A PROPAGATION THEOREM FOR A CLASS OF SHEAVES OF MICROFUNCTIONS

ANDREA D'AGNOLO GIUSEPPE ZAMPIERI

ABSTRACT. Let A be a closed set of $M \cong \mathbf{R}^n$, whose conormal cones $x + \gamma_x^*(A)$, $x \in A$, have locally empty intersection. We first show in §1 that dist $(x, A), x \in M \setminus A$ is a C^1 function. We then represent the microfunctions of $\mathcal{C}_{A|X}, X \cong \mathbf{C}^n$, (cf [S]), using cohomology groups of \mathcal{O}_X of degree 1. By the results of §1–3, we are able to prove in §4 that the sections of $\mathcal{C}_{A|X}|_{(T_M^*X\oplus\gamma^*(A))_{x_0}}, x_0 \in \partial A$, satisfy the principle of analytic continuation in the complex integral manifolds of $\{H(\phi_i^{\mathbf{C}})\}_{i=1,...,m}, \{\phi_i\}$ being a base for the linear hull of $\gamma_{x_0}^*(A)$ in $T_{x_0}^*M$; in particular we get $\Gamma_{A\times_M T_M^*X}(\mathcal{C}_{A|X})\Big|_{\partial A\times_M \dot{T}_M^*X} = 0$. In the proof we deeply use a variant of Bochner's theorem due to [Kan]. When A is a half space with C^{ω} boundary, all above results were already proved by Kataoka in [Kat 1]. Finally for a \mathcal{E}_X -module \mathcal{M} we show that $\mathcal{H}om_{\mathcal{E}_X}(\mathcal{M}, \mathcal{C}_{A|X})_p = 0, p \in \dot{\pi}^{-1}(x_0)$, when at least one conormal $\theta \in \dot{\gamma}_{x_0}^*(A)$ is non-characteristic for \mathcal{M} . We also show that for an open domain Ω such that the set $A = M \setminus \Omega$ verifies the above conditions, we have $(\mathcal{C}_{\Omega|X})_{T_M^*X} = H^0(\mathcal{C}_{\Omega|X})$ (cf [S] for the case of A convex).

Un teorema di propagazione per certi fasci di microfunzioni

SUNTO. Sia A un insieme chiuso di $M \cong \mathbf{R}^n$, i cui coni conormali $x + \gamma_x^*(A), x \in A$, hanno localmente intersezione vuota. Si prova nel §1 che dist $(x, A), x \in M \setminus A$ è una funzione C^1 . Si rappresentano poi le microfunzioni di $\mathcal{C}_{A|X}, X \cong \mathbf{C}^n$, (cf [S]), mediante gruppi di coomologia di \mathcal{O}_X in grado 1. Se ne deduce nel §4 un principio di prolungamento analitico per sezioni di $\mathcal{C}_{A|X}|_{(T_M^*X\oplus\gamma^*(A))_{x_0}}, x_0 \in \partial A$, che generalizza i risultati di [Kat 1]. (Per la dimostrazione si usa essenzialmente un'idea di [Kan].) Se ne dà infine applicazione ai problemi ai limiti.

§1. Let X be a C^{∞} -manifold, A a closed set of X. We denote by $\gamma(A) \subset TX$ the set

$$\gamma_x(A) = C(A, \{x\}), \qquad x \in A,$$

where $C(A, \{x\})$ is the normal cone to A along $\{x\}$ in the sense of [K-S]; we also denote by $\gamma^*(A)$ the polar cone to $\gamma(A)$. We assume that in some coordinates in a neighborhood of a point $x_0 \in \partial A$:

(1.1) (i)
$$(x - \gamma_x^*(A)) \cap (y - \gamma_y^*(A)) \cap S = \emptyset \quad \forall x \neq y \in \partial A \cap S,$$

(ii) $x \mapsto \gamma_x^*(A)$ is upper semicontinuous.

Key words and phrases. Partial differential equations on manifolds; boundary value problems..

Appeared in: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 1 (1990), no. 1, 53–58

¹⁹⁹¹ Mathematics Subject Classification. 58 G 20.

Remark 1.1.

- (a) If A is convex in $X \cong \mathbf{R}^n$ then (1.1) holds. Moreover in this case $\gamma(A) = \overline{N(A)}$ where N(A) is the normal cone to A in the linear hull of A.
- (b) All sets A with C^2 -boundary satisfy (1.1).
- (c) The set $A = \{(x_1, x_2) \in \mathbf{R}^2; x_1 \leq -\sqrt{|x_2|}\}$ verifies (1.1). (Here $\gamma_0^*(A) = \mathbf{R}_{x_2}^-$ but $N_0^*(A) = \mathbf{R}^2$.)
- (d) The set $A = \{(x_1, x_2) \in \mathbf{R}^2; x_1 \leq |x_2|^{3/2}\}$ does not verify (1.1); in particular (1.1) is not C^1 -coordinate invariant.

Lemma 1.2. Fix coordinates in X at x_0 and assume that (1.1) holds. Then for every $x \in (X \setminus A) \cap S_{\varepsilon}$ ($S_{\varepsilon} = \{y; |y - x_0| < \varepsilon\}$, ε small) there exists an unique point $a = a(x) \in \partial A \cap S_{2\varepsilon}$ such that

(1.2)
$$x \in a - \gamma_a^*(A).$$

Proof. One takes a point a = a(x) verifying

(1.3)
$$|x-a| = \operatorname{dist}(x, \partial A),$$

and verifies easily that a also verifies (1.2). The uniqueness is assured by (1.1). \Box

From the uniqueness it easily follows that a(x) is a continuous function. (One should even easily prove that it is Lipschitz-continuous.)

We set d(x) = dist(x, A) and, for $t \ge 0$, $A_t = \{x; d(x) \le t\}$; we also set $\delta_x = \gamma_x(A_{d(x)})$.

Lemma 1.3. Let (1.1) hold in some coordinate system; then δ_x , $x \in \partial A$ are half-spaces and the mapping $x \mapsto \delta_x$ is continuous.

Proof. We shall show that

(1.4)
$$\delta_x = \{y; \langle y - x, a(x) - x \rangle \ge 0\}.$$

(The function $x \mapsto a(x)$ being continuous, the lemma will follow at once.) In fact since

$$\{y; |y-a(x)| \le d(x)\} \subset A_{d(x)},$$

then " \supseteq " holds in (1.4). On the other hand we reason by absurd and find a sequence $\{x_{\nu}\}$ such that

(1.5)
$$\begin{cases} x_{\nu} \to x, \\ d(x_{\nu}) \le d(x), \\ \langle a(x) - x, x_{\nu} - x \rangle \le -\delta |x_{\nu} - x|, \quad \delta > 0. \end{cases}$$

By continuity we can replace a(x) - x by $a(x_{\nu}) - x_{\nu}$ in (1.5) and conclude that, for large ν ,

$$|x - a(x_{\nu})| < |x_{\nu} - a(x_{\nu})| = d(x_{\nu}) \le d(x),$$

a contradiction. \Box

Let N(A) be the normal cone to A in the sense of [K-S].

Lemma 1.4. Let B be closed and assume that:

- (1.6) $\gamma_x(B)$ is a half space for every $x \in \partial B$,
- (1.7) $x \mapsto \gamma_x(B)$ is continuous.

Then $N_x(B)$, $x \in \partial B$ are also half spaces.

Proof. Suppose by absurd that there exist $\Gamma' \subset \gamma_{x_0}(B)$ and two sequences $\{z_{\nu}\}, \{y_{\nu}\}$ with

$$\begin{cases} z_{\nu}, y_{\nu} \to x_{0}, \\ z_{\nu}, y_{\nu} \in \partial B, \\ \theta_{\nu} = y_{\nu} - z_{\nu} \in \operatorname{int} \Gamma', \\ [z_{\nu}, y_{\nu}] \subset B \end{cases}$$

(Here $[z_{\nu}, y_{\nu}]$ denotes the segment from z_{ν} to y_{ν} .) But then $\gamma_{y_{\nu}} \supset \Gamma' \cup \{-\theta_{\nu}\}$, a contradiction. \Box

Remark 1.5. Let *B* verify $N_{x_0}(B) \neq \{0\}$; then if one takes coordinates with $(0, \ldots, 0, 1) \in N_{x_0}(B)$ and sets $x = (x', x_n)$, one can represent $\partial B = \{x; x_n - \varphi(x') = 0\}$ for a Lipschitz-continuous function φ . Moreover if $N_{x_0}(B)$ is a half-space and if we let $\mathbf{R}^+(0, \ldots, 0, 1) = N_{x_0}^*(B)$ then φ is differentiable at x_0 due to

$$|\varphi(x') - \varphi(x'_0)| = o(|x' - x'_0|).$$

Proposition 1.6. Let (1.1) hold in some coordinates; then d(x), $x \notin A$ is a C^1 function.

Proof. By Lemmas 1.3, 1.4, $N_x(A_{d(x)})$ are half-spaces; set $\tau_x = \partial N_x(A_{d(x)})$ and denote by n_x the normal to τ_x . Let $y \in \tau_x$; according to Remark 1.5 there exists $\tilde{y} \in \partial A_{d(x)}$ with $|\tilde{y} - y| = o(|y - x|)$. It follows:

(1.8)
$$|d(y) - d(x)| = |d(y) - d(\tilde{y})| \le k|y - \tilde{y}| = o(|y - x|).$$

By (1.8) we obtain $\partial/\partial \tau_x d(x) = 0$. On the other hand one has $\partial/\partial n_x d(x) = 1$. Finally $\partial d(x) = n_x$, $x \notin A$, and hence d is C^1 . \Box

§2. Let X be a C^{∞} -manifold, $Y \subset X$ a C^{1} -submanifold, M^{\cdot} a complex of **Z**modules of finite rank, and set $M^{\cdot *} = \mathbf{R}\mathcal{H}om_{\mathbf{Z}}(M^{\cdot}, \mathbf{Z})$. Let $\mu \operatorname{hom}(\cdot, \cdot)$ be the bifunctor of [K-S, §5]; one easily proves that

(2.1)
$$\mu \hom(\mathbf{Z}_Y, M_Y^{\cdot}) \cong M_{T_Y^* X}^{\cdot},$$

(2.2)
$$\mu \hom(M_Y^{\cdot}, \mathbf{Z}_Y) \cong (M_{T^*_{*}X}^{\cdot})^*.$$

Lemma 2.1. Let $M_Y^{\cdot} \cong \mathbf{Z}_Y$ in $D^+(X;p)$, $p \in \dot{T}_Y^*X$ ([K-S, §6]). Then $M^{\cdot} \cong \mathbf{Z}$. *Proof.* The proof is a straightforward consequence of the formula

$$Hom_{D^+(X;p)}(\cdot,\cdot) \xrightarrow{\sim} H^0\mu hom(\cdot,\cdot)_p,$$

and of (2.1), (2.2).

§3. Let M be a C^{ω} -manifold of dimension n, X a complexification of $M, A \subset M$ a closed set. According to [S] we define

$$\mathcal{C}_{A|X} = \mu \operatorname{hom}(\mathbf{Z}_A, \mathcal{O}_X) \otimes \operatorname{or}_{M|X}[n].$$

We assume here that

(3.1) (i) A satisfies (1.1) in some coordinates at
$$x_0 = 0$$
,

(ii) $A = \operatorname{int} A$ in the linear hull of A, (iii) $SS(\mathbf{Z}_A) \subset \gamma^*(A)$.

We take coordinates $(x', x_n) \in \mathbf{R}^{n-1} \times \mathbf{R} \cong M$, $(z', z_n) \in \mathbf{C}^n \cong X$, and suppose that $A = A' \times \mathbf{R}$. We define

(3.2)
$$G_A = \{ z; y_n \ge \inf_{a' \in A'} a'^2 / 4 + \langle y', a' \rangle / 2 \}.$$

Lemma 3.1. ∂G_A is C^1 .

Proof. One defines the set

(3.3)
$$\{z; y_n \ge -y'^2/4 \text{ for } y' \in -A', \\ y_n \ge a^2(-y')/4 + \langle y', a(-y') \rangle/2 \text{ for } y' \notin -A' \},$$

(where a(-y') is the point of $\partial A'$ such that $-y' \in a(-y') - \gamma^*_{a(-y')}(A')$).

One easily proves that the above set coincides with G_A . Then one observes that the boundary of (3.3) is defined by

(3.4)
$$y_n = \begin{cases} -y'/4, & \text{for } y' \in -A' \\ a^2(-y')/4 + \langle y', a(-y') \rangle/2 & \text{for } y' \notin -A' \\ & = |y' + a(-y')|^2/4 - y'^2/4 \\ & = \text{dist}^2(y', -A')/4 - y'^2/4, \end{cases}$$

Since dist(y', -A'), $y' \in M \setminus -A'$, is C^1 due to Proposition 1.4, then the function defined in (3.4) is also C^1 .

Proposition 3.2. (cf [S])

(i) We can find a complex homogeneous symplectic transformation ϕ such that

(3.5)
$$\phi(A \times_M T^*_M X \oplus \gamma^*(A)) = N^*(G_A).$$

(ii) ϕ can be quantized to Φ such that

(3.6)
$$\Phi(\mathbf{Z}_A) = \mathbf{Z}_{G_A}[n-1];$$

in particular

(3.7)
$$(\mathcal{C}_{A|X})_p \cong \mathcal{H}^1_{G_A}(\mathcal{O}_X)_{\pi(\phi(p))}, \quad p \in \dot{\pi}^{-1}(x_0).$$

Proof. One takes coordinates $(z, \zeta) \in T^*X$, and defines ϕ for Im $\zeta_n > 0$ by:

$$\begin{cases} z' \mapsto \zeta'/\zeta_n - \sqrt{-1} z', \\ z_n \mapsto \langle z, \zeta/\zeta_n \rangle/2 - \sqrt{-1} z'^2/4, \\ \zeta' \mapsto -z'\zeta_n/2, \\ \zeta_n \mapsto \zeta_n. \end{cases}$$

Then by recalling that G_A coincides with the set (3.3), one gets (i). As for (ii) one sets $\mathcal{F} = \Phi(\mathbf{Z}_A)$, $Y = \partial G_A$, and denotes by $j: Y \hookrightarrow X$ the embedding. One gets $SS(\mathcal{F}) \subset N^*(G_A) \subset \pi^{-1}(Y)$ at p; hence $\mathcal{F} \cong \mathbf{R}j_*\mathcal{G}$ at p for some \mathcal{G} in $D^+(Y)$ (cf [K-S, §6]). On the other hand one has $SS(\mathcal{G}) \subset T_X^*X$ at $\pi(p)$ ([K-S, Prop. 4.1.1]); hence $\mathcal{G} \cong M_Y^{\cdot}$ at $\pi(p)$ for a complex of **Z**-modules.

Due to (3.1)(ii) there exists $q \sim p$ such that A is a manifold at $\pi(q)$ and hence by [K-S, §11] we get $\mathcal{F} \cong \mathbb{Z}_Y[n-1]$ at $\phi(q)$. Thus (3.6) follows from Lemma 2.1, and (3.7) from the fact that $X \setminus G_A$ is pseudoconvex. \Box

For convex A, the above proposition is stated in [S].

§4. Let M be a C^{ω} -manifold, X a complexification of M, $A \subset M$ a closed set satisfying conditions (3.1).

Proposition 4.1. Let $\{\phi_i\}_{i=1,...,m}$ be a base for the space spanned by $\gamma_{x_0}^*(A)$ in $T_{x_0}^*X$. Then the sections of $\mathcal{C}_{A|X}|_{(T_M^*X\oplus\gamma^*(A))_{x_0}}$ satisfy the principle of the analytic continuation on the complex integral manifolds of $\{H(\phi_i^{\mathbf{C}})\}_{i=1,...,m}$.

Proof. Using the trick of the dummy variable we can assume A being of the form $A' \times \mathbf{R}$ and hence use the transformation ϕ of §3. Let $p, q \in \pi\phi((T_M^*X \oplus \gamma^*(A))_{x_0})$ belong to the same integral leaf of $\{H(\phi_i^{\mathbf{C}})\}_{i=1,...,m}$. We then have to show that if f is holomorphic in $X \setminus G_A$ and extends holomorphically at p, then it also extends at q.

We observe that $\pi((T_M^*X \oplus \gamma^*(A))_{x_0}) = \pi(\partial G_A \cap \phi(\dot{\pi}^{-1}(x_0)))$ is plane. Thus the claim follows from the Bochner's tube theorem at least when $\rho_M(p)$ belongs to the interior of $\gamma^*_{x_0}(A)$ in the plane of $\{\phi_i\}$ $(\rho_M: T^*X \to T^*M)$.

Otherwise one has to remember that ∂G_A is C^1 , and use the following result whose proof is straightforward.

Lemma 4.2. (cf [Kan]) Let $(z_1, z_2) \in \mathbb{C}^2$, $z_i = x_i + \sqrt{-1} y_i$, i = 1, 2, and let ψ be a C^1 function on $\mathbb{R}^2_{y_1, y_2}$ at 0 such that $\psi \ge 0$ and $\psi = 0$ for $y_1 \ge 0$. If f is analytic in the set

$$\{|x_i| < \varepsilon\} \times (\{|y_i| < \varepsilon, y_2 > \psi(y_1)\} \cup \{y_1 = \varepsilon, -\delta < y_2 \le 0\}),\$$

then f is analytic at 0.

Remark 4.3.

- (a) When A is a half-space with C^{ω} -boundary, Proposition 4.1 was already stated in [Kat 1].
- (b) In the situation of Proposition 4.1, one has (cf [Kat 1]):

$$\Gamma_{A \times_M T^*_M X}(\mathcal{C}_{A|X})\big|_{\partial A \times_M \dot{T}^*_M X} = 0$$

(c) Let \mathcal{M} be an \mathcal{E}_X -module at $p \in \dot{\pi}^{-1}(x_0)$. Suppose that there exists $\theta \in \dot{\gamma}^*_{x_0}(A)$ non-characteristic for \mathcal{M} . Then:

$$\mathcal{H}om_{\mathcal{E}_X}(\mathcal{M}, \mathcal{C}_{A|X})_p = 0.$$

(This was announced by Uchida when A is convex and all $\theta \in \dot{N}^*_{x_0}(A)$ (or $\partial N^*_{x_0}(A)$) are non-characteristic.)

Let now Ω be an open set of M and assume that $A = M \setminus \Omega$ satisfies the hypotheses (3.1). By the distinguished triangle

$$\mathcal{C}_{A|X} \to \mathcal{C}_{M|X} \to \mathcal{C}_{\Omega|X} \xrightarrow{+1},$$

by (3.7), and by the corresponding formula for $\mathcal{C}_{M|X}$, one gets (cf [S]):

Proposition 4.4.

$$H^0(\mathcal{C}_{\Omega|X}) = (\mathcal{C}_{\Omega|X})_{T^*_M X}.$$

By (4.1) and by Remark 4.3 (c), one also gets, for a \mathcal{D}_X -module \mathcal{M} :

$$\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \mathcal{A}_{\overline{\Omega}})_{x_0} = \{ f \in \mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \Gamma_{\Omega}(\mathcal{B}_M))_{x_0}; \\ SS_{\Omega}^{\mathcal{M}, 0}(f) \cap \dot{\pi}^{-1}(x_0) = \emptyset \},$$

 $SS_{\Omega}^{\mathcal{M},0}(f)$ being the micro-support in the sense of [S]. (One needs perhaps to assume here \mathbf{Z}_{Ω} cohomologically constructible; but this follows probably from (1.1).)

References

- [Kan] A. Kaneko, Estimation of singular spectrum of boundary values for some semihyperbolic operators, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 27(2) (1980), 401–461.
- [K-S] M. Kashiwara, P. Schapira, *Microlocal study of sheaves*, Asterisque 128 (1985).
- [Kat 1] K. Kataoka, On the theory of Radon transformation of hyperfunctions, J. Fac. Sci. Univ. Tokyo Sect. 1A 28 (1981), 331-413.
- [Kat 2] K. Kataoka, Microlocal theory of boundary value problems I, J. Fac. Sci. Univ. Tokyo Sect. 1A 27 (1980), 355-399; II 28 (1981), 31–56.
- [S-K-K] M. Sato, M. Kashiwara, T. Kawai, Hyperfunctions and pseudo-differential equations, Lecture Notes in Math., Springer-Verlag 287 (1973), 265–529.
- [S] P. Schapira, Front d'onde analytique au bord I, C. R. Acad. Sci. Paris Sér. I Math. 302 10 (1986), 383–386; II, Sém. E.D.P. École Polytechnique Exp. 13 (1986).

DIPARTIMENTO DI MATEMATICA, VIA BELZONI 7, 35131 PADOVA, ITALY