(Lister, 2011). The utility of the latter system is further increased by
the ability to utilize the PhiC31 system for efficient recombinase-
mediated cassette exchange (RCME), whereby fluorophores can be

efficiently excised and replaced with other fluorophores or by Cre
(Hu et al., 2011).

TOOLS FOR STUDYING SKELETOGENESIS
IN TELEOSTS
In terms of tools for the study of skeletogenesis, many labs have
been generating an increasing number of transgenic tools to aid
zebrafish and medaka skeletal research. These include a variety
of transgenic reporter lines to mark skeletal lineages at differ-
ent stages of differentiation; such as the chondrocyte reporters,
Tg(Col2a1aBAC:mCherry)hu5900 (Hammond and Schulte-
Merker, 2009; Figures 1F–G) and Tg(1.7col2a1a:mCherry-caax;
Dale and Topczewski, 2011), an increasing number of transgenic
lines specific for osteoblasts, such as the osterix/sp7 reporter lines
Tg(sp7:EGFP)b1212 and Tg(Ola.Sp7:NLS-GFP)zf132 (Spooren-
donk et al., 2008; DeLaurier et al., 2010; Figures 1A,D,J,K) and
osteocalcin/bglap reporter line, Tg(Ola.osteocalcin:EGFP)hu4008
(Knopf et al., 2011; Figures 1B,C,E). There are also avail-
able reporters for osteoclasts such as the cathepsin K reporter
Tg(ctsk:mEGFP; To et al., 2012) and for joint fate, such as
trps1J1271aGt (Talbot et al., 2010). Live zebrafish can be incubated
with dyes that bind mineralized tissue such as Alizarin red or cal-
cein, which allows monitoring of bone matrix formation in vivo.
Combinations of these lines, along with calcein or Alizarin red
stains, allow dynamic imaging of skeletal development and cell
maturation in the living fish (Figures 1A–G).

Recently, an emerging approach to dynamically dissect the
in vivo activation or repression of endogenous signaling pathways
is the generation of biosensor reporter fish, expressing reporter
proteins (GFP, mCherry, DsRed, Kaede, YFP) under the control
of minimal signaling pathway responsive elements (Dorsky et al.,
2003; Parsons et al., 2009; Schwend et al., 2010; Collery and Link,
2011; Laux et al., 2011). In these transgenic lines synthetic arrays
of repetitive responsive elements are fused upstream of a mini-
mal promoter, such as Thymidine kinase or Epstein–Barr Virus
terminal protein 1, and drive the expression of the reporter gene
with a spatiotemporal resolution depending upon the strength
of the minimal promoter and the stability of the reporter pro-
tein itself. These tools have been used both in drug screening
tests and for analysis of the various signaling pathways in genetic
mutants.

The BMP, Hedgehog, and Wnt signaling pathways have all
been previously shown to actively control vertebrate chondro-
genesis through their concerted actions (reviewed in Goldring
et al., 2006). We have recently generated a novel Wnt/beta-catenin
reporter fish, expressing the eGFP or mCherry protein under the
control of a multimerized array of seven TCF/Lef binding sites
upstream to a Xenopus leavis minimal siamois promoter, show-
ing its application to test Wnt agonists and antagonists, as well as
trace the dynamics of neural crest-derived cell migration during
fish growth (Moro et al., 2012). This reporter has been also used
to highlight the mechanism through which the proliferation of
posterior lateral line primordium (PLLP) cells is maintained dur-
ing neuromast production (Valdivia et al., 2011). By combining
this transgenic line with the Tg(sox10:mRFP)vu234 (Kirby et al.,
2006) Tg(Ola.Sp7:NLS-GFP)zf132 (Spoorendonk et al., 2008),
we have been able to identify clusters of neural crest-derived
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Table 1 |Table of existing transgenic lines and resources relevant to skeletal development.

Structure/cell type labeled Gene or response element Line name Reference

Osteoclast Cathepsin K Tg(CTSK -DsRed)

Tg(ctsk:mEGFP)

Chatani et al. (2011)

To et al. (2012)

Osteoblast Sp7/osterix Tg(Ola.Sp7:NLS-GFP)zf132

Tg(Ola.Sp7:mCherry)zf131

Tg(sp7:EGFP)b1212

Spoorendonk et al. (2008)

DeLaurier et al. (2010)

Osteoblast Bglap/osteocalcin Tg(Ola.Osteocalcin.1:EGFP)hu4008 Knopf et al. (2011)

Chondrocyte Col2a1a Tg(Col2a1aBAC:mcherry)hu5900

Tg(-1.7col2a1a:EGFP-CAAX)nu12

Hammond and Schulte-Merker (2009)

Dale and Topczewski (2011)

Joints Trps1 Tg(trps1J1271aGt ) Talbot et al. (2010)

Cartilage Col18a1 Tg(16Hsa.COL18A1-Mmu.Fos:EGFP) Kague et al. (2010)

Neural crest derivatives

including chondrocytes and

osteoblasts (and endothelial

cells)

Fli1 Tg(Fli1:eGFP)y1 Lawson and Weinstein (2002)

Neural crest-derived skeleton

(and pigment cells)

Sox10

Sox10-Cre

Tg(-1252sox10:GFP)ba5

Tg(-4725sox10:Cre)ba74

Dutton et al. (2008)

Rodrigues et al. (2012)

Osteoclast TRAP Tg(TRAP:GFP) Chatani et al. (2011)

Osteoclast RANKL (heat shock inducible) Tg(rankl :HSE:CFP) To et al. (2012)

Preosteoblasts Cyp26b1 Tg(cyp26b1:YFP)hu5786 Spoorendonk et al. (2008)

Intervertebral discs Twhh (shhb) Tg(-5.2shhb:GFP)mb1 Haga et al. (2009)

Intervertebral discs Twist Tg(twist:EGFP) Inohaya et al. (2007)

Osteoblasts (conditional ablation

line in medaka)

Osx/Sp7 Tg(Osx:CFP-NTR) Willems et al. (2012)

Bmp responsive cells (including

craniofacial elements)

BMP response element Tg(BRE:GFP)

Tg(bre:egfp)pt510

Collery and Link (2011)

Laux et al. (2011)

Branchial arches and notochord Cyp26a1 Tg(cyp26a1:eYFP)nju1/ + Hu et al. (2008)

Wnt responsive cells (including

craniofacial elements)

Wnt response element Tg(7xTCF.XlaSiam:nlsmCherry)ia5 Moro et al. (2012)

Name of resource Method of generation Link Reference

Ztrap Enhancer trap http://kawakami.lab.nig.ac.jp/ztrap/ Urasaki et al. (2008),

Kotani et al. (2006),

Kawakami et al. (2004, 2010)

ZETRAP Enhancer trap Now merged with ZETRAP2.0

(website below)

Choo et al. (2006)

ZETRAP2.0 Enhancer trap http://plover.imcb.a-star.edu.sg/webpages/

geneexpression.html

Kondrychyn et al. (2011)

Enhancer TRAP Tol2 Enhancer trap No web resource. Fisher et al. (2006)

Crezoo CreERT2 insertions http://crezoo.crt-dresden.de/crezoo/ Hans et al. (2011)

cartilage elements and osteoblasts expressing Wnt reporter activity
(Figures 1H–K and data not shown).

Specific ablation of target cells in a temporarily controlled
fashion can be achieved through use of the nitroreductase (NTR)
system, in which the coding sequence for a gene encoding a NTR
enzyme that can render prodrugs such as metronidazole (Met)

cytotoxic, is expressed under the control of a promoter of interest.
Usually, a fluorophore is also expressed to enable simultaneous cell
tracking (Pisharath and Parsons, 2009). This system has been used
to generate a medaka transgenic line whereby NTR is expressed
under the control of the osteoblast Sp7/osterix promoter, in
which osteoblasts can be visualized by CFP and ablated following
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FIGURE 1 | Visualizing transgene expression in live fish during

skeletogenesis. (A) Alizarin red live staining in a lateral view of a zebrafish at
3 dpf, A′ Osterix/sp7 activity Tg(Ola.Sp7:nlsGFP)zf132 in the same fish. A′ ′
overlay showing an Alizarin red-positive mineralizing core (red) surrounded by
osteoblasts (green). (B) Osteocalcin/bglap Tg(Ola.Osteocalcin.1:EGFP)
hu4008reporter activity in the head of a 2-month-old zebrafish.
(C) Osteocalcin Tg(Ola.Osteocalcin.1:EGFP)hu4008activity in the vertebral
column of a 19-day-old zebrafish. (D) osterix/Sp7 Tg(Ola.Sp7:mcherry)zf131
activity in the same 19-day-old zebrafish as C. (E) Tg(Ola.Osteocalcin.1:EGFP)
hu4008reporter expression in the caudal fin rays of a 2-month-old zebrafish.
(F,G) Cartilage visualization in a 5-day-old zebrafish with a col2a1a reporter,

Tg(Col2a1aBAC:mCherry)hu5900 (F) shows a lateral view of the head,
(G) is a ventral view. (H,I) Representative 3 dpf double transgenic
Tg(sox10:mRFP)vu234;Tg(7xTCF.Xla.Siam:GFP)ia4showing neural crest
cell-derived chondrogenic cells expressing the Wnt reporter transgene (white
arrowheads). (J,K) Representative 4 dpf (J) and 7 dpf (K) double transgenic
Tg(sp7:EGFP)b1212;Tg(7xTCF.XlaSiam:nlsmCherry)ia5 showing isolated
osterix positive cells coexpressing the Wnt reporter transgene (blue
arrowheads). All images are confocal Z-stack projections. (H,I) Ventral views
with anterior to the left. (J,K) Lateral views with anterior to the left. vc,
vertebral column; mc, Meckel’s cartilage; bsr, branchiostegal ray; ch,
ceratohyal; cl, cleithrum; op, opercle; pq, palatoquadrate.
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treatment with Met. Experiments in this line have demonstrated a
novel role for osteoblasts in forming the borders between vertebral
centrae (Willems et al., 2012). Additionally, induction of skeletal
genes can also be achieved at a desired time by use of a global
heat shock inducible system; for example, in the medaka an
inducible osteoclast model has been used to induce widespread
osteoclastogenesis by induction of the RANKL promoter under
the control of a heat shock element (rankl:HSE:CFP) leading to an
osteoporotic phenotype (To et al., 2012). Then To et al. visualized
osteoclast behavior by using second osteoclast-specific transgene,
ctsk:mEGFP.

Increasingly, research using zebrafish is giving us an insight
into understanding the signals that control skeletal behavior at the
single cell level in vivo. Three examples, in which use of transgenic
lines, have been key to dissecting phenotypes at a cellular level are
briefly discussed below.

THE ROLE OF CYP26B1 IN PATTERNING THE AXIAL
AND CRANIOFACIAL SKELETON
Forward genetic screens identified two mutants: stockstief
(Spoorendonk et al., 2008), which was identified on the basis of
fusions of the axial rings that generate the future vertebrae, and
dolphin, identified by the “beak-like” shape of the jaw (Piotrowski
et al., 1996). Both mutations were subsequently revealed to be
lesions in the same gene, cyp26b1, an enzyme which degrades
retinoic acid (RA; Laue et al., 2008; Spoorendonk et al., 2008).
By generating a cyp26b1BAC:yfp construct and injecting this
into embryos carrying the Sp7 reporter transgene, the authors
were able to show that cyp26b1 colocalizes with the osteoblast
marker Sp7/osterix in craniofacial skeletal elements. Together these
mutants demonstrated that tight control of RA levels is required
for the correct positioning of osteoblasts both in craniofacial ele-
ments (Laue et al., 2008) and axial skeleton (Spoorendonk et al.,
2008). In the axial skeleton use of a nuclear-localized osteocal-
cin transgenic line allowed both the number and localization of
osteoblasts in the vertebral column to be quantified, demonstrat-
ing that the number of osteoblasts is unchanged in mutants. This
suggests that the overmineralization of the vertebrae is caused by a
change in osteoblast activity rather than their number (Spooren-
donk et al., 2008). Moreover, it has recently been demonstrated
that Cyp26 enzymes are required to control local RA metabolism
during cranial suture formation in zebrafish, mice and humans
(Laue et al., 2011), supporting the view that the requirement
of Cyp26 enzymes for the correct activation of osteoblasts is
conserved between teleosts and humans.

BONE REGENERATION OCCURS VIA DEDIFFERENTIATION
OF OSTEOBLASTS IN THE ZEBRAFISH FIN
Bone has a limited capacity for repair in mammals, and bone
healing, following, e.g., a fracture or break, is believed in mam-
mals to be achieved through activation of a resident population
of osteogenic precursor cells and recapitulation of developmen-
tal ossification pathways (Ferguson et al., 1999; Dimitriou et al.,
2011). Salamanders and fish have a more robust capacity for repair
and regeneration of many tissues (Tanaka and Reddien, 2011),
with fin regeneration in the zebrafish frequently used as a model
for regenerative studies (Tal et al., 2010). However, it was unknown

whether the “dedifferentiated” cells that form a wound blastema,
following fin amputation, and which give rise to the regenerated
structures, are multipotent or lineage restricted. Using different
transgenic approaches to mosaically label cells (Tu and Johnson,
2011) or throughout the organism (Knopf et al., 2011), two groups
showed that the dedifferentiated cells in the blastema only give rise
to cells of the same lineage, demonstrating that, although the cells
in the wound blastema can dedifferentiate and proliferate, they
maintain their lineage restriction throughout this process (Knopf
et al., 2011; Tu and Johnson, 2011). Very recently, a de novo origin
of osteoblasts during fin regeneration, following genetic ablation
of existing osteoblasts, has demonstrated that the cellular origin
of appendage bones can be different according to tissue damage
(Singh et al., 2012).

CARTILAGE MATRIX CONTROLS TIMING OF
ENDOCHONDRAL OSSIFICATION
The timing of events such as chondrocyte maturation with
osteoblast differentiation and activation is critically important
during endochondral ossification, during which multiple signaling
pathways are activated. Cartilage matrix is rich in sulfated pro-
teoglycans, and both heparin and chondroitin proteoglycans are
known to associate with and regulate diffusion of signaling factors
within the mouse cartilage growth plate (Settembre et al., 2008;
Gualeni et al., 2010; and reviewed by Mackie et al., 2011). Recently,
Eames et al. (2011) demonstrated that two zebrafish mutants (xylt1
and fam20b) which produce lower levels of chondroitin sulfate
proteoglycans, undergo premature endochondral ossification of
their cartilage elements. They demonstrated, using transgenic lines
and in situ hybridization, that both mutants showed premature
perichondral osteoblast differentiation, which could be abolished
by crossing them to an Indian hedgehog (ihha) mutant line. These
findings, taken together with those from mouse models, demon-
strate that cartilage matrix composition is critical for the correct
timing of both chondrocyte maturation and osteoblast differenti-
ation and suggests that cartilage matrix proteoglycans control the
diffusion of signaling factors that can both stimulate and repress
these processes in vivo.

NEW GENETICALLY ENCODED TRANSGENIC TOOLS
RELEVANT TO SKELETAL RESEARCH
Calcium levels are tightly regulated in bone, and calcium trans-
port and levels are critical for both osteoblast and osteoclast
activity (Blair et al., 2011; Caudarella et al., 2011; Zhou et al.,
2011). A variety of genetically encoded fluorescent biosensors
have been developed over recent years, which undergo conforma-
tional changes and changes in fluorescent emission upon binding
calcium, e.g., gCaMP (Muto and Kawakami, 2011; Muto et al.,
2011). These could be fused to osteoblast or chondrocyte pro-
moters to give a real-time read out of calcium signaling during
skeletogenesis.

Another biologically encoded protein “MiniSOG,” the name is
derived from Mini Singlet Oxygen Generator (Shu et al., 2011),
could also prove useful as a tool for skeletal research. The Min-
iSOG protein is fluorescent and can therefore be tracked in vivo.
However, in addition to its fluorescence it also acts, following
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photoconversion, as an oxygen generator that can generate elec-
tron dense substrates that are visible by electron microscopy. This
approach has been used in vivo, in C. elegans successfully; raising
the prospect that the protein could be used in vertebrate species
in some circumstances, for example in the fin of zebrafish which
can easily be imaged, and are amenable to soaking in DAB and
to photoactivation. This tool could potentially be used to tag and
track growth factors in real time as they are produced, secreted,
diffuse, and bind their targets fluorescently, then detected at an
ultrastructural level by electron microscopy.

In summary, transgenic tools in mouse have been instrumen-
tal in uncovering how skeletogenesis and skeletal homeostasis are
controlled in vivo. More recently, the development of relevant
zebrafish and medaka transgenic lines have increased the utility
of these models for skeletal research, complementing in vitro and

mouse models. Moreover, these tools are increasingly allowing the
dynamic observation of skeletal gene activation and signaling at
a cellular level. The range of transgenic lines for skeletal research
is likely to increase exponentially in the future as both the tech-
nology to generate them improves for all species and as the tools
to manipulate, track, and study cell behavior and signaling con-
tinue to be developed, offering the tantalizing prospect of both
visualizing and dissecting skeletal signaling as it occurs in vivo.
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