A PROPAGATION THEOREM FOR A CLASS OF SHEAVES OF MICROFUNCTIONS

Andrea D'Agnolo Giuseppe Zampieri

Abstract

Let A be a closed set of $M \cong \mathbf{R}^{n}$, whose conormal cones $x+\gamma_{x}^{*}(A)$, $x \in A$, have locally empty intersection. We first show in $\S 1$ that $\operatorname{dist}(x, A), x \in M \backslash A$ is a C^{1} function. We then represent the microfunctions of $\mathcal{C}_{A \mid X}, X \cong \mathbf{C}^{n}$, (cf [S]), using cohomology groups of \mathcal{O}_{X} of degree 1 . By the results of $\S 1-3$, we are able to prove in $\S 4$ that the sections of $\left.\mathcal{C}_{A \mid X}\right|_{\left(T_{M}^{*} X \oplus \gamma^{*}(A)\right)_{x_{0}}}, x_{0} \in \partial A$, satisfy the principle of analytic continuation in the complex integral manifolds of $\left\{H\left(\phi_{i}^{\mathbf{C}}\right)\right\}_{i=1, \ldots, m}$, $\left\{\phi_{i}\right\}$ being a base for the linear hull of $\gamma_{x_{0}}^{*}(A)$ in $T_{x_{0}}^{*} M$; in particular we get $\left.\Gamma_{A \times{ }_{M} T_{M}^{*} X}\left(\mathcal{C}_{A \mid X}\right)\right|_{\partial A \times{ }_{M} \dot{T}_{M}^{*} X}=0$. In the proof we deeply use a variant of Bochner's theorem due to [Kan]. When A is a half space with C^{ω} boundary, all above results were already proved by Kataoka in [Kat 1]. Finally for a \mathcal{E}_{X}-module \mathcal{M} we show that $\mathcal{H o m}_{\mathcal{E}_{X}}\left(\mathcal{M}, \mathcal{C}_{A \mid X}\right)_{p}=0, p \in \dot{\pi}^{-1}\left(x_{0}\right)$, when at least one conormal $\theta \in \dot{\gamma}_{x_{0}}^{*}(A)$ is non-characteristic for \mathcal{M}. We also show that for an open domain Ω such that the set $A=M \backslash \Omega$ verifies the above conditions, we have $\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X}=H^{0}\left(\mathcal{C}_{\Omega \mid X}\right)(\mathrm{cf}$ $[\mathrm{S}]$ for the case of A convex).

Un teorema di propagazione per certi fasci di microfunzioni

Sunto. Sia A un insieme chiuso di $M \cong \mathbf{R}^{n}$, i cui coni conormali $x+\gamma_{x}^{*}(A), x \in A$, hanno localmente intersezione vuota. Si prova nel $\S 1$ che $\operatorname{dist}(x, A), x \in M \backslash A$ è una funzione C^{1}. Si rappresentano poi le microfunzioni di $\mathcal{C}_{A \mid X}, X \cong \mathbf{C}^{n}$, (cf $[\mathrm{S}]$), mediante gruppi di coomologia di \mathcal{O}_{X} in grado 1 . Se ne deduce nel $\S 4$ un principio di prolungamento analitico per sezioni di $\left.\mathcal{C}_{A \mid X}\right|_{\left(T_{M}^{*} X \oplus \gamma^{*}(A)\right)_{x_{0}}}, x_{0} \in \partial A$, che generalizza i risultati di [Kat 1]. (Per la dimostrazione si usa essenzialmente un'idea di [Kan].) Se ne dà infine applicazione ai problemi ai limiti.
§1. Let X be a C^{∞}-manifold, A a closed set of X. We denote by $\gamma(A) \subset T X$ the set

$$
\gamma_{x}(A)=C(A,\{x\}), \quad x \in A,
$$

where $C(A,\{x\})$ is the normal cone to A along $\{x\}$ in the sense of [K-S]; we also denote by $\gamma^{*}(A)$ the polar cone to $\gamma(A)$. We assume that in some coordinates in a neighborhood of a point $x_{0} \in \partial A$:
(i) $\quad\left(x-\gamma_{x}^{*}(A)\right) \cap\left(y-\gamma_{y}^{*}(A)\right) \cap S=\emptyset \quad \forall x \neq y \in \partial A \cap S$,
(ii) $x \mapsto \gamma_{x}^{*}(A)$ is upper semicontinuous.

[^0]
Remark 1.1.

(a) If A is convex in $X \cong \mathbf{R}^{n}$ then (1.1) holds. Moreover in this case $\gamma(A)=$ $\overline{N(A)}$ where $N(A)$ is the normal cone to A in the linear hull of A.
(b) All sets A with C^{2}-boundary satisfy (1.1).
(c) The set $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} ; x_{1} \leq-\sqrt{\left|x_{2}\right|}\right\}$ verifies (1.1). (Here $\gamma_{0}^{*}(A)=$ $\mathbf{R}_{x_{2}}^{-}$but $N_{0}^{*}(A)=\mathbf{R}^{2}$.)
(d) The set $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} ; x_{1} \leq\left|x_{2}\right|^{3 / 2}\right\}$ does not verify (1.1); in particular (1.1) is not C^{1}-coordinate invariant.

Lemma 1.2. Fix coordinates in X at x_{0} and assume that (1.1) holds. Then for every $x \in(X \backslash A) \cap S_{\varepsilon}\left(S_{\varepsilon}=\left\{y ;\left|y-x_{0}\right|<\varepsilon\right\}\right.$, ε small) there exists an unique point $a=a(x) \in \partial A \cap S_{2 \varepsilon}$ such that

$$
\begin{equation*}
x \in a-\gamma_{a}^{*}(A) . \tag{1.2}
\end{equation*}
$$

Proof. One takes a point $a=a(x)$ verifying

$$
\begin{equation*}
|x-a|=\operatorname{dist}(x, \partial A) \tag{1.3}
\end{equation*}
$$

and verifies easily that a also verifies (1.2). The uniqueness is assured by (1.1).
From the uniqueness it easily follows that $a(x)$ is a continuous function. (One should even easily prove that it is Lipschitz-continuous.)

We set $d(x)=\operatorname{dist}(x, A)$ and, for $t \geq 0, A_{t}=\{x ; d(x) \leq t\}$; we also set $\delta_{x}=$ $\gamma_{x}\left(A_{d(x)}\right)$.
Lemma 1.3. Let (1.1) hold in some coordinate system; then $\delta_{x}, x \in \partial A$ are halfspaces and the mapping $x \mapsto \delta_{x}$ is continuous.

Proof. We shall show that

$$
\begin{equation*}
\delta_{x}=\{y ;\langle y-x, a(x)-x\rangle \geq 0\} . \tag{1.4}
\end{equation*}
$$

(The function $x \mapsto a(x)$ being continuous, the lemma will follow at once.) In fact since

$$
\{y ;|y-a(x)| \leq d(x)\} \subset A_{d(x)}
$$

then " \supseteq " holds in (1.4). On the other hand we reason by absurd and find a sequence $\left\{x_{\nu}\right\}$ such that

$$
\left\{\begin{array}{l}
x_{\nu} \rightarrow x \tag{1.5}\\
d\left(x_{\nu}\right) \leq d(x) \\
\left\langle a(x)-x, x_{\nu}-x\right\rangle \leq-\delta\left|x_{\nu}-x\right|, \quad \delta>0
\end{array}\right.
$$

By continuity we can replace $a(x)-x$ by $a\left(x_{\nu}\right)-x_{\nu}$ in (1.5) and conclude that, for large ν,

$$
\left|x-a\left(x_{\nu}\right)\right|<\left|x_{\nu}-a\left(x_{\nu}\right)\right|=d\left(x_{\nu}\right) \leq d(x)
$$

a contradiction.
Let $N(A)$ be the normal cone to A in the sense of [K-S].

Lemma 1.4. Let B be closed and assume that:
(1.6) $\gamma_{x}(B)$ is a half space for every $x \in \partial B$,
(1.7) $x \mapsto \gamma_{x}(B)$ is continuous.

Then $N_{x}(B), x \in \partial B$ are also half spaces.
Proof. Suppose by absurd that there exist $\Gamma^{\prime} \subset \subset \gamma_{x_{0}}(B)$ and two sequences $\left\{z_{\nu}\right\}$, $\left\{y_{\nu}\right\}$ with

$$
\left\{\begin{array}{l}
z_{\nu}, y_{\nu} \rightarrow x_{0} \\
z_{\nu}, y_{\nu} \in \partial B \\
\theta_{\nu}=y_{\nu}-z_{\nu} \in \operatorname{int} \Gamma^{\prime} \\
{\left[z_{\nu}, y_{\nu}\right] \subset B}
\end{array}\right.
$$

(Here $\left[z_{\nu}, y_{\nu}\right]$ denotes the segment from z_{ν} to y_{ν}.) But then $\gamma_{y_{\nu}} \supset \Gamma^{\prime} \cup\left\{-\theta_{\nu}\right\}$, a contradiction.

Remark 1.5. Let B verify $N_{x_{0}}(B) \neq\{0\}$; then if one takes coordinates with $(0, \ldots, 0,1) \in N_{x_{0}}(B)$ and sets $x=\left(x^{\prime}, x_{n}\right)$, one can represent $\partial B=\left\{x ; x_{n}-\right.$ $\left.\varphi\left(x^{\prime}\right)=0\right\}$ for a Lipschitz-continuous function φ. Moreover if $N_{x_{0}}(B)$ is a halfspace and if we let $\mathbf{R}^{+}(0, \ldots, 0,1)=N_{x_{0}}^{*}(B)$ then φ is differentiable at x_{0} due to

$$
\left|\varphi\left(x^{\prime}\right)-\varphi\left(x_{0}^{\prime}\right)\right|=o\left(\left|x^{\prime}-x_{0}^{\prime}\right|\right) .
$$

Proposition 1.6. Let (1.1) hold in some coordinates; then $d(x), x \notin A$ is a C^{1} function.
Proof. By Lemmas 1.3, 1.4, $N_{x}\left(A_{d(x)}\right)$ are half-spaces; set
$\tau_{x}=\partial N_{x}\left(A_{d(x)}\right)$ and denote by n_{x} the normal to τ_{x}. Let $y \in \tau_{x}$; according to Remark 1.5 there exists $\tilde{y} \in \partial A_{d(x)}$ with $|\tilde{y}-y|=o(|y-x|)$. It follows:

$$
\begin{equation*}
|d(y)-d(x)|=|d(y)-d(\tilde{y})| \leq k|y-\tilde{y}|=o(|y-x|) \tag{1.8}
\end{equation*}
$$

By (1.8) we obtain $\partial / \partial \tau_{x} d(x)=0$. On the other hand one has $\partial / \partial n_{x} d(x)=1$. Finally $\partial d(x)=n_{x}, x \notin A$, and hence d is C^{1}.
\S 2. Let X be a C^{∞}-manifold, $Y \subset X$ a C^{1}-submanifold, M a complex of Zmodules of finite rank, and set $M^{*}=\mathbf{R} \mathcal{H o m}_{\mathbf{Z}}\left(M^{\cdot}, \mathbf{Z}\right)$. Let $\mu \operatorname{hom}(\cdot, \cdot)$ be the bifunctor of [K-S, §5]; one easily proves that

$$
\begin{equation*}
\mu \operatorname{hom}\left(\mathbf{Z}_{Y}, M_{Y}\right) \cong M_{T_{Y}^{*} X} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\mu \operatorname{hom}\left(M_{Y}, \mathbf{Z}_{Y}\right) \cong\left(M_{T_{Y}^{*} X}\right)^{*} \tag{2.2}
\end{equation*}
$$

Lemma 2.1. Let $M_{Y} \cong \mathbf{Z}_{Y}$ in $D^{+}(X ; p), p \in \dot{T}_{Y}^{*} X([\mathrm{~K}-\mathrm{S}, \S 6])$. Then $M^{\cdot} \cong \mathbf{Z}$.
Proof. The proof is a straightforward consequence of the formula

$$
\operatorname{Hom}_{D^{+}(X ; p)}(\cdot, \cdot) \xrightarrow{\sim} H^{0} \mu \operatorname{hom}(\cdot, \cdot)_{p},
$$

and of (2.1), (2.2).
§3. Let M be a C^{ω}-manifold of dimension n, X a complexification of $M, A \subset M$ a closed set. According to [S] we define

$$
\mathcal{C}_{A \mid X}=\mu \operatorname{hom}\left(\mathbf{Z}_{A}, \mathcal{O}_{X}\right) \otimes \operatorname{or}_{M \mid X}[n] .
$$

We assume here that
(i) A satisfies (1.1) in some coordinates at $x_{0}=0$,
(ii) $A=\overline{\operatorname{int} A}$ in the linear hull of A,
(iii) $S S\left(\mathbf{Z}_{A}\right) \subset \gamma^{*}(A)$.

We take coordinates $\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n-1} \times \mathbf{R} \cong M,\left(z^{\prime}, z_{n}\right) \in \mathbf{C}^{n} \cong X$, and suppose that $A=A^{\prime} \times \mathbf{R}$. We define

$$
\begin{equation*}
G_{A}=\left\{z ; y_{n} \geq \inf _{a^{\prime} \in A^{\prime}} a^{\prime 2} / 4+\left\langle y^{\prime}, a^{\prime}\right\rangle / 2\right\} . \tag{3.2}
\end{equation*}
$$

Lemma 3.1. ∂G_{A} is C^{1}.
Proof. One defines the set

$$
\begin{align*}
\left\{z ; y_{n}\right. & \geq-y^{\prime 2} / 4 \text { for } y^{\prime} \in-A^{\prime}, \tag{3.3}\\
y_{n} & \left.\geq a^{2}\left(-y^{\prime}\right) / 4+\left\langle y^{\prime}, a\left(-y^{\prime}\right)\right\rangle / 2 \text { for } y^{\prime} \notin-A^{\prime}\right\},
\end{align*}
$$

(where $a\left(-y^{\prime}\right)$ is the point of ∂A^{\prime} such that $-y^{\prime} \in a\left(-y^{\prime}\right)-\gamma_{a\left(-y^{\prime}\right)}^{*}\left(A^{\prime}\right)$).
One easily proves that the above set coincides with G_{A}. Then one observes that the boundary of (3.3) is defined by

$$
y_{n}=\left\{\begin{align*}
-y^{\prime} / 4, & \text { for } y^{\prime} \in-A^{\prime} \tag{3.4}\\
a^{2}\left(-y^{\prime}\right) / 4+\left\langle y^{\prime}, a\left(-y^{\prime}\right)\right\rangle / 2 & \text { for } y^{\prime} \notin-A^{\prime} \\
=\left|y^{\prime}+a\left(-y^{\prime}\right)\right|^{2} / 4-y^{\prime 2} / 4 & \\
=\operatorname{dist}^{2}\left(y^{\prime},-A^{\prime}\right) / 4-y^{\prime 2} / 4, & .
\end{align*}\right.
$$

Since $\operatorname{dist}\left(y^{\prime},-A^{\prime}\right), y^{\prime} \in M \backslash-A^{\prime}$, is C^{1} due to Proposition 1.4, then the function defined in (3.4) is also C^{1}.

Proposition 3.2. (cf [S])
(i) We can find a complex homogeneous symplectic transformation ϕ such that

$$
\begin{equation*}
\phi\left(A \times_{M} T_{M}^{*} X \oplus \gamma^{*}(A)\right)=N^{*}\left(G_{A}\right) . \tag{3.5}
\end{equation*}
$$

(ii) ϕ can be quantized to Φ such that

$$
\begin{equation*}
\Phi\left(\mathbf{Z}_{A}\right)=\mathbf{Z}_{G_{A}}[n-1] ; \tag{3.6}
\end{equation*}
$$

in particular

$$
\begin{equation*}
\left(\mathcal{C}_{A \mid X}\right)_{p} \cong \mathcal{H}_{G_{A}}^{1}\left(\mathcal{O}_{X}\right)_{\pi(\phi(p))}, \quad p \in \dot{\pi}^{-1}\left(x_{0}\right) \tag{3.7}
\end{equation*}
$$

Proof. One takes coordinates $(z, \zeta) \in T^{*} X$, and defines ϕ for $\operatorname{Im} \zeta_{n}>0$ by:

$$
\left\{\begin{array}{l}
z^{\prime} \mapsto \zeta^{\prime} / \zeta_{n}-\sqrt{-1} z^{\prime} \\
z_{n} \mapsto\left\langle z, \zeta / \zeta_{n}\right\rangle / 2-\sqrt{-1} z^{\prime 2} / 4 \\
\zeta^{\prime} \mapsto-z^{\prime} \zeta_{n} / 2 \\
\zeta_{n} \mapsto \zeta_{n}
\end{array}\right.
$$

Then by recalling that G_{A} coincides with the set (3.3), one gets (i). As for (ii) one sets $\mathcal{F}=\Phi\left(\mathbf{Z}_{A}\right), Y=\partial G_{A}$, and denotes by $j: Y \hookrightarrow X$ the embedding. One gets $S S(\mathcal{F}) \subset N^{*}\left(G_{A}\right) \subset \pi^{-1}(Y)$ at p; hence $\mathcal{F} \cong \mathbf{R} j_{*} \mathcal{G}$ at p for some \mathcal{G} in $D^{+}(Y)$ (cf $[\mathrm{K}-\mathrm{S}, \S 6])$. On the other hand one has $S S(\mathcal{G}) \subset T_{X}^{*} X$ at $\pi(p)([\mathrm{K}-\mathrm{S}$, Prop. 4.1.1]); hence $\mathcal{G} \cong M_{Y}$ at $\pi(p)$ for a complex of \mathbf{Z}-modules.

Due to (3.1)(ii) there exists $q \sim p$ such that A is a manifold at $\pi(q)$ and hence by [K-S, §11] we get $\mathcal{F} \cong \mathbf{Z}_{Y}[n-1]$ at $\phi(q)$. Thus (3.6) follows from Lemma 2.1, and (3.7) from the fact that $X \backslash G_{A}$ is pseudoconvex.

For convex A, the above proposition is stated in $[\mathrm{S}]$.
$\S 4$. Let M be a C^{ω}-manifold, X a complexification of $M, A \subset M$ a closed set satisfying conditions (3.1).

Proposition 4.1. Let $\left\{\phi_{i}\right\}_{i=1, \ldots, m}$ be a base for the space spanned by $\gamma_{x_{0}}^{*}(A)$ in $T_{x_{0}}^{*} X$. Then the sections of $\left.\mathcal{C}_{A \mid X}\right|_{\left(T_{M}^{*} X \oplus \gamma^{*}(A)\right)_{x_{0}}}$ satisfy the principle of the analytic continuation on the complex integral manifolds of $\left\{H\left(\phi_{i}^{\mathbf{C}}\right)\right\}_{i=1, \ldots, m}$.

Proof. Using the trick of the dummy variable we can assume A being of the form $A^{\prime} \times \mathbf{R}$ and hence use the transformation ϕ of $\S 3$. Let $p, q \in \pi \phi\left(\left(T_{M}^{*} X \oplus \gamma^{*}(A)\right)_{x_{0}}\right)$ belong to the same integral leaf of $\left\{H\left(\phi_{i}^{\mathbf{C}}\right)\right\}_{i=1, \ldots, m}$. We then have to show that if f is holomorphic in $X \backslash G_{A}$ and extends holomorphically at p, then it also extends at q.

We observe that $\pi\left(\left(T_{M}^{*} X \oplus \gamma^{*}(A)\right)_{x_{0}}\right)=\pi\left(\partial G_{A} \cap \phi\left(\dot{\pi}^{-1}\left(x_{0}\right)\right)\right.$ is plane. Thus the claim follows from the Bochner's tube theorem at least when $\rho_{M}(p)$ belongs to the interior of $\gamma_{x_{0}}^{*}(A)$ in the plane of $\left\{\phi_{i}\right\}\left(\rho_{M}: T^{*} X \rightarrow T^{*} M\right)$.

Otherwise one has to remember that ∂G_{A} is C^{1}, and use the following result whose proof is straightforward.

Lemma 4.2. (cf [Kan]) Let $\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}, z_{i}=x_{i}+\sqrt{-1} y_{i}, i=1,2$, and let ψ be a C^{1} function on $\mathbf{R}_{y_{1}, y_{2}}^{2}$ at 0 such that $\psi \geq 0$ and $\psi=0$ for $y_{1} \geq 0$. If f is analytic in the set

$$
\left\{\left|x_{i}\right|<\varepsilon\right\} \times\left(\left\{\left|y_{i}\right|<\varepsilon, y_{2}>\psi\left(y_{1}\right)\right\} \cup\left\{y_{1}=\varepsilon,-\delta<y_{2} \leq 0\right\}\right)
$$

then f is analytic at 0 .

Remark 4.3.

(a) When A is a half-space with C^{ω}-boundary, Proposition 4.1 was already stated in [Kat 1].
(b) In the situation of Proposition 4.1, one has (cf [Kat 1]):

$$
\left.\Gamma_{A \times_{M} T_{M}^{*} X}\left(\mathcal{C}_{A \mid X}\right)\right|_{\partial A \times{ }_{M} \dot{T}_{M}^{*} X}=0
$$

(c) Let \mathcal{M} be an \mathcal{E}_{X}-module at $p \in \dot{\pi}^{-1}\left(x_{0}\right)$. Suppose that there exists $\theta \in$ $\dot{\gamma}_{x_{0}}^{*}(A)$ non-characteristic for \mathcal{M}. Then:

$$
\mathcal{H o m}_{\mathcal{E}_{X}}\left(\mathcal{M}, \mathcal{C}_{A \mid X}\right)_{p}=0
$$

(This was announced by Uchida when A is convex and all $\theta \in \dot{N}_{x_{0}}^{*}(A)$ (or $\left.\partial N_{x_{0}}^{*}(A)\right)$ are non-characteristic.)

Let now Ω be an open set of M and assume that $A=M \backslash \Omega$ satisfies the hypotheses (3.1). By the distinguished triangle

$$
\mathcal{C}_{A \mid X} \rightarrow \mathcal{C}_{M \mid X} \rightarrow \mathcal{C}_{\Omega \mid X} \xrightarrow{+1},
$$

by (3.7), and by the corresponding formula for $\mathcal{C}_{M \mid X}$, one gets (cf [S]):

Proposition 4.4.

$$
H^{0}\left(\mathcal{C}_{\Omega \mid X}\right)=\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{M}^{*} X}
$$

By (4.1) and by Remark 4.3 (c), one also gets, for a \mathcal{D}_{X}-module \mathcal{M} :

$$
\begin{aligned}
\mathcal{H o m}_{\mathcal{D}_{X}}\left(\mathcal{M}, \mathcal{A}_{\bar{\Omega}}\right)_{x_{0}}= & \left\{f \in \mathcal{H o m}_{\mathcal{D}_{X}}\left(\mathcal{M}, \Gamma_{\Omega}\left(\mathcal{B}_{M}\right)\right)_{x_{0}} ;\right. \\
& \left.S S_{\Omega}^{\mathcal{M}, 0}(f) \cap \dot{\pi}^{-1}\left(x_{0}\right)=\emptyset\right\}
\end{aligned}
$$

$S S_{\Omega}^{\mathcal{M}, 0}(f)$ being the micro-support in the sense of $[\mathrm{S}]$. (One needs perhaps to assume here \mathbf{Z}_{Ω} cohomologically constructible; but this follows probably from (1.1).)

References

[Kan] A. Kaneko, Estimation of singular spectrum of boundary values for some semihyperbolic operators, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 27(2) (1980), 401-461.
[K-S] M. Kashiwara, P. Schapira, Microlocal study of sheaves, Asterisque 128 (1985).
[Kat 1] K. Kataoka, On the theory of Radon transformation of hyperfunctions, J. Fac. Sci. Univ. Tokyo Sect. 1A 28 (1981), 331-413.
[Kat 2] K. Kataoka, Microlocal theory of boundary value problems I, J. Fac. Sci. Univ. Tokyo Sect. 1A 27 (1980), 355-399; II 28 (1981), 31-56.
[S-K-K] M. Sato, M. Kashiwara, T. Kawai, Hyperfunctions and pseudo-differential equations, Lecture Notes in Math., Springer-Verlag 287 (1973), 265-529.
[S] P. Schapira, Front d'onde analytique au bord I, C. R. Acad. Sci. Paris Sér. I Math. 302 10 (1986), 383-386; II, Sém. E.D.P. École Polytechnique Exp. 13 (1986).

Dipartimento di matematica, via Belzoni 7, 35131 Padova, Italy

[^0]: Appeared in: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 1 (1990), no. 1, 53-58

 1991 Mathematics Subject Classification. 58 G 20.
 Key words and phrases. Partial differential equations on manifolds; boundary value problems..

