
Noname manuscript No.
(will be inserted by the editor)

Bisimulation and Simulation Algorithms on Probabilistic
Transition Systems by Abstract Interpretation

Silvia Crafa · Francesco Ranzato

Abstract We show how bisimulation equivalence and simulation preorder on probabilis-
tic LTSs (PLTSs), namely the main behavioural relations on probabilistic nondeterministic
processes, can be characterized by abstract interpretation. Both bisimulation and simulation
can be obtained as completions of partitions and preorders,viewed as abstract domains,
w.r.t. a pair of concrete functions that encode a PLTS. This approach provides a general
framework for designing algorithms that compute bisimulation and simulation on PLTSs.
Notably, (i) we show that the standard bisimulation algorithm by Baier et al. [2000] can be
viewed as an instance of such a framework and (ii) we design a new efficient simulation
algorithm that improves the state of the art.

1 Introduction

Randomization phenomena in concurrent systems have been widely studied in probabilistic
extensions of process algebras like Markov chains and probabilistic labeled transition sys-
tems (PLTSs). Most standard tools for studying nonprobabilistic processes, like behavioural
equivalences, temporal logics and model checking, have been investigated for these prob-
abilistic models. In particular, bisimulation equivalence and simulation preorder relations,
namely the main behavioural relations between concurrent systems, have been extended and
studied in a probabilistic setting [6,9,11,17].

Abstract interpretation [2,3] is a well-known general theory for specifying the approx-
imation of formal semantics. Abstract domains play an essential role in any abstract inter-
pretation design, since they encode in an ordered structurehow concrete semantic proper-
ties are approximated. A number of behavioural relations, including bisimulation, stuttering
bisimulation and simulation, have been characterized in abstract interpretation as complete
refinements, so-called forward complete shells, of abstract domains w.r.t. logical/temporal
operators of suitable modal logics [15]. One notable benefitof this approach is that it pro-
vides a general framework for designing basic algorithms that compute behavioral relations
as forward complete shells of abstract domains. As a remarkable example, this abstract
interpretation-based approach led to an efficient algorithm for computing the simulation pre-
order for nonprobabilistic processes [14,16] that features the best time complexity among
the simulation algorithms.

Dipartimento di Matematica, University of Padova, Italy. E-mail: {crafa,ranzato}@math.unipd.it

The goal of this paper is to investigate whether the abstractinterpretation approach can
be applied to probabilistic LTSs in order (i) to characterize bisimulation equivalence and
simulation preorder as logical completions of abstract domains and (ii) to design bisimula-
tion and simulation algorithms.

Main Results. We consider probabilistic processes specified as PLTSs, a general model that
exhibits both non-deterministic choice (as in LTSs) and probabilistic choice (as in Markov
chains). In [15], bisimulation in LTSs has been characterized in terms of forward complete
shells of partitions w.r.t. the predecessor operator of LTSs. We show that this same idea
scales to the case of PLTSs by considering the probabilisticpredecessor operator that de-
fines the transitions of a PLTS together with a probabilisticfunction that encodes the distri-
butions in the PLTS (this latter operator is somehow reminiscent of a probabilistic connec-
tive in Parma and Segala’s [13] modal logics for probabilistic bisimulation and simulation).
Bisimulation equivalence in PLTSs is thus characterized asa domain refinement through a
complete shell w.r.t. the above two operators. On the other hand, the simulation preorder in
PLTSs turns out to be the same complete shell of abstract domains w.r.t. the same two oper-
ators, but using different underlying abstract domains: for bisimulation, the complete shell
is computed in a space of abstractions that are state and distribution partitions, while for
simulation the same complete shell is instead computed overabstractions that are preorders
on states and distributions.

Complete shells of abstract domains may in general be obtained through a simple fix-
point computation. We show how such a basic procedure can be instantiated to obtain two
algorithms that iteratively compute bisimulation and simulation on PLTSs. Interestingly, the
standard procedure for computing bisimulations in PLTSs, namely Baier-Engelen-Majster’s
algorithm [1], can be actually viewed as an implementation of our complete shell procedure
that characterizes bisimulation. On the other hand, we showthat the corresponding complete
shell for computing the simulation preorder yields a new efficient probabilistic simulation
algorithm that advances the state-of-the-art: in fact, itstime and space complexity bounds
improve on the best known simulation algorithm for PLTSs by Zhang et al. [18].

This is an extended and revised version of the conference paper [4] that includes full
proofs.

2 Bisimulation and Simulation in PLTSs

Given a setX, Distr(X) denotes the set of (stochastic) distributions onX, i.e., functions
d:X → [0,1] such that

P

x∈X d(x) = 1. The support of a distributiond is defined by
supp(d) , {x ∈ X | d(x) > 0}; also, if S ⊆ X then d(S) ,

P

s∈S d(s). The Dirac
distribution onx ∈ X, denoted byδx, is the distribution that assigns probability 1 tox (and
0 otherwise).

A probabilistic LTS (PLTS) is a tupleS = 〈Σ,Act , �〉 whereΣ is a set of states,Act is
a set of actions and� ⊆ Σ × Act ×Distr(Σ) is a transition relation, where(s, a, d) ∈ � is
also denoted bys a→d. We denote byDistr , {d ∈ Distr(Σ) | ∃s ∈ Σ.∃a ∈ Act . s a→d}

the set of target distributions inS. Given D ⊆ Distr, we write s a→D when there exists
d ∈ D such thats a→d. For anya ∈ Act , the predecessor and successor operatorsprea :
℘(Distr) → ℘(Σ) andposta : ℘(Σ) → ℘(Distr) are defined as usual byprea(D) , {s ∈

Σ | s a→D} andposta(S) , {d ∈ Distr | ∃s ∈ S. s a→d}. For anyd ∈ Distr ands ∈ Σ,
we definein(d) , {a ∈ Act | prea(d) 6= ∅} andout(s) , {a ∈ Act | posta(s) 6= ∅}.

2

Bisimulation. A partition of a setX is a setP ⊆ ℘(X) of nonempty subsets ofX (called
blocks) that are pairwise disjoints and whose union givesX. Let Part(X) denote the set of
partitions ofX. If P ∈ Part(X) andx ∈ X thenP (x) denotes the unique block ofP that
containsx. A partition P will be also viewed as a mappingP : ℘(X) � ℘(X) defined by
P (Y) , ∪y∈Y P (y). Any partitionP ∈ Part(X) induces an equivalence relation (which
can be equivalently given as a partition) over distributions≡P ∈ Part(Distr(X)) which is
defined as follows: for anyd, e ∈ Distr(X), d ≡P e if for any B ∈ P , d(B) = e(B). In
words, two distributions are≡P -equivalent whenever they give the same probability to the
blocks ofP .

Given a PLTSS = 〈Σ,Act , �〉, a partitionP ∈ Part(Σ) is a bisimulation onS when
for all s, t ∈ Σ andd ∈ Distr, if P (s) = P (t) ands a→d then there existse ∈ Distr such
that t a→e andd ≡P e. Bisimilarity Pbis ∈ Part(Σ) is defined as follows: for anys ∈ Σ,
Pbis(s) , ∪{P (s) | P is a bisimulation onS}. Pbis turns out to be the greatest bisimulation
on S which is also called the bisimulation partition onS.

Simulation. A preorder on a setX is a reflexive and transitive relationR ⊆ X × X.
Let PreOrd(X) denote the set of preorders onX. If R ∈ PreOrd(X) andS ⊆ X then
R(S) , {x ∈ X | ∃s ∈ S. (s, x) ∈ R} denotes the image ofS for R. Similarly to the case
of partitions, any preorderR ∈ PreOrd(X) induces a preorder≤R on Distr(X) which is
defined as follows: for anyd, e ∈ Distr(X), d ≤R e if for any S ⊆ X, d(S) ≤ e(R(S)).
Such a definition of≤R can be equivalently stated in terms of so-called weight functions
between distributions and of maximum flows between networks. We briefly recall its equiv-
alent formulation based on the maximum flow problem since oursimulation algorithm, as
well as the simulation algorithms by Baier et al. [1] and Zhang et al. [18], are based on this
notion.

Let X , {x | x ∈ X}, wherex are pairwise distinct new elements;⊥ (the source) and
⊤ (the sink) are a pair of new distinct elements not contained in X ∪ X. Let R ⊆ X × X

and d, e ∈ Distr(X). The networkN(d, e, R) is defined as follows: the set of nodes is
V , supp(d) ∪ supp(e) ∪ {⊥,⊤} while the set of edgesE ⊆ V × V is defined by

E , {(x, y) | (x, y) ∈ R} ∪ {(⊥, x) | x ∈ supp(d)} ∪ {(y,⊥) | y ∈ supp(e)}.

The capacity functionc : V × V � [0,1] is defined as follows: for allx ∈ supp(d),
c(⊥, x) , d(x); for all y ∈ supp(e), c(y,⊤) , e(y); for all the remaining edges(x, y) ∈

E, c(x, y) , 1. It turns out thatd ≤R e if and only if the maximum flow of the network
N(d, e, R) is 1 (see [1,5,18,20]).

Given a PLTSS = 〈Σ,Act , �〉, a preorderR ∈ PreOrd(Σ) is a simulation onS when
for all s, t ∈ Σ andd ∈ Distr, if t ∈ R(s) and s a→d then there existse ∈ Distr such
that t a→e andd ≤R e. The simulation preorderRsim ∈ PreOrd(Σ) on S is defined as
follows: for all s ∈ Σ, Rsim(s) , ∪{R(s) | R is a simulation onS}. It turns out thatRsim

is the greatest simulation preorder onS. The simulation partitionPpsim on S is the kernel
of the simulation preorder, i.e., for alls, t ∈ Σ, Ppsim(s) = Ppsim(t) iff s ∈ Rsim(t) and
t ∈ Rsim(s).

Example 2.1 Consider the PLTS depicted in Figure 1, whereΣ = {s1, s2, s3, x1, . . . , x6, t,

u, v, w}, Act = {a, b, c, d} andDistr = {d1, d2, d3, δt, δu, δv, δw}. We have thats2 sim-
ulatess1 while s1 does not simulates2 since starting froms2 a d-transition can be fired,
whereas starting froms1 this is not possible. Moreover, even ifx3 simulates bothx5 and
x6, we have thatd3 6≤Rpsim

d2 since1 = d3({x5, x6}) 6≤ d2(Rpsim({x5, x6})) = 0.5 since
x4 /∈ Rpsim({x5, x6}). Therefore,s2 does not simulates3. ⊓⊔

3

s1

d1

x1 x2

δt δu

0.5 0.5

a

b c

s2

d2

x3 x4

δt δv δu

0.5 0.5

a

b d c

s3

d3

x5 x6

δt δw

0.5 0.5

a

b d

Fig. 1 A PLTS.

3 Shells

3.1 Forward Completeness

In standard abstract interpretation [2,3], approximations of a concrete semantic domain are
encoded by abstract domains (or abstractions), that are specified by Galois insertions (GIs
for short) or, equivalently, by adjunctions. Concrete and abstract domains are defined as
complete lattices〈C,≤C〉 and 〈A,≤A〉 wherex ≤ y means thaty approximatesx both
concretely and abstractly. A GI ofA into C is determined by a surjective abstraction mapα :
C → A and a 1-1 concretization mapγ : A → C such thatα(c) ≤A a ⇔ c ≤C γ(a), and
is denoted by(α,C, A, γ). Recall that GIs of a common concrete domainC are preordered
w.r.t. their relative precision:G1 = (α1, C, A1, γ1) E G2 = (α2, C, A2, γ2), i.e.A1/A2 is a
refinement/simplification ofA2/A1, if and only if for all c ∈ C, γ1(α1(c)) ≤C γ2(α2(c)).
Moreover,G1 andG2 are equivalent whenG1 E G2 andG2 E G1. We denote byAbs(C)
the family of abstract domains ofC up to the above equivalence. It is well known that
〈Abs(C),E〉 is a complete lattice. Given a family of abstract domainsX ⊆ Abs(C), their
lub ⊔X is therefore the most precise domain inAbs(C) which is a simplification of any
domain inX.

Let f : C → D be some concrete semantic function defined on a pair of concrete
domainsC andD, and letA ∈ Abs(C) andB ∈ Abs(D) be a pair of abstractions. In
the following, we will denote by⊑X�Y the pointwise ordering relation between functions
in X → Y . Given an abstract functionf♯ : A → B, we have that〈A, B, f♯〉 is a sound
abstract interpretation off whenf ◦ γA,C ⊑A�D γB,D ◦ f♯. Forward completeness [3,7]
corresponds to the following strengthening of soundness:f ◦ γA,C = γB,D ◦ f♯, meaning
that the abstract functionf♯ is able to replicate the behaviour off on the abstract domainsA
andB with no loss of precision. If an abstract interpretation〈A, B, f♯〉 is forward complete
then it turns out that the abstract functionf♯ indeed coincides withαD,B ◦f ◦γA,C , which is
the best correct approximation of the concrete functionf on the pair of abstractions〈A,B〉.
Hence, the notion of forward completeness of an abstract interpretation〈A, B, f♯〉 does not
depend on the choice of the abstract functionf♯ but only depends on the chosen abstract
domainsA andB. Accordingly, a pair of abstract domains〈A, B〉 ∈ Abs(C) × Abs(D) is
called forward complete forf (or simplyf-complete) ifff ◦ γA,C = γB,D ◦ (αD,B ◦ f ◦

γA,C). Equivalently,〈A, B〉 is f-complete iff the image off in D is contained inγB,D(B),
namely,f(γA,C(A)) ⊆ γB,D(B). If F ⊆ C → D is a set of concrete functions then〈A,B〉

is F-complete when〈A,B〉 is f-complete for allf ∈ F.

4

ShellAlgo(F, G, A, B) {
Initialize();
while ¬(F-Stable ∧ G-Stable) do

if ¬F-Stable then G-Stable := Stabilize(F, A, B); F-Stable := true;
if ¬G-Stable then F-Stable := Stabilize(G, B, A); G-Stable := true;

}

Initialize() {
F-Stable := CheckStability(F, A, B); G-Stable := CheckStability(G, B, A);

}

bool Stabilize(H, X, Y) {
Yold := Y ;
Y := ⊔{Y ′ ∈ Abs | Y ′ E Y, 〈X, Y ′〉 is H-complete};
return (Y = Yold);

}

Fig. 2 Basic Shell Algorithm.

3.2 Shells of Abstract Domains

Given a set of semantic functionsF ⊆ C → D and a pair of abstractions〈A, B〉 ∈ Abs(C)×
Abs(D), the notion of forward complete shell [7] formalizes the problem of finding the
most abstract pair〈A′, B′〉 such thatA′ E A, B′ E B and〈A′, B′〉 is F-complete, which is
a particular case of abstraction refinement [8]. It turns out(see [7]) that any pair〈A, B〉 can
be minimally refined to its forwardF-complete shell:

ShellF(〈A,B〉) ,

⊔ {〈A′, B′〉 ∈ Abs(C) × Abs(D) | 〈A′, B′〉 E 〈A, B〉, 〈A′, B′〉 is F-complete}.

Thus,ShellF(〈A,B〉) encodes the least refinement of a pair of abstractions〈A, B〉 which is
needed in order to achieve forward completeness forF.

Let us now consider a further set of concrete semantic functions G ⊆ D → C that
operate in the opposite direction w.r.t.F, i.e., fromD to C. GivenA ∈ Abs(C) andB ∈

Abs(D), it makes sense to consider both forwardF-completeness of〈A, B〉 and forward
G-completeness of the reversed pair〈B, A〉. Thus,〈A, B〉 is defined to be〈F, G〉-complete
when〈A, B〉 is F-complete and〈B, A〉 is G-complete. Here again, any pair〈A, B〉 can be
minimally refined to its〈F, G〉-complete shell:

Shell〈F,G〉(〈A,B〉) ,

⊔ {〈A′, B′〉 ∈ Abs(C) × Abs(D) | 〈A′, B′〉 E 〈A, B〉, 〈A′, B′〉 is 〈F, G〉-complete}.

Such a combined shellShell〈F,G〉(〈A,B〉) can be obtained through the ShellAlgo() pro-
cedure described in Figure 2. This procedure works by iteratively refining the abstractionsA
andB separately until both〈A,B〉 becomesF-complete and〈B,A〉 becomesG-complete.
The ShellAlgo() procedure crucially relies on the Stabilize() function. In general, given a set
of functionsH and a pair of abstractions〈X, Y 〉, we have that Stabilize(H,X, Y) refines
the abstractionY to Ystable , ⊔{Y ′ | Y ′ E Y, 〈X, Y ′〉 is H-complete}, so that〈X, Ystable〉

becomesH-stable (i.e.,H-complete). Hence, Stabilize(F,A, B) minimally refinesB to B′

so that〈A, B′〉 is F-complete. Hence, while the abstractionB is refined, the abstraction
A is left unchanged. Moreover, ifB is actually refined intoB′ ⊳ B, then theG-Stable

5

flag is set to false so that ShellAlgo() proceeds byG-stabilizing 〈B′, A〉, i.e., by calling
Stabilize(G, B, A). Thus, ShellAlgo(F,G, A,B) begins by first checking whether〈A, B〉 is
F-complete and〈B, A〉 is G-complete, and then proceeds by iteratively refining the abstrac-
tionsA andB separately, namely it refinesB w.r.t.F while A is kept fixed and then it refines
A w.r.t. G while B is kept fixed. It turns out that the ShellAlgo() procedure is correct.

Theorem 3.1 ShellAlgo(F,G, A, B) = Shell〈F,G〉(〈A,B〉).

Proof Firstly, we observe in general that ifYstable , ⊔ {Y ′ ∈ Abs | Y ′ E Y, 〈X, Y ′〉 is
H-complete} then〈X, Ystable〉 is forwardH-complete. In fact, let〈X, Yi〉i∈I be a family
of H-complete pairs withYi E Y , then by definition of forwardH-completeness we have
that for all i ∈ I and for allh ∈ H, h(γ(X)) ⊆ γ(Yi), henceh(γ(X)) ⊆ ∩i∈Iγ(Yi),
that ish(γ(X)) ⊆ γ(⊔i∈IYi); thus,〈X,⊔i∈IYi〉 is H-complete. Secondly, the procedure
ShellAlgo() always terminates because if〈A,B〉 and〈A′, B′〉 are, respectively, the current
abstraction pairs at the beginning and at the end of the while-loop, then eitherA′ ⊳ A or
B′ ⊳ B. Let 〈Aref , Bref〉 be the output abstraction pair of ShellAlgo(F,G, A, B) and let
〈As, Bs〉 , Shell〈F,G〉(〈A,B〉). Then, by the observation above,〈Aref , Bref〉 isF-complete
and〈Bref , Aref〉 is G-complete, so that〈Aref , Bref〉 E 〈As, Bs〉. Conversely, since〈As, Bs〉

is F-complete and〈Bs, As〉 is G-complete then it turns out that ShellAlgo(F,G, As, Bs) =
〈As, Bs〉. Moreover, observe that ShellAlgo() is monotone, meaning that if 〈A1, B1〉 E

〈A2, B2〉 then ShellAlgo(F,G, A1, B1) E ShellAlgo(F,G, A2, B2). Thus, from〈As, Bs〉 E

〈A, B〉, we derive that〈As, Bs〉 = ShellAlgo(F,G, As, Bs) E ShellAlgo(F,G, A, B) =
〈Aref , Bref〉. ⊓⊔

4 Bisimulation as a Shell

Bisimulation is commonly computed by coarsest partition refinement algorithms [1,12] that
iteratively refine a current partition until it becomes the bisimulation partition. Coarsest
partition refinements can be formalized as shells of partitions: given a property of partitions
P ⊆ Part(X), theP-shell ofQ ∈ Part(X) corresponds to the coarsest partition refinement
of Q that satisfiesP, when this exists. In this section we show how bisimulation in PLTSs
can be equivalently stated in terms of forward complete shells of partitions w.r.t. suitable
concrete semantic functions. We also show how the above basic shell algorithm ShellAlgo()
can be instantiated to compute bisimulations on PLTSs.

4.1 Shells of Partitions

Let us first recall that, given a finite setX, 〈Part(X),�, g, f〉 is a (finite) lattice where
P1 � P2 (i.e.,P2 is coarser thanP1 or P1 refinesP2) iff ∀x ∈ X.P1(x) ⊆ P2(x), and its top
element is⊤Part(X) = {X}. By following the approach in [15], any partitionP ∈ Part(X)
can be viewed as an abstraction of〈℘(X),⊆〉, where any setS ⊆ X is approximated through
its minimal cover in the partitionP . This is formalized by viewingP as the abstract domain
closed(P) , {S ⊆ X | P (S) = S} so thatS ∈ closed(P) iff S = ∪i∈IBi for some blocks
{Bi}i∈I ⊆ P . Note that∅, X ∈ closed(P) and that〈closed(P),⊆,∪,∩〉 is a lattice. It
turns out that〈closed(P),⊆〉 is an abstraction inAbs(℘(X)⊆), where any setS ⊆ X is
approximated through the blocks inP coveringS, namely by∪{B ∈ P | B ∩ S 6= ∅} ∈

closed(P).

6

The above embedding of partitions as abstract domains allows us to define a notion
of forward completeness for partitions. Letf : ℘(X) → ℘(Y) be a concrete semantic
function that transforms subsets. Then, a pair of partitions 〈P, Q〉 ∈ Part(X) × Part(Y) is
(forward)f-complete when the pair of abstract domains〈closed(P), closed(Q)〉 is forward
complete forf , that is,f(closed(P)) ⊆ closed(Q). In other terms,〈P, Q〉 is f-complete
when for any unionU ∈ closed(P) of blocks of P , f(U) still is a union of blocks of
Q, namelyf(U) ∈ closed(Q). Also, if we additionally considerg : ℘(Y) → ℘(X) then
〈P, Q〉 is 〈f, g〉-complete when〈P, Q〉 is f-complete and〈Q, P 〉 is g-complete. Analogously
to forward complete shells of generic abstract domains in Section 3, it is easy to see that
forward complete shells of partitions exist. GivenF ⊆ ℘(X) → ℘(Y) andG ⊆ ℘(Y) →

℘(X), Shell〈F,G〉(〈P, Q〉) is the coarsest pair of partitions that (component-wise) refines the
pair 〈P, Q〉 and is〈F,G〉-complete, namely

Shell〈F,G〉(〈P,Q〉) ,

g{〈P ′, Q′〉 ∈ Part(X) × Part(Y) | 〈P ′, Q′〉 � 〈P, Q〉, 〈P ′, Q′〉 is 〈F, G〉-complete}.

4.2 Bisimulation on PLTSs

Ranzato and Tapparo [15] have shown that bisimulation on a LTS L can be equivalently
defined in terms of forward complete shells of partitions w.r.t. the predecessor operator ofL.
This same idea scales to the case of PLTSs taking into accountthat: (i) in a PLTS the target of
the transition relation is a set of distributions rather than a set of states, and (ii) bisimulation
on the set of states of a PLTS induces an equivalence over distributions that depends on the
probabilities that distributions assign to blocks of bisimilar states. LetS = 〈Σ,Act , �〉 be a
PLTS and consider the following two functions, wherea ∈ Act andp ∈ [0, 1]:

prea : ℘(Distr) → ℘(Σ), prea(D) , {s ∈ Σ | s a→D}

probp : ℘(Σ) → ℘(Distr), probp(S) , {d ∈ Distr | d(S) ≥ p}

prea(D) is the a-predecessor function in the PLTSS for a set of distributionsD while
probp(S) returns the distributions whose probability on the setS is greater than or equal to
p. Let us definepre , {prea}a∈Act andprob , {probp}p∈[0,1]. It is worth noticing that
this pair of sets of functions provides an encoding of the PLTSS: pre encodes the transition
relation� of S, while any distributiond in S can be retrieved through functions inprob. For
instance, the support of a distributiond ∈ Distr is given by the minimal set of statesS such
thatd ∈ prob1(S), while, for anys ∈ Σ, d(s) = sup {p ∈ [0,1] | d ∈ probp({s})}.

In the following, the bisimulation problem is stated in terms of forward completeness
of pairs of abstract domains〈P, P〉 ∈ Part(Σ) × Part(Distr) w.r.t. the concrete semantic
functionsprob ⊆ ℘(Σ) → ℘(Distr) andpre ⊆ ℘(Distr) → ℘(Σ).

Lemma 4.1 Consider a pair of partitions〈P, P〉 ∈ Part(Σ) × Part(Distr).

(i) 〈P, P〉 is prob-complete if and only ife ∈ P(d) thend ≡P e, i.e., if and only if for any
blockB ∈ P and any distributiond ∈ Distr, the set{e ∈ Distr | e(B) = d(B)} is a
union of blocks ofP;

(ii) 〈P, P 〉 ispre-complete if and only if for anya ∈ Act , s a→d andt ∈ P (s) implyt a→P(d),
i.e., if and only if for any blockC ∈ P and for any incoming labela ∈ in(C), prea(C)
is a union of blocks ofP .

7

Proof Let us prove (i). Assume that〈P, P〉 is prob-complete. Hence, for anyp ∈ [0, 1] and
for any blockB ∈ P , if d ∈ probp(B) andP(d) = P(e) thene ∈ probp(B). Consider
therefored, e ∈ Distr such thatP(d) = P(e). For anyB ∈ P , let us definepB , d(B).
Sinced ∈ probpB

(B), we have thate ∈ probpB
(B), hencee(B) ≥ pB = d(B). Thus,

for any B ∈ P , e(B) ≥ d(B). Thus,d(B) = 1 −
P

C∈P,C 6=B d(C) =
P

C∈P e(C) −
P

C∈P,C 6=B d(C) ≥
P

C∈P e(C) −
P

C∈P,C 6=B e(C) = e(B), henced(B) = e(B) for
anyB ∈ P , namelyd ≡P e.
For the opposite direction, assume that ifP(d) = P(e) thend ≡P e and let us show that
〈P, P〉 is prob-complete. ConsiderX ⊆ Σ, p ∈ [0,1], d ∈ probp(P (X)), e ∈ P(d) and
let us show thate ∈ probp(P (X)). We have thatP (X) = ∪i∈IBi for some set of blocks
{Bi}i∈I ⊆ P . Hence, fromd ≡P e, we obtain thatd(∪iBi) = e(∪iBi), so that from
d(∪iBi) ≥ p we gete(∪iBi) ≥ p, namelye ∈ probp(P (X)).
It remains to prove that〈P, P〉 isprob-complete iff for any blockB ∈ P and any distribution
d ∈ Distr, {e ∈ Distr | e(B) = d(B)} is a union of blocks ofP.
(⇒) ConsiderB ∈ P andd, e, f ∈ Distr such thatd(B) = f(B) andP(d) = P(e). Let us
show thate(B) = f(B). Let p , f(B), so thatd ∈ probp(P (B)). Hence, by hypothesis,
P(d) ⊆ probp(P (B)), so thate ∈ probp(P (B)), namelye(P (B)) = e(B) ≥ p. Let
Y , Σ r B so thatY = ∪C∈P,C 6=BC. We have thatf(Y) = f(P (Y)) = 1 − p = d(Y) =
d(P (Y)), so thatd ∈ prob1−p(P (Y)). Hence, by hypothesis,P(d) ⊆ prob1−p(P (Y)),
so thate ∈ prob1−p(P (Y)), namelye(P (Y)) = e(Y) ≥ 1 − p, from which e(B) =
1 − e(Y) ≤ p. Hence,e(B) = p = f(B).
(⇐) ConsiderS ⊆ Σ andp ∈ [0, 1] and let us show thatprobp(P (S)) is a union of blocks
of P. Hence, considerd, e ∈ Distr such thatd(P (S)) ≥ p andP(d) = P(e) and let us show
thate(P (S)) ≥ p. LetP (S) = ∪i∈IBi for some set of blocks{Bi}i∈I ⊆ P . By hypothesis,
for anyi ∈ I, {h ∈ Distr | h(Bi) = d(Bi)} is a union of blocks ofP, so thate(Bi) = d(Bi)
for anyi ∈ I, so thate(P (S)) =

P

i∈I e(Bi) =
P

i∈I d(Bi) = d(P (S)) ≥ p.
Let us consider item (ii). Note that since any functionprea is additive,〈P, P 〉 is prea-
complete if and only if for anyd ∈ Distr, prea(P(d)) is a union of blocks inP , i.e., if and
only if for anyd ∈ Distr, if s a→P(d) andP (s) = P (t) thent a→P(d), i.e., if and only if for
any blockC ∈ P and for any incoming labela ∈ in(C), we have thatprea(C) is a union of
blocks ofP . ⊓⊔

As a direct consequence of the above characterization, we have that a partitionP ∈

Part(Σ) is a bisimulation onS if and only if the pair of partitions〈P,≡P 〉 is 〈prob,pre〉-
complete. In turn, the coarsest bisimulationPbis onS can be obtained as a forward complete
shell of partitions.

Corollary 4.2 LetS = 〈Σ,Act , �〉 be a PLTS.

(i) P ∈ Part(Σ) is a bisimulation onS if and only if〈P,≡P 〉 is 〈prob,pre〉-complete.
(ii) Let 〈P, P〉 ∈ Part(Σ) × Part(Distr). If 〈P, P〉 is 〈prob,pre〉-complete thenP is a

bisimulation onS andP ⊆ ≡P .

Theorem 4.3 〈Pbis,≡Pbis
〉 = Shell〈prob,pre〉(⊤Part(Σ),⊤Part(Distr)).

Proof Let 〈P ∗, P∗〉 = Shell〈prob,pre〉(⊤Part(Σ),⊤Part(Distr)). Since we have that〈P ∗, P∗〉

is 〈prob,pre〉-complete, by Corollary 4.2 (ii), we have thatP ∗ � Ppbis andP
∗ ⊆ ≡P∗ .

Hence, we also have thatP∗ ⊆ ≡Ppbis
. For the opposite direction, by Corollary 4.2 (i), we

have that〈Ppbis,≡Ppbis
〉 is 〈prob,pre〉-complete, so that, by definition of shell, it turns out

that〈Ppbis,≡Ppbis
〉 � 〈P ∗, P∗〉, namelyPpbis � P ∗ and≡Ppbis

⊆ P∗. ⊓⊔

8

PBis(S) {
Initialize();
while ¬ (probStable∧ preStable)do

if ¬ probStablethen preStable := probStabilize(〈P, P〉); probStable := true;
if ¬ preStablethen probStable := preStabilize(〈P, P 〉); preStable := true;

}

Initialize() {
forall s ∈ Σ do P (s) := Σ;
forall d ∈ Distr do P(d) := Distr;
preStabilize(〈P, P 〉); preStable:= probStabilize(〈P, P〉); probStable:= true;

}

bool preStabilize(〈P, P 〉) {
Pold := P ;
forall C ∈ P do

forall a ∈ in(C) do P := Split(P, prea(C));

return (P 6= Pold)
}

bool probStabilize(〈P, P〉) {
Pold := P;
forall B ∈ P do

forall d ∈ Distr do P := Split(P, {e ∈ Distr | e(B) = d(B)});

return (P 6= Pold)
}

Fig. 3 Bisimulation AlgorithmPBis.

4.3 Bisimulation Algorithm

By Theorem 4.3,Pbis can be computed as a partition shell by instantiating the basic shell
algorithm in Figure 2 toF = {probp}p∈[0,1] andG = {prea}a∈Act , and by viewing parti-
tions inPart(Σ)×Part(Distr) as abstract domains. This leads to a bisimulation algorithm
as described in Figure 3, calledPBis, that takes a PLTSS as input and initializes and stabi-
lizes a pair of state and distribution partitions〈P, P〉 until it becomes〈prob,pre〉-complete.

Stabilization is obtained by means of two auxiliary functions preStablize() and prob-
Stabilize(), that implement Lemma 4.1. In particular, the function call preStabilize(〈P, P 〉)
refines the state partitionP intoP ′ so that〈P, P ′〉 ispre-complete. According to Lemma 4.1,
in order to getpre-completeness it is sufficient to minimally refineP so that for any block
of distributionsC ∈ P, and for any incoming labela ∈ in(C), prea(C) is a union of
blocks ofP . If prea(C) is not a union of blocks ofP thenprea(C) ⊆ Σ is called a splitter
of P , and we denote bySplit(P,prea(C)) the partition obtained fromP by replacing each
blockB ∈ P with the nonempty setsB∩prea(C) andBrprea(C). Notice that when some
prea(C) is already a union of blocks ofP we have thatSplit(P,prea(C)) = P , i.e., we also
allow no splitting. Hence, preStabilize() refinesP by iteratively splittingP w.r.t. prea(C),
for all C ∈ P anda ∈ in(C). On the other hand, the function call probStabilize(〈P, P〉)
refines the current distribution partitionP into P

′ so that〈P, P′〉 is prob-complete. Accord-
ing to Lemma 4.1,〈P, P〉 is prob-complete when for any blockB ∈ P and any distribution
d ∈ Distr, {e ∈ Distr | e(B) = d(B)} is a union of blocks ofP. Thus, probStabilize()
iteratively splits the distribution partitionP w.r.t.{e ∈ Distr | e(B) = d(B)}, for all B ∈ P

andd ∈ Distr.

9

The initialization phase is carried out by the Initialize()function. The two current par-
titions P andP are initialized with the top elements⊤Part(Σ) and⊤Part(Distr), i.e.,{Σ}

and{Distr}. Moreover, in order to inizialize the two boolean flags probStable and preStable,
Initialize() first calls preStabilize() and then calls probStabilize(). Therefore, the initial value
of probStable is true, while that of preStable is either trueor false depending on whether the
prob-stabilization has invalidated the previouspre-stabilization or not.

Theorem 4.4 For a finite PLTSS, PBis(S) terminates and is correct, i.e., if〈P, P〉 is the
output ofPBis(S) thenP = Pbis andP = ≡Pbis

.

Proof A consequence of Theorems 3.1 and 4.3.⊓⊔

Implementation. Baier-Engelen-Majster’s two-phased partitioning algorithm [1] is the stan-
dard procedure for computing the bisimulationPbis. This bisimulation algorithm can be es-
sentially viewed as an implementation of the above PBis algorithm, since the two phases of
Baier et al.’s algorithm (see [1, Figure 9]) coincide with our preStabilize() and probStabilize()
functions. The only remarkable difference is that instead of using a single partition over
all the distributions inDistr, Baier et al.’s algorithm maintains a so-called step partition,
namely, a family of partitions{Ma}a∈Act such that, for anya ∈ Act , Ma is a partition
of the distributions inposta(Σ), i.e., the distributions that have an incoming edge labeled
with a. As a consequence, in the phase that corresponds to probStabilize(), any partition
Ma is split w.r.t. all the splitters{e ∈ posta(Σ) | e(B) = d(B)}, whereB ∈ P and
d ∈ posta(Σ). Baier et al.’s algorithm is implemented by exploiting Hopcroft’s “process
the smaller half” principle when splitting the state partition w.r.t. a splitterprea(C) and this
yields a procedure that computes bisimulation on PLTSs inO(|�||Σ|(log |�| + log |Σ|))
time andO(|�||Σ|) space.

5 Simulation as a Shell

Let us focus on simulation preorders in PLTSs. We show that the simulation preorder is a
complete shell of abstract domains w.r.t. the same operatorsprob andpre considered above
for bisimulation equivalence, whereas the key difference lies in the underlying abstract do-
mains that in this case are preorders, rather than partitions, viewed as abstractions.

5.1 Shells of Preorders

Recall that, given any finite setX, 〈PreOrd(X),⊆,∪t,∩〉 is a lattice, whereR1 ∪t R2 is
the transitive closure ofR1∪R2 and the top element is⊤PreOrd(X) , X ×X. Analogously
to partitions, any preorderR ∈ PreOrd(X) can be viewed as an abstraction of〈℘(X),⊆〉,
where any setS ⊆ X is approximated by itsR-closureR(S). Formally, a preorderR ∈

PreOrd(X) can be viewed as the abstract domainclosed(R) , {S ⊆ X | R(S) = S}.
Observe thatS ∈ closed(R) iff S = ∪i∈IR(xi) for some set{xi}i∈I ⊆ X and that
〈closed(R),⊆,∪,∩〉 is a lattice (note that∅,X ∈ closed(R)). It turns out thatclosed(R) ∈
Abs(℘(X)⊆): this means that any setS ⊆ X is approximated by itsR-closure, namely by
R(S) ∈ closed(R).

Given a pair of sets of functions〈F, G〉 ⊆ (℘(X) → ℘(Y)) × (℘(Y) → ℘(X)), a
pair of preorders〈R,S〉 ∈ PreOrd(X) × PreOrd(Y) is (forward)〈F, G〉-complete when

10

for any f ∈ F and g ∈ G, if 〈U, V 〉 ∈ closed(R) × closed(S) then 〈f(U), g(V)〉 ∈

closed(S) × closed(R). Forward complete shells of preorders are therefore definedas fol-
lows: Shell〈F,G〉(〈R,S〉) is the largest pair of preorders〈R′, S′〉 ⊆ 〈R, S〉 which is〈F, G〉-
complete.

5.2 Simulation on PLTSs

Similarly to the case of bisimulation, simulation can be equivalently expressed in terms of
forward completeness w.r.t.prob = {probp}p∈[0,1] andpre = {prea}a∈Act .

Lemma 5.1 Consider a pair of preorders〈R,R〉 ∈ PreOrd(Σ) × PreOrd(Distr).

(i) 〈R,R〉 is prob-complete if and only ife ∈ R(d) impliesd ≤R e;
(ii) 〈R, R〉 is pre-complete if and only if for anya ∈ Act, t ∈ R(s) and s a→d imply that

there existse such thatt a→e ande ∈ R(d).

Proof Let us prove (i), that is,〈R, R〉 is prob-complete iffR ⊆ ≤R. Recall (see [20]) that
d ≤R e iff for any Z ⊆ Σ, d(R(Z)) ≤ e(R(Z)).
(⇒) Assume thate ∈ R(d). For anyZ ⊆ Σ, let us definepZ , d(R(Z)) so thatd ∈

probpZ
(R(Z)). Thus, byprob-completeness,e ∈ probpZ

(R(Z)), namelye(R(Z)) ≥

d(R(Z)). Since this holds for anyZ ⊆ Σ, we have thatd ≤R e.
(⇐) ConsiderZ ⊆ Σ, p ∈ [0,1], d ∈ probp(R(Z)), e ∈ R(d) and let us show that
e ∈ probp(R(Z)). By hypothesis,d ≤R e, so thate(R(Z)) ≥ d(R(Z)) ≥ p, that is,
e ∈ probp(R(Z)).
Let us turn to (ii). Note that since any functionprea is additive,〈R, R〉 is prea-complete
if and only if for anyd ∈ Distr, prea(R(d)) ∈ closed(R), that is, if and only if for any
d ∈ Distr, if s a→R(d) andt ∈ R(s) thent ∈ prea(R(d)), i.e., there existse such thatt a→e

with e ∈ R(d). ⊓⊔

Thus, a preorderR ∈ PreOrd(Σ) is a simulation onS if and only if the pair〈R,≤R〉

is 〈prob,pre〉-complete. In turn, the greatest simulation preorderRsim can be obtained as a
preorder shell.

Corollary 5.2 LetS = 〈Σ,Act , �〉 be a PLTS.

(i) R ∈ PreOrd(Σ) is a simulation onS if and only if〈R,≤R〉 is 〈prob,pre〉-complete.
(ii) Let 〈R, R〉 ∈ PreOrd(Σ) × PreOrd(Distr). If 〈R, R〉 is 〈prob,pre〉-complete, thenR

is a simulation onS andR ⊆≤R.

Theorem 5.3 〈Rsim,≡Rsim
〉 = Shell〈prob,pre〉(⊤PreOrd(Σ),⊤PreOrd(Distr)).

Proof Analogous to the proof of Theorem 4.3.⊓⊔

6 A New Efficient Simulation Algorithm on PLTSs

We show how a new efficient algorithm for computing simulations in PLTSs, calledPSim,
can be derived by instantiating the basic shell algorithm toF = {probp}p∈[0,1] andG =
{prea}a∈Act , and by viewing preorders inPreOrd(Σ) and PreOrd(Distr) as abstract
domains. Similarly to the case of bisimulation,PSim, which is described in Figure 4, takes

11

PSim(S) {
Initialize();
while ¬ (probStable∧ preStable)do

if ¬ probStablethen preStable := probStabilize(〈R, R〉); probStable := true;
if ¬ preStablethen probStable := preStabilize(〈R, R〉); preStable := true;

}

Fig. 4 PSim Algorithm.

Initialize() {1
// Initialize R andR

forall s ∈ Σ do R(s) := {t ∈ Σ | out(s) ⊆ out(t)};2
forall d ∈ Distr do R(d) := {e ∈ Distr | Init SMF(d, e, R) = true};3

// Initialize in
forall d ∈ Distr do in(d) := {a ∈ Act | prea(d) 6= ∅};4

// Initialize Count
forall e ∈ Distr do5

forall a ∈ in(e) do6
forall x ∈ prea(Distr) do7

Count(x, a, e) := |{d ∈ Distr | x
a→d, d ∈ R(e), a ∈ in(e)}|;8

// Initialize Remove
forall d ∈ Distr do9

forall a ∈ in(d) do10
Removea(d) := {s ∈ Σ | a ∈ out(s), s

a
9R(d)};11

// Initialize Stability Flags
probStable:= true;12
if ∃e ∈ Distr, a ∈ in(e) such thatRemovea(e) 6= ∅ then preStable:= false;13
elsepreStable:= true;14

// Initialize Listener
forall x, y ∈ Σ do Listener(x, y) := {(d, e) | x ∈ supp(d), e ∈ supp(e)};15

// Initialize Deleted Arcs
Deleted := ∅;16

}17

Fig. 5 High-level definition of Initialize() function.

a PLTSS as input and initializes and stabilizes a pair of state and distribution preorders
〈R, R〉 ∈ PreOrd(Σ) × PreOrd(Distr) until it becomes〈prob,pre〉-complete.

The stabilization functions, which are given in Figure 6, refine the preorders according
to Lemma 5.1, that is

– the function preStabilize() makes the pair〈R, R〉 pre-complete by refining the state
preorderR until there exists a transitions a→d such that andR(s) 6⊆ prea(R(d));

– the function probStabilize() makes the pair〈R, R〉 prob-complete by refining the dis-
tribution preorderR by iteratively refining it until there existe, d ∈ Distr such that
e ∈ R(d) andd 6≤R e.

The design of these functions allows us to refine the preorders R and R by follow-
ing an efficient incremental approach. In particular, preStabilize() refines the preorderR by
mimicking the incremental approach of Henzinger et al. [10]simulation algorithm for non-
probabilistic LTSs. On the other hand, the function probStabilize() resorts to the incremental

12

bool preStabilize(〈R, R〉) {1
Deleted := ∅;2
while ∃Removea(e) 6= ∅ do3

Remove := Removea(e); Removea(e) := ∅;4
forall t

a→e do5
forall w ∈ Remove do6

if w ∈ R(t) then Deleted :=Deleted∪{(t, w)}; R(t) := R(t) r {w};7

if (Deleted 6= ∅) then probStable:= false;8
return probStable;9

}10

bool probStabilize(〈R, R〉) {1
forall (t, w) ∈ Deleted do2

forall (d, e) ∈ Listener(t, w) such thate ∈ R(d) do3
if SMF(d, e, (t, w)) = falsethen4

R(d) := R(d) r {e};5
forall b ∈ in(e) ∩ in(d) do6

forall s
b→e do7

Count(s, b, d)- -;8
if Count(s, b, d) = 0 then9

Removeb(d) := Removeb(d) ∪ {s}; preStable:= false;10

return preStable;11
}12

Fig. 6 Stabilization functions.

approach of Zhang et al. [18] simulation algorithm, and stabilizes the distribution preorder
R by computing sequences of maximum flow problems. More precisely, given a pair of dis-
tributions(d, e), successive calls to probStabilize() might repeatedly check whetherd ≤R e

whereR is the current (new) state preorder. This amounts to repeatedly check whether the
maximum flow over the netN(d, e, R) remains 1 with the current (new) preorderR. Zhang
et al. [18] observe that the networks for a given pair(d, e) across successive iterations of
their algorithm are very similar, since they differ only by deletion of some edges due to the
refinement ofR. Therefore, in order to incrementally deal with this sequence of tests, Zhang
et al.’s algorithm stores after each iteration the current networkN(d, e, R) together with its
maximum flow information, so that at the next iteration, instead of computing the maximum
flow of the full new network, one can exploit a so-called preflow algorithm which is initial-
ized with the previous maximum flow function. We do not discuss the details of the preflow
algorithm by Zhang et al. [18], since it can be used here as a black box that incrementally
solves the sequence of maximum flow problems that arise for a same network.

PSim relies on a number of data structures, whose initializationis provided by the
Initialize() function, which is described in Figure 5 at high-level and fully implemented
in Figure 7. First, the two preordersR ⊆ Σ × Σ and R ⊆ Distr×Distr are stored as
boolean matrices and are initialized in such a way that they are coarser than, respectively,
Rsim and≤Rsim

. In particular, the initial preorderR is coarser thanRsim since ifs a→d and
t a
9 thent /∈ Rsim(s). Moreover, line 3 of Figure 5 initializesR so thatR = ≤R: this is

done by calling the function InitSMF(d, e, R) which in turn calls the preflow algorithm to
check whetherd ≤R e, and in case this is true, stores the networkN(d, e, R) in order to
reuse it in later calls to probStabilize(). The additional data structures used byPSim come

13

Initialize() {1
// Initialize In
forall d ∈ Distr do2

in(d) = ∅;3
forall a ∈ Act such thatpre

a
(d) 6= ∅ do in(d) := in(d) ∪ {a};4

// Initialize R

forall s, t ∈ Σ do R(s, t) :=true;5
forall a ∈ Act do6

forall d ∈ Distr do7
forall x ∈ prea(d) do mark(x)=true;8

forall y ∈ Σ such that mark(y)=falsedo9
forall d ∈ Distr do10

forall x ∈ prea(d) do R(x, y) :=false;11

forall x ∈ Σ do mark(x)=false;12

// Initialize R

forall d, e ∈ Distr do R(d, e) :=Init SMF(d, e, R)13
// Initialize Count
forall a ∈ Act do14

forall d ∈ Distr do15
forall x ∈ prea(d) do16

forall e ∈ Distr such thatprea(e) 6= ∅ do Count(x, a, e) = 0;17

forall d ∈ Distr do18
forall a ∈ in(d) do19

forall x ∈ pre
a
(d) do20

forall e ∈ Distr such thatR(e, d) ∧ prea(e) 6= ∅ do Count(x, a, e)++;21

// Initialize Remove
forall d ∈ Distr do22

forall a ∈ in(d) do23
Removea(d) := ∅;24
forall x ∈ Σ do25

if Count(x, a, d) = 0 then Removea(d) := Removea(d) ∪ {x};26

// Initialize Stability Flags
probStable:= true;27
if ∃e ∈ Distr, a ∈ in(e) such thatRemovea(e) 6= ∅ then preStable := false;28
elsepreStable := true;29
// Initialize Listener
forall x, y ∈ Σ do Listener(x, y) := ∅;30
forall d, e ∈ Distr do31

forall x∈ supp(d), y∈ supp(e)do Listener(x, y):= Listener(x, y)∪{(d, e)};32

// Initialize Deleted Arcs
Deleted := ∅;33

}34

Fig. 7 Implementation of Initialize() function.

from the incremental refinement methods used in [10] and [18]. Actually, as in [10], for any
distributione and for any incoming actiona ∈ in(e), we store and maintain a set

Removea(e) , {s ∈ Σ | s a→ , s a

9R(e)}

that is used to prune the relationR to getpre-completeness (lines 5-7 of preStabilize()).
The{Count(s, a, e)}e∈Distr,a∈in(e),s∈pre

a
(Distr) table records in any entryCount(s, a, e)

14

the number ofa-transitions from states to a distribution inR(e), so that it can be used to
efficiently refill the remove sets (line 10 of probStabilize()), since it allows to test whether
s a
9R(e) in O(1) by checking whetherCount(s, a, e) is equal to 0. Moreover, in order to

get an efficient refinement also for the distribution preorder R, likewise to Zhang et al.’s
algorithm, for any pair of states(x, y) we compute and store a set

Listener(x, y) , {(d, e) ∈ Distr×Distr | x ∈ supp(d), y ∈ supp(e)}

that contains all the pairs of distributions(d, e) such that the networkN(d, e, R) could con-
tain the edge(x, y), i.e.,Listener(x, y) records the networks that are affected when the pair
of states(x, y) is removed from the preorderR. Indeed, these sets are used in probStabi-
lize() to recognize the pairs(d, e) that have been affected by the refinement ofR due to the
previous call of preStabilize() (lines 2-3 of probStabilize()).

At the end of initialization, the probStable flag is set to true (due to the initialization of
R as≤R), whereas the preStable flag is set to false if at least a nonempty remove set exists.
The main loop ofPSim then repeatedly calls the stabilization functions until the pair〈R, R〉

becomes〈prob,pre〉-complete. More precisely, a call to preStabilize(): (i) refines the rela-
tion R in such a way that ift a→e thenR(t) is pruned toR(t) r Removea(e), (ii) empties
all the Remove sets and collects all the pairs removed fromR into the setDeleted, and
(iii) sets the probStable flag to false whenR has changed. On the other hand, a call to prob-
Stabilize() exploits the setsDeleted andListener to determine all the networksN(d, e, R)
that have been affected by the refinement ofR due to preStabilize(). For any pair(t, w) that
has been removed fromR, the call SMF(d, e, (t, w)) at line 4 removes the edge(t,w) from
the network for(d, e) and calls the preflow algorithm to check whether it still has amaxi-
mum flow equals to 1. Then, if this is not the case,e is removed fromR(d). Notice that such
a pruning may induce an update of someRemoveb(d) set, which in turn triggers a further
call of preStabilize() by setting the preStable flag to false.

Example 6.1 Let us illustrate how the algorithmPSim works on the PLTS in Figure 1,
whereΣ = {s1, s2, s3, x1, . . . , .x6, t, u, v, w} andDistr = {d1, d2, d3, δt, δu, δv , δw}. The
call to Initialize() yields the following preorders and remove sets:

R(x1) = R(x5) = {x1, x3, x5} R(s1) = R(s2) = R(s3) = {s1, s2, s3}

R(x2) = R(x4) = {x2, x4} R(t) = R(u) = R(v) = R(w) = Σ

R(x3) = {x3} R(x6) = {x6, x3}

R(d1) = {d1, d2} R(d2) = {d2}

R(d3) = {d3} R(δt) = R(δu) = R(δv) = R(δw) = Distr

Removea(d1) = {s3} Removea(d2) = {s1, s3}

Removea(d3) = {s1, s2} Removeb(δt) = Removec(δu) = ∅

Removed(δv) = Removed(δw) = ∅

The main loop ofPSim begins with both preStable and probStable set to true, and a call
to preStabilize() refinesR of s1, s2 ands3 to: R(s1) = {s1, s2}, R(s2) = {s2}, R(s3) =
{s3}. A final vacuous call to probStabilize() terminates the computation. Hence,Rpsim is
as follows:

Rpsim(s1) = {s1, s2} Rpsim(s2) = {s2}

Rpsim(s3) = {s3} Rpsim(x1) = Rpsim(x5) = {x1, x3, x5}

Rpsim(x3) = {x3} Rpsim(x2) = Rpsim(x4) = {x2, x4}

Rpsim(x6) = {x6, x3} Rpsim(t) = Rpsim(u) = Rpsim(v) = Rpsim(w) = Σ

15

In particular, we have thats2 simulatess1 while s1 does not simulates2, ands2 does not
simulates3. ⊓⊔

6.1 Correctness and Complexity

The correctness ofPSim comes as a consequence of Theorems 3.1 and 5.3 and the fact that
the procedures in Figure 6 correctly stabilize the preorders R andR.

Lemma 6.2 (Correctness of preStabilize())Let 〈R,R〉 ∈ PreOrd(Σ) × PreOrd(Distr)
and 〈R′, R′〉 be the pair of preorders at the exit of a call topreStabilize(〈R, R〉). Then,
R′ = R and R′ ⊆ R is such that for anys, t ∈ Σ, d ∈ Distr, a ∈ Act , if s a→d and
t ∈ R′(s) thent a→R(d), i.e.,〈R′, R′〉 is pre-complete.

Proof preStabilize(〈R, R〉) does not modify the distribution preorderR, henceR′ = R.
Considers, t ∈ Σ, d ∈ Distr anda ∈ Act with s a→d andt ∈ R′(s). SinceR′ is a refinement
of the initial state preorderR, we have thata ∈ out(t), so that there exists a distribution
e such thatt a→e. Moreover,e ∈ R(d), otherwiset would belong toRemovea(d), which
instead is empty, because at the exit of preStabilize(〈R, R〉) every remove set is empty. By
Lemma 5.1,〈R′, R′〉 is thereforepre-complete. ⊓⊔

Lemma 6.3 (Correctness of probStabilize())Let〈R, R〉 ∈ PreOrd(Σ)×PreOrd(Distr)
and 〈R′, R′〉 be the pair of preorders at the exit of a call toprobStabilize(〈R, R〉), where
R = ≤R∪Deleted. ThenR′ = R andR

′ ⊆ R is such that for anyd, e ∈ Distr, if e ∈ R
′(d),

thend ≤R e, i.e.,〈R′, R′〉 is prob-complete.

Proof probStabilize(〈R, R〉) does not modify the state preorderR, henceR′ = R. Con-
sider e ∈ R

′(d), so thate ∈ R(d). By hypothesis, we have that the maximal flow in
the networkN(d, e, R ∪ Deleted) is 1. If Deleted∩ (supp(d) × supp(e)) = ∅, then
N(d, e, R∪Deleted) = N(d, e,R), and therefored ≤R e. Otherwise, the fact thate ∈ R

′(d)
means that probStabilizes() has (repeatedly) checked (at line 4) thatN(d, e, R) remained 1,
so thatd ≤R e. Thus, by Lemma 5.1,〈R′, R′〉 is prob-complete. ⊓⊔

Theorem 6.4 (Correctness ofPSim) Let S be a finite PLTS. Then,PSim(S) always ter-
minates with output〈Rpsim,≤Rpsim

〉.

Proof The fact thatPSim terminates on a finite input PLTS depends on the fact that at
each iteration probStabilize() and/or preStabilize() refineR and/orR. The correctness of the
output comes from Theorems 3.1 and 5.3 together with the above Lemmata 6.2 and 6.3.⊓⊔

Given a PLTSS = 〈Σ,Act , �〉, the complexity bounds ofPSim(S) are given in terms
of the following sizes:

– |Distr| = |
S

a∈Act
posta(Σ)| is the number of distributions appearing as target of

some transition inS. Also, the number of edges inS is |�| ≤ |Σ||Distr|. Let us notice
that |Distr| ≤ |�|.

– Let us define

p ,
X

d∈Distr

| supp(d)| and m ,
X

a∈Act

X

s∈Σ

X

d∈post
a
(s)

(| supp(d)|+ 1).

Thus,p represents the full size ofDistr = post(Σ), being the number of states that
appear in the support of some distribution inDistr. On the other hand,m represents

16

the number of transitions in the PLTSS, that is, the number of transitions “from states
to states”, where a “state transition”(s, t) is taken into account whens a→d and t ∈

supp(d). Notice that bothp, m ≤ |Σ||Distr |. The key point to remark here is that
p ≤ m, since the “states” ofS are always less than or equal the “state transitions” inS.

Lemma 6.5 (Complexity of SMF)All the calls toSMF(d, e, ...) relative to a given pair of
distributionsd, e, including the first callInit SMF(d, e, R), overall takeO(| supp(d)|| supp(e)|2)
time.

Proof See [18, Lemma 4.4]. ⊓⊔

Theorem 6.6 (Complexity ofPSim) LetS be a finite PLTS.PSim(S) runs inO(|Σ|(p2 +
|�|))-time andO(p2 + (|Σ| + |Distr|)|�|)-space.

Proof Let us first discuss how we represent the input PLTSS. Let s1, . . . , sn be a fixed
enumeration of the states inΣ, let a1, . . . , ak be a fixed enumeration of the labels inAct

and letd1, . . . , dm be a fixed enumeration of the distributions inDistr =
S

a∈Act
posta(Σ).

We assume that any distributiond ∈ Distr is represented as a record with two components:

– an array[prea1
, . . . ,preak

], where thei-th entrypreai
is a pointer to the list of statess

such thats
ai→d.

– a list of pairs(s1, d(s1)), . . . , (sr, d(sr)) that enumerates the states in the support ofd

together with their (non-zero) probability.

We observe the following useful properties:

– |Distr| ≤ p and|�| ≤ m, so that|Distr| ≤ m and|Distr||�| ≤ m2.
– |Σ| ≤ |�| because any transition has some source state. Moreover,|Σ| ≤ m, so that

|Σ||�| ≤ m2.

Time Complexity. The time complexities of the functions called byPSim are as follows,
where the cost of Initialize() refers to the implementationgiven in Figure 7.
Initialize() takesO(p2 + (|Σ| + |Distr|)|�|) time, as detailed below:

– The initialization of thein(·) sets takesO(|Distr||Act |) time since, given a distribution
d, the testprea(d) 6= ∅ is done inO(1) since it is sufficient to test if thea-component
of the array stored in the distributiond is non-null.

– Initialization of R andR: lines 5-12 takesO(|�| + |Σ||�|) time1, while the cost of the
calls to Init SMF() will be considered together with the global cost of allthe calls to the
function SMF() in probStabilize().

– Initialization of the Count table: the cost of lines 14-21 isO(|Distr||�|) since, as dis-
cussed above, the testprea(e) 6= ∅ takes constant time.

– Initializing the Remove sets (lines 22-26) takesO(|Σ||�|) time.
– Initializing the stability flags (lines 27-29) takesO(|�|) time.
– Initialization of the Listener sets: line 30 takesO(|Σ|2), while the cost of lines 31-32 is

P

d∈Distr

P

e∈Distr | supp(d)|| supp(e)| ≤ p2.

All the calls to preStabilize() globally costO(|Σ||�|) time, similarly to what happens in
Henzinger et al.’s simulation algorithm [10]:

1 A more efficient procedure can be obtained by resorting to a kind of remove sets to avoid the re-
assignment of false to some entryR(x, y).

17

– line 4: given a pair(e, a), the overall cost of this line is inO(|prea(Distr)|) since
Removea(e) ⊆ prea(Distr) and when the same pair appears as pivot of different itera-
tions, sayi andj, the setsRemovei

a(e) andRemovej
a(e) relative to the different itera-

tionsi andi are disjoint. Hence, the overall cost of line 4 is
P

e∈Distr

P

a∈in(e) |prea(Distr)|,
which is inO(|Σ||�|).

– Since the setsRemovei
a(e) andRemovej

a(e) relative to two different iterationsi andj

are disjoint, we have that any transitiont a→e in line 5 is traversed at most| ∪i {w | w ∈

Removei
a(e)}| times, namely, at most|{w | a ∈ out(w)}| times. Hence, the overall

cost of lines 5-6-and the test at line 7 is
P

w∈Σ

P

a∈out(w) |
a→| and therefore is in

O(|Σ||�|).
– The body of the if statement at line 7 globally takes|Σ|2 time since the pairs(t, w) such

that the if-test is positive are globally pairwise disjoint.

The cost of all the calls to probStabilize() is inO(p2|Σ|) time, as detailed below:

– Let us first consider the cost of all the calls to SMF() and InitSMF(). By Lemma 6.5, for
all the pairs(d, e), with d, e ∈ Distr, the cost of all the calls to SMF() and InitSMF() is
P

d∈Distr

P

e∈Distr |supp(d)||supp(e)|2, which is inO(p2|Σ|) since for any distribu-
tion e it holds that|supp(e)| ≤ |Σ|.

– The same pair(d, e) may appear in at most|supp(d)||supp(e)| differentListener sets.
The set of pairs(t, w) ∈ Deleted are pairwise disjoint throughout all the calls to prob-
Stabilize(), thus the overall cost of lines 2-3 is

P

d∈Distr

P

e∈Distr |supp(d)||supp(e)| =
p2.

– To estimate the overall cost of lines 5-10 of probStabilize(), observe that the test at line 4
is positive at most once for every paird, e, because after a positive teste is removed from
R(d) and never put back. Hence, the overall cost of lines 5-10 is

P

d∈Distr

P

e∈Distr (1+
P

b∈in(e)∩in(d) |preb(e)|), which is inO(|Distr||�|).

– Summing up, the overall cost of all the calls to probStabilize() isO(p2|Σ|+ |Distr||�|)
time. This bound is inO(p2|Σ|) since |Distr| ≤ p and |�| ≤ |Σ||Distr|, so that
|Distr||�| ≤ p2|Σ|.

Finally, notice that the test of the main while loop ofPSim is performed|Σ|2 times
since the relationR can be refined at most|Σ|2 times. Thus, summing up, it turns out that
the time complexity ofPSim is in O(|Σ|(|�| + p2)).

Space Complexity.PSim relies on the following data structures:

– thein lists of labels, that takeO(|Distr||Act |) space;
– the networksN(d, e, R) that are updated at each iteration. According to [18], the space

needed to store these networks is
P

d∈Distr

P

e∈Distr | supp(d)|| supp(e)| ≤ p2;
– the two boolean matrixes{R(s, t)}s,t∈Σ and{R(d, e)}d,e∈Distr that take, respectively,

O(|Σ|2) andO(|Distr|2) space.
– the integer table{Count(s, a, e)}e∈Distr, a∈in(e), s∈pre

a
(Distr) and the lists of states

{Removea(e)}e∈Distr,a∈in(e) take, respectively,O(|Distr||�|) andO(|Σ||�|) space;
– the sets{Listener(x, y)}x,y∈Σ takep2 space because, as above, the same pair(d, e)

may appear in at most| supp(d)|| supp(e)| differentListener sets;
– the set of deleted arcs inDeleted takesO(|Σ|2) space.

Thus, the overall space complexity ofPSim is in O(p2 + (|Σ| + |Distr|)|�|). ⊓⊔

It is easily seen that(|Σ| + |Distr|)|�| ≤ m2, so thatPSim turns out to be more
efficient than the most efficient probabilistic simulation algorithm in literature, that is Zhang

18

et al.’s algorithm [18], that runs inO(|Σ|m2)-time andO(m2)-space. Our reduction from
the sizem to p, that is from the size of the “state transitions” to the size of the “state” space,
basically depends on the fact that in Zhang et al.’s algorithm the same testd 6≤R e is repeated
for every pair of states(si, ti) such thatsi ∈ prea(d), ti ∈ prea(e), whereas inPSim once
the testd 6≤R e has been performed, every stateti is removed fromR(si). Such a difference
becomes evident when the input PLTSS degenerates to a LTS. In this case a call to the
function SMF() can be executed in constant time, so that the time complexity of Zhang et
al.’s algorithm boils down toO(|�|2), whereas in this casePSim runs inO(|Σ||�|)-time,
essentially reducing to Henzinger et al.’s nonprobabilistic simulation algorithm [10]. As a
further key difference, it is worth observing that Zhang et al.’s algorithm relies on a positive
strategy that at each iterationi computes the pairs(si, ti) such thatti ∈ Ri(si), whereas
PSim follows a dual, negative, strategy that removes fromRi the pairs(si, ti) such that
ti 6∈ Ri(si).

7 Future Work

We have shown how abstract interpretation can be fruitfullyapplied in the context of behav-
ioral relations between probabilistic processes. We focused here on bisimulation/simulation
relations on PLTSs and we proved how efficient algorithms that compute these behavioral
relations can be systematically derived. As future work, weplan to investigate how this
abstract interpretation approach can be adapted to characterize the weak variants of bisim-
ulation/simulation and the so-called probabilistic bisimulations/simulations on PLTSs [17].
We also plan to apply a coarsest partition refinement approach to design a “symbolic” ver-
sion of ourPSim simulation algorithm. Analogously to the symbolic algorithm by Ranzato
and Tapparo [14,16] for nonprobabilistic simulation, the basic idea is to symbolically rep-
resent the relationsR on states andR on distributions through partitions (of states and dis-
tributions) and corresponding relations between blocks ofthese relations. It is worth noting
that this partition refinement approach has been already applied by Zhang [19] to design a
space-efficient simulation algorithm for PLTSs. Finally, we envisage to study how the ab-
stract interpretation approach can be related to the logical characterizations of behavioral
relations of probabilistic processes studied e.g. in [13].

Acknowledgements.This work was partially supported by the University of Padova under
the projects “AVIAMO” and “BECOM”.

References

1. C. Baier, B. Engelen and M. Majster-Cederbaum. Deciding bisimilarity and similarity for probabilistic
processes.J. Comp. Syst. Sci., 60:187-231, 2000.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. InProc. 4th ACM POPL, pp. 238–252, 1977.

3. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InProc. 6th ACM POPL,
pp. 269–282, 1979.

4. S. Crafa and F. Ranzato. Probabilistic bisimulation and simulation algorithms by abstract interpretation.
In Proc. ICALP’11, LNCS 6756, pp. 295-306, Springer, 2011.

5. J. Desharnais.Labelled Markov Processes. PhD thesis, McGill Univ., 1999.
6. J. Desharnais, A. Edalat and P. Panangaden. Bisimulationfor labelled Markov processes.Information

and Computation, 179:163-193, 2002.
7. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements in abstract model

checking. InProc. 8th SAS, LNCS 2126, pp. 356-373, 2001.

19

8. R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains. InProc. 24th ICALP,
LNCS 1256, pp. 771-781, Springer, 1997.

9. R.J. van Glabbeek, S. Smolka, B. Steffen and C. Tofts. Reactive, generative and stratified models for
probabilistic processes. InProc. IEEE LICS’90, pp. 130-141, 1990.

10. M.R. Henzinger, T.A. Henzinger and P.W. Kopke. Computing simulations on finite and infinite graphs.
In Proc. 36th FOCS, pp. 453–462, 1995.

11. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation,
94(1):1-28, 1991.

12. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM J. Comput., 16(6):973-989, 1987
13. A. Parma and R. Segala. Logical characterizations of bisimulations for discrete probabilistic systems. In

Proc. FOSSACS’07, LNCS 4423, p. 287-301, 2007.
14. F. Ranzato and F. Tapparo. A new efficient simulation equivalence algorirthm. InProc. IEEE LICS’07,

pp. 171-180, 2007.
15. F. Ranzato and F. Tapparo. Generalized strong preservation by abstract interpretation.J. Logic and

Computation, 17(1):157-197, 2007.
16. F. Ranzato and F. Tapparo. An efficient simulation algorithm based on abstract interpretation.Informa-

tion and Computation, 208(1):1-22, 2010.
17. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.Nordic J. of Computing,

2(2):250-273, 1995.
18. L. Zhang, H. Hermanns, F. Eisenbrand and D.N. Jansen. Flow faster: efficient decision algorithms for

probabilistic simulations.Logical Methods in Computer Science, 4(4), 2008.
19. L. Zhang. A space-efficient probabilistic simulation algorithm. In Proc. CONCUR’08, LNCS 5201,

pp. 248-263, 2008.
20. L. Zhang.Decision Algorithms for Probabilistic Simulations. PhD thesis, Univ. des Saarlandes, 2009.

20

	Introduction
	Bisimulation and Simulation in PLTSs
	Shells
	Bisimulation as a Shell
	Simulation as a Shell
	A New Efficient Simulation Algorithm on PLTSs
	Future Work

