A PROPAGATION THEOREM FOR A CLASS OF
SHEAVES OF MICROFUNCTIONS
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ABSTRACT. Let A be a closed set of M = R", whose conormal cones z + v} (A),
x € A, have locally empty intersection. We first show in §1 that dist(z, A), x € M\ A
is a C' function. We then represent the microfunctions of C4jx, X = C”, (cf [S]),
using cohomology groups of Ox of degree 1. By the results of §1-3, we are able to

prove in §4 that the sections of CA|X|(T* X @y (A))gy? L0 € 0A, satisfy the princi-
M zo

ple of analytic continuation in the complex integral manifolds of {H(¢?)}i:1’___7m,
{#i} being a base for the linear hull of v; (A) in Tj; M; in particular we get

I * C = 0. In the proof we deeply use a variant of Bochner’s
Ax i, x (Capx) DA T X p ply

theorem due to [Kan]. When A is a half space with C“ boundary, all above results
were already proved by Kataoka in [Kat 1]. Finally for a £x-module M we show
that Home (M,Cqix)p =0, p € 7~ (x0), when at least one conormal 6 € Yoo (A)
is non-characteristic for M. We also show that for an open domain 2 such that the
set A = M \ Q verifies the above conditions, we have (CQ'X)T;\‘JX = HO(CQ‘X) (cf

[S] for the case of A convex).
Un teorema di propagazione per certi fasci di microfunzioni

SUNTO. Sia A un insieme chiuso di M = R™, i cui coni conormali  + v5(A), © € A,
hanno localmente intersezione vuota. Si prova nel §1 che dist(z,A), € M \ A
¢ una funzione C!. Si rappresentano poi le microfunzioni di Cajx, X =2 C", (cf
[S]), mediante gruppi di coomologia di Ox in grado 1. Se ne deduce nel §4 un
principio di prolungamento analitico per sezioni di C4|x |(T]T/IX€B'Y*(A))EO’ xg € 04,

che generalizza i risultati di [Kat 1]. (Per la dimostrazione si usa essenzialmente
un’idea di [Kan].) Se ne da infine applicazione ai problemi ai limiti.

§1. Let X be a C'°°-manifold, A a closed set of X. We denote by v(A) C T'X the
set

%E(A) - C(Aa {I‘}), T € A,

where C(A,{z}) is the normal cone to A along {z} in the sense of [K-S]; we also
denote by v*(A) the polar cone to 7(A). We assume that in some coordinates in a
neighborhood of a point xy € 0A:

(1.1) (i) (@—m@)Ny—7A)NS=0 Vz#yedAnS,

(i) x— ~v;(A) is upper semicontinuous.
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Remark 1.1.
(a) If A is convex in X = R" then (1.1) holds. Moreover in this case y(A4) =

N(A) where N(A) is the normal cone to A in the linear hull of A.

(b) All sets A with C?-boundary satisfy (1.1).

(c) The set A = {(x1,72) € R% 2y < —/|xa|} verifies (1.1). (Here 7(A) =
R,, but Nj(A)=R>)

(d) Theset A = {(z1,22) € R* z1 < |22]?/2} does not verify (1.1); in particular
(1.1) is not C''-coordinate invariant.

Lemma 1.2. Fiz coordinates in X at xo and assume that (1.1) holds. Then for
every x € (X \A)NS: (S: = {y;|y—zo| < €}, € small) there exists an unique point
a=a(x) € 0AN Sy such that

(1.2) r€a—,(A).

Proof. One takes a point a = a(x) verifying
(1.3) |z — a| = dist(z, 0A),

and verifies easily that a also verifies (1.2). The uniqueness is assured by (1.1). O

From the uniqueness it easily follows that a(z) is a continuous function. (One
should even easily prove that it is Lipschitz-continuous.)

We set d(z) = dist(x, A) and, for t > 0, A; = {z;d(x) < t}; we also set 0, =
Vo (Ad(a))-

Lemma 1.3. Let (1.1) hold in some coordinate system; then 6., x € DA are half-
spaces and the mapping T v+ 0, 18 continuous.

Proof. We shall show that

(1.4) 0r = {y; (y — =, a(x) —x) > 0}.

(The function x — a(z) being continuous, the lemma will follow at once.) In fact
since

{ysly —a(z)] < d(z)} C Agea),

then “DO” holds in (1.4). On the other hand we reason by absurd and find a sequence
{z,} such that

Ty — T,
(1.5) d(z,) < d(z),
(a(x) —z,z, — ) < =b|z, — 2|, §>0.
By continuity we can replace a(x) — = by a(z,) — z, in (1.5) and conclude that, for

large v,
|z —a(z,)| < |zy —a(x,)| = d(zy) < d(z),

a contradiction. O

Let N(A) be the normal cone to A in the sense of [K-S].
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Lemma 1.4. Let B be closed and assume that:
(1.6) v.(B) is a half space for every x € 0B,
(1.7) = +— ~,(B) is continuous.

Then N,(B), x € OB are also half spaces.

Proof. Suppose by absurd that there exist IV CC ~,,(B) and two sequences {z,},
{y, } with

vy Yv — To,
Zu, Yy € 0B,
0, =y, — 2z, € intl",
(20, 90] C B

(Here [z,,y,] denotes the segment from z, to y,.) But then v,, D I"U{-0,}, a
contradiction. [

Remark 1.5. Let B verify N, (B) # {0}; then if one takes coordinates with
(0,...,0,1) € N, (B) and sets x = (2, z,), one can represent 0B = {x;z, —
p(z') = 0} for a Lipschitz-continuous function ¢. Moreover if N, (B) is a half-
space and if we let R*(0,...,0,1) = N3 (B) then ¢ is differentiable at zo due
to

(') — o] = ofla’ — 7).

Proposition 1.6. Let (1.1) hold in some coordinates; then d(x), v ¢ A is a C!
function.

Proof. By Lemmas 1.3, 1.4, N, (Ag(,)) are half-spaces; set
Te = ONz(Ag(y)) and denote by n, the normal to 7,. Let y € 7,; according to
Remark 1.5 there exists § € Ay, with |[§ —y| = o(|y — z|). It follows:

(1.8) |d(y) — d(z)| = |d(y) — d(9)| < kly — g| = o(ly — ).

By (1.8) we obtain 0/01,d(x) = 0. On the other hand one has
9/0n,d(z) = 1. Finally dd(z) = n,, * ¢ A, and hence d is Ct. O

§2. Let X be a C*°-manifold, Y C X a Cl-submanifold, M  a complex of Z-
modules of finite rank, and set M'* = RHomz(M',Z). Let phom(-,-) be the
bifunctor of [K-S, §5]; one easily proves that

(2.1) phom(Zy , My ) = M- x,

(2.2) phom (M, Zy ) = (MT;X)*-

Lemma 2.1. Let My, = Zy in DY (X;p), p € T3 X ([K-S, §6]). Then M" = Z.
Proof. The proof is a straightforward consequence of the formula
Homp+x;p) (-, ) = HOuhom(+, ),

and of (2.1), (2.2). O
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§3. Let M be a C“-manifold of dimension n, X a complexification of M, A C M
a closed set. According to [S] we define

CA|X = uhom(ZA, Ox) ® OI'M|X[n].
We assume here that

(3.1) (i) A satisfies (1.1) in some coordinates at xo = 0,
(il) A =intA in the linear hull of A,
(iii) SS(Za) C~*(A).

We take coordinates (z/,z,) € R"' x R = M, (¢, 2,) € C"
that A = A’ x R. We define

I

X, and suppose

(3.2) Ga={zyn > inf o”/4+(y d)/2}

Lemma 3.1. 0G4 is C'.

Proof. One defines the set

(3.3) {zyn > —y'2/4 for 4/ € —A',
yn > a(—y) A+ (Y a(=y")) /2 for y' ¢ —A'},

(where a(—y') is the point of A’ such that —y’ € a(—y') — 5, (4").
One easily proves that the above set coincides with G 4. Then one observes that
the boundary of (3.3) is defined by

—y' /4, fory' € —A’
a*(=y") /4 + (Y a(=y"))/2 for y' ¢ —A’
=y +a(=y)P/4 -y /4
=dist?(y/, —A") /4 — y'?/4,

(34) Yn =

Since dist(y’, —A’), y' € M \ —A’, is C! due to Proposition 1.4, then the function
defined in (3.4) is also C*.

Proposition 3.2. (¢f [S])

(i) We can find a complex homogeneous symplectic transformation ¢ such that
(3.5) (A xp Ty X @77(A)) = N7 (Ga).
(ii) ¢ can be quantized to ® such that

(3.6) O(Za) = Zg,[n—1];
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i particular

(3.7) (CA|X)p = H%;A (Ox)ﬂ(¢(p)), pE ﬁ_l(xo).

Proof. One takes coordinates (z,() € T* X, and defines ¢ for Im (,, > 0 by:

2 G — V17,

Zn e (2,0/Cn) /2 — V122 /4,
(' =2 /2,

Cn > Cn-

Then by recalling that G 4 coincides with the set (3.3), one gets (i). As for (ii) one
sets F = ®(Z4), Y = 0G4, and denotes by j : Y — X the embedding. One gets
SS(F)c N*(G) c 7= 1(Y) at p; hence F = Rj,G at p for some G in DT(Y) (cf
[K-S, §6]). On the other hand one has SS(G) C T%X at w(p) ([K-S, Prop. 4.1.1));
hence G = M, at 7(p) for a complex of Z-modules.

Due to (3.1)(ii) there exists ¢ ~ p such that A is a manifold at 7(¢) and hence
by [K-S, §11] we get F = Zy[n — 1] at ¢(q). Thus (3.6) follows from Lemma 2.1,
and (3.7) from the fact that X \ G 4 is pseudoconvex. [

For convex A, the above proposition is stated in [S].

64. Let M be a C*“-manifold, X a complexification of M, A C M a closed set
satisfying conditions (3.1).

Proposition 4.1. Let {¢;}i=1,...m be a base for the space spanned by vy (A) in
Ty X. Then the sections of CA|X‘(T;4X@7*(A))QCO satisfy the principle of the analytic

continuation on the complex integral manifolds of {H(¢E)}iz1,..m-

Proof. Using the trick of the dummy variable we can assume A being of the form
A’ x R and hence use the transformation ¢ of §3. Let p,q € 7p((T1; X &7 (A))z,)
belong to the same integral leaf of {H(qﬁ?)}i:l ..... m- We then have to show that if
f is holomorphic in X \ G 4 and extends holomorphically at p , then it also extends
at q.

We observe that 7((T5; X ®v*(A))z,) = 71(0GaNG(77(xg)) is plane. Thus the
claim follows from the Bochner’s tube theorem at least when pys(p) belongs to the
interior of 5 (A) in the plane of {¢;} (pas : T*X — T*M).

Otherwise one has to remember that G 4 is C* | and use the following result
whose proof is straightforward.

Lemma 4.2. (c¢f [Kan]) Let (21, 2) € C?, 2z = 2 ++v/—1ys, i = 1,2, and let 1 be
a C' function on R12/1,yz at 0 such that ¥ > 0 and ¢ =0 fory; > 0. If f is analytic
in the set

{lzil < e} x ({lyil <e&,92 > ¢(y)} U{y =&, -0 <y2 <0}),

then f 1s analytic at 0.
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Remark 4.3.

(a) When A is a half-space with C*-boundary, Proposition 4.1 was already
stated in [Kat 1].
(b) In the situation of Proposition 4.1, one has (cf [Kat 1]):

FAXMTIT/IX(CA|X>}8AXMTX4X =0.

(c) Let M be an Ex-module at p € 7 1(x). Suppose that there exists 6 €
Y, (A) non-characteristic for M. Then:

Homgx (M, CA|X>p = 0.

(This was announced by Uchida when A is convex and all 6 € N;O (A) (or
ON; (A)) are non-characteristic. )

Let now 2 be an open set of M and assume that A = M \ Q satisfies the
hypotheses (3.1). By the distinguished triangle

+1
CA|X - CM|X - CQ|X 7

by (3.7), and by the corresponding formula for Cps x, one gets (cf [S]):

Proposition 4.4.
H(Coix) = (Cajx)rs x-

By (4.1) and by Remark 4.3 (c), one also gets, for a D x-module M:

HomDX (M,.Aﬁ)xo :{f S HOmDX (M,FQ(BM))wQ;
SSO(F)y na wo) = 0},

S Sg-/;/l 0(f) being the micro-support in the sense of [S]. (One needs perhaps to assume
here Zq cohomologically constructible; but this follows probably from (1.1).)
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