LEVI'S FORMS OF HIGHER CODIMENSIONAL SUBMANIFOLDS

Andrea D'Agnolo Giuseppe Zampieri

Abstract

Let $X \cong \mathbf{C}^{n}$, let M be a C^{2} hypersurface of X, S be a C^{2} submanifold of M. Denote by L_{M} the Levi form of M at $z_{0} \in S$. In [K-S 2] two numbers $s^{ \pm}(S, p)$, $p \in\left(\dot{T}_{S}^{*} X\right)_{z_{0}}$ are defined; for $S=M$ they are the numbers of positive and negative eigenvalues for L_{M}. For $S \subset M, p \in S \times{ }_{M} \dot{T}_{S}^{*} X$, we show here that $s^{ \pm}(S, p)$ are still the numbers of positive and negative eigenvalues for L_{M} when restricted to $T_{z_{0}}^{\mathbf{C}} S$. Applications to the concentration in degree for microfunctions at the boundary are given.

Sunto. Sia $X \cong \mathbf{C}^{n}, M$ una ipersuperficie di classe C^{2} di X, S una sottovarietà C^{2} di M. Sia L_{M} la forma di Levi di M al punto $z_{0} \in S$. In [K-S 2] si definiscono dei numeri $s^{ \pm}(S, p), p \in\left(\dot{T}_{S}^{*} X\right)_{z_{0}}$ che per $S=M$ coincidono con i numeri di autovalori positivi e negativi di L_{M}. Per $S \subset M, p \in S \times{ }_{M} \dot{T}_{S}^{*} X$, si prova che $s^{ \pm}(S, p)$ sono ancora i numeri di autovalori positivi e negativi di L_{M} ristretta a $T_{z_{0}}^{\mathbf{C}} S$. Se ne dà applicazione alla concentrazione in grado di microfunzioni al bordo.

1. Let X be a complex analytic manifold of dimension n. We denote by $\tau: T X \rightarrow$ X the tangent bundle and by $\pi: T^{*} X \rightarrow X$ the cotangent bundle to X. If $X^{\mathbf{R}}$ denotes the underlying real analytic manifold structure on X, we recall that there is a natural identification $T^{*}\left(X^{\mathbf{R}}\right) \cong\left(T^{*} X\right)^{\mathbf{R}}$. We will denote by ∂ the holomorphic differential on X, and by $\mathrm{d}=\partial+\bar{\partial}$ the differential on $X^{\mathbf{R}}$.

Let M be a C^{2} hypersurface of X and S be a C^{2} submanifold of M of real codimension $s-1$. We denote by $T_{S}^{*} X$ the conormal bundle to S in X, a closed submanifold of $T^{*} X^{\mathbf{R}}$.

Take a point $z_{0} \in S$ and assume that, locally at z_{0}, one may express M as $\{z \in X ; \phi(z)=0\}$ and S as the set of zeros for the functions $\phi_{i}(i=1, \ldots, s)$. Here ϕ and the ϕ_{i} are real valued C^{2} functions on X. Let $p=d \phi\left(z_{0}\right) \in S \times{ }_{M} \dot{T}_{M}^{*} X \subset \dot{T}_{S}^{*} X$. Let L_{M} be the Levi form of M at z_{0}. Recall that, in a local system of coordinates $(z) \in X$ at z_{0}, one has:

$$
L_{M}=\left(\frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{j}} \phi\left(z_{0}\right)\right)_{i, j}
$$

[^0]Let us set:

$$
\begin{aligned}
T_{z_{0}} S & =\left\{z \in T_{z_{0}} X ; \operatorname{Re}\left\langle z, \partial \phi_{i}\right\rangle=0 \forall i\right\} \\
T_{z_{0}}^{\mathbf{C}} S & =\left\{z \in T_{z_{0}} X ;\left\langle z, \partial \phi_{i}\right\rangle=0 \forall i\right\} \\
\lambda_{S}(p) & =T_{p} T_{S}^{*} X \\
\lambda_{0}(p) & =T_{p} \pi^{-1} \pi(p), \\
\gamma(S, p) & =\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p) \cap \lambda_{0}(p)\right), \\
s(S, p) & =\frac{1}{2} \tau\left(\lambda_{S}(p), i \lambda_{S}(p), \lambda_{0}(p)\right), \\
r(S, p) & =n-\operatorname{codim}_{X} S+2 \gamma(S, p)-\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p)\right),
\end{aligned}
$$

here $\tau(\cdot, \cdot, \cdot)$ denotes the Maslov index for three Lagrangian planes and $\operatorname{codim}_{X} S$ is the real codimension of S in X (cf. [K-S 2, §7]).

Proposition 1.1. One has:

$$
s(S, p)=\operatorname{sgn}\left(\left.L_{M}\right|_{T_{z_{0}} S}\right)
$$

where sgn denotes the signature.
proof. The proof goes as in [K-S 1, Prop. 11.2.7] so we point out only the main lines.

Define the map:

$$
\begin{aligned}
\psi & : S \longrightarrow T_{S}^{*} X \\
& z \mapsto \partial \phi(z)
\end{aligned}
$$

Let:

$$
\psi_{*}: \mathbf{C} \otimes_{\mathbf{R}} T_{z_{0}} S \longrightarrow \lambda_{S}(p)+i \lambda_{S}(p) \subset T_{p} T^{*} X
$$

be the map induced by ψ on the complexification $\mathbf{C} \otimes_{\mathbf{R}} T_{z_{0}} S$ of $T_{z_{0}} S$. If we identify $\mathbf{C} \otimes_{\mathbf{R}} T_{z_{0}} S$ to the subset of $T_{z_{0}} X \oplus \overline{T_{z_{0}} X}$:

$$
\left\{(v, w) ;\left\langle v, \partial \phi_{i}\right\rangle+\left\langle w, \bar{\partial} \phi_{i}\right\rangle=0, \forall i\right\}
$$

we have:

$$
\psi_{*}(v, w)=(v ; \zeta=\partial\langle\partial \phi, v\rangle+\partial\langle\bar{\partial} \phi, w\rangle) .
$$

We have:

$$
\begin{aligned}
& \lambda_{S}(p)=\left\{(v, \zeta) ; \operatorname{Re}\left\langle v, \partial \phi_{i}\right\rangle=0\right. \\
&\left.\left.\zeta=\sum t_{j} \partial \phi_{j}\left(z_{0}\right)+\partial\langle\partial \phi, v\rangle+\partial\langle\bar{\partial} \phi, \bar{v}\rangle\right)\right\}
\end{aligned}
$$

We need now a lemma.

Lemma 1.2. One has:

$$
\psi_{*} \overline{T_{z_{0}} S}+\left(\lambda_{0}(p) \cap \lambda_{S}(p)\right)^{\mathbf{C}}=\lambda_{0}(p) \cap\left(\lambda_{S}(p)+i \lambda_{S}(p)\right)
$$

proof. Recall that one has the identification:

$$
\psi_{*} \overline{T_{z_{0}} S}=\left\{(0, \zeta) ; \zeta=\partial\langle\bar{\partial} \phi, w\rangle,\left\langle w, \bar{\partial} \phi_{i}\right\rangle=0, \forall i \leq s\right\}
$$

and also

$$
\left(\lambda_{0}(p) \cap \lambda_{S}(p)\right)^{\mathbf{C}}=\left\{(0, \zeta) ; \zeta=\sum_{i} \tau_{i} \partial \phi_{i}\left(z_{0}\right), \tau_{i} \in \mathbf{C}\right\}
$$

In conclusion:

$$
\begin{aligned}
\psi_{*} \overline{T_{z_{0}} S}+\left(\lambda_{0}(p) \cap \lambda_{S}(p)\right)^{\mathbf{C}} & =\left\{(0, \zeta) ; \zeta=\sum_{i} \tau_{i} \partial \phi_{i}\left(z_{0}\right)+\partial\langle\bar{\partial} \phi, w\rangle,\left\langle\bar{\partial} \phi_{i}, w\right\rangle=0 \forall i \leq s\right\} \\
& =\lambda_{0}(p) \cap\left(\lambda_{S}(p)+i \lambda_{S}(p)\right)
\end{aligned}
$$

Q.E.D.

One sees that $\psi_{*}(0, v)+\psi_{*}(\bar{v}, 0) \in \lambda_{S}(p)$ and $\psi_{*}(0, v)-\psi_{*}(\bar{v}, 0) \in i \lambda_{S}(p)$ and thus $\psi_{*}(\bar{v}, 0)$ is the "conjugate" to $\psi_{*}(0, v)$ in $T_{p} T^{*} X /\left(\lambda_{S}(p) \cap \lambda_{S}(p)\right)$ with respect to the space $\lambda_{S}(p) /\left(\lambda_{S}(p) \cap \lambda_{S}(p)\right)$. The conclusion is then as in [K-S 1]. Q.E.D.
Proposition 1.3. One has:

$$
r(S, p)=\operatorname{rank}\left(\left.L_{M}\right|_{T_{z 0} S}\right)
$$

proof. One has:

$$
\begin{aligned}
\lambda_{S}(p) \cap i \lambda_{S}(p)= & \left\{(v, \zeta) ;\left\langle v, \partial \phi_{i}\right\rangle=0 \forall i \leq s, \zeta=\sum_{i} t_{i} \partial \phi_{i}\left(z_{0}\right)+\partial\langle\partial \phi, v\rangle+\partial\langle\bar{\partial} \phi, v\rangle,\right. \\
& \left.\zeta=\sum_{i} i s_{i} \partial \phi_{i}\left(z_{0}\right)+\partial\langle\partial \phi, v\rangle-\partial\langle\bar{\partial} \phi, v\rangle\right\} \\
= & \left\{(v, \zeta) ;\left\langle v, \partial \phi_{i}\right\rangle=0 \forall i \leq s,\langle\partial\langle\bar{\partial} \phi, \bar{v}\rangle, w\rangle=0, \forall w \in T_{z_{0}}^{\mathbf{C}} S,\right. \\
& \zeta=\sum_{i} t_{i} \partial \phi_{i}\left(z_{0}\right)+\partial\langle\partial \phi, v\rangle+\partial\langle\bar{\partial} \phi, v\rangle, \\
& \left.\sum_{i}\left(-t_{i}+i s_{i}\right) \partial \phi_{i}\left(z_{0}\right)=2 \partial\langle\bar{\partial} \phi, \bar{v}\rangle\right\} .
\end{aligned}
$$

Thus $\zeta-\partial\langle\partial \phi, v\rangle-\partial\langle\bar{\partial} \phi, v\rangle$ is the first term in a decomposition:

$$
-2 \partial\langle\bar{\partial} \phi, \bar{v}\rangle=\sum_{i} t_{i} \partial \phi_{i}\left(z_{0}\right)-i \sum_{i} s_{i} \partial \phi_{i}\left(z_{0}\right)
$$

$t_{i}, s_{i} \in \mathbf{R}$. This last decomposition being unique modulo $\lambda_{S}(p) \cap i \lambda_{S}(p) \cap \lambda_{0}(p)$, we get:

$$
\begin{aligned}
\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p)\right) & =\operatorname{dim}_{\mathbf{C}}\left\{v \in T_{z_{0}}^{\mathbf{C}} S ;\langle\partial\langle\bar{\partial} \phi, \bar{v}\rangle, w\rangle=0, \forall w \in T_{z_{0}}^{\mathbf{C}} S\right\}+ \\
& +\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p) \cap \lambda_{0}(p)\right) .
\end{aligned}
$$

We have, recalling that $T_{z_{0}}^{\mathbf{C}} S=T_{z_{0}} S \cap i T_{z_{0}} S$:

$$
\operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} S=n-\operatorname{codim}_{X} S+\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p) \cap \lambda_{0}(p)\right)
$$

and hence:

$$
\begin{aligned}
\left.\operatorname{rank} L_{M}\right|_{T_{z_{0} S} S}= & \operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} S-\operatorname{dim}_{\mathbf{C}}\left\{v \in T_{z_{0}}^{\mathbf{C}} S ;\langle\partial\langle\bar{\partial} \phi, \bar{v}\rangle, w\rangle=0, \forall w \in T_{z_{0}}^{\mathbf{C}} S\right\} \\
= & \left(n-\operatorname{codim}_{X} S+\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p) \cap \lambda_{0}(p)\right)\right)- \\
& \left(\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p)\right)-\operatorname{dim}_{\mathbf{C}}\left(\lambda_{S}(p) \cap i \lambda_{S}(p) \cap \lambda_{0}(p)\right)\right) \\
= & r(S, p) .
\end{aligned}
$$

Q.E.D.

Let us define $s^{ \pm}(S, p)$ as the solutions of the system:

$$
\left\{\begin{array}{l}
s(S, p)=s^{+}(S, p)-s^{-}(S, p) \\
r(S, p)=s^{+}(S, p)+s^{-}(S, p)
\end{array}\right.
$$

and $s^{0}(S, p)$ as:

$$
s^{0}(S, p)=\operatorname{dim}_{\mathbf{C}}\left\{v \in T_{z_{0}}^{\mathbf{C}} S ;\langle\partial\langle\bar{\partial} \phi, \bar{v}\rangle, w\rangle=0, \forall w \in T_{z_{0}}^{\mathbf{C}} S\right\}
$$

Due to Propositions 1.1, 1.3, we get at once the following theorem.
Theorem 1.4. $s^{+}(S, p), s^{-}(S, p)$ and $s^{0}(S, p)$ are the number of the positive, negative and null eigenvalues for the form $\left.L_{M}\right|_{T_{z_{0}} S}$.
2. We give now application of the preceding results to the concentration in degree for microfunctions at the boundary.

We shall be working with the derived category $D^{b}(X)$ of the category of bounded complexes of sheaves of abelian groups on X. In [K-S 1] a bifunctor μ hom : $D^{b}(X)^{\circ} \times D^{b}(X) \rightarrow D^{b}\left(T^{*} X\right)$ is defined. For a subset $Z \subset X$ one sets $\mu_{Z}\left(\mathcal{O}_{X}\right)=$ $\mu \operatorname{hom}\left(\mathbf{C}_{Z}, \mathcal{O}_{X}\right)$, where \mathcal{O}_{X} denotes the sheaf of holomorphic functions on X and \mathbf{C}_{Z} is the sheaf which is 0 on $X \backslash Z$ and the constant sheaf with fiber \mathbf{C} on Z.

In what follows π_{M} will denote the projection $\pi_{M}: T_{M}^{*} X \rightarrow M, \omega$ will denote the complex canonical 1-form on X, H the hamiltonian isomorphism $T^{*} T^{*} X \cong$ $T T^{*} X$ induced by the symplectic 2 -form $\mathrm{d} \omega$ and, in the case of $T_{M}^{*} X$ being $\mathrm{d} \omega^{I_{-}}$ symplectic, H^{I} will denote the hamiltonian isomorphism $T^{*} T_{M}^{*} X \cong T T_{M}^{*} X$ induced by the symplectic 2 -form $\mathrm{d} \omega^{I}$ (ω^{I} being the imaginary part of ω)
Proposition 2.1. Let $S \subset M \subset X$ be C^{2} subvarieties of X, M being an hypersurface. Then, for $p \in S \times{ }_{M} \dot{T}_{M}^{*} X$:
(i) $0 \leq s^{ \pm}(M, p)-s^{ \pm}(S, p) \leq \operatorname{cod}_{M} S-[\gamma(S, p)-\gamma(M, p)]$,
(ii) $-\operatorname{cod}_{M} S+[\gamma(S, p)-\gamma(M, p)] \leq s^{0}(M, p)-s^{0}(S, p) \leq \operatorname{cod}_{M} S-[\gamma(S, p)-$ $\gamma(M, p)]$.

Proof. Recall that $T_{z_{0}}^{\mathbf{C}} M=T_{z_{0}} M \cap i T_{z_{0}} M$. We have:

$$
\operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} S=\operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} M-\left[\operatorname{codim}_{M} S-(\gamma(S, p)-\gamma(M, p))\right]
$$

Let us define (for $*=+,-, 0$):

$$
V_{M}^{*}=\left\{v \in T_{z_{0}}^{\mathbf{C}} M ; v \text { and } v^{\perp} \text { generate } T_{z_{0}}^{\mathbf{C}} M,{ }^{t} v L_{M} v\left\{\begin{array}{ll}
>0 & \text { for } *=+ \\
<0 & \text { for } *=- \\
=0 & \text { for } *=0
\end{array}\right\}\right.
$$

(where $v^{\perp}=\left\{w \in T_{z_{0}}^{\mathbf{C}} M ;{ }^{t} v L_{M} w=0\right\}$), and similarly for V_{S}^{*}. In order to prove that the right hand side estimates on (i) and (ii) hold, it is enough to observe that $V_{S}^{*} \supset V_{M}^{*} \cap T_{z_{0}}^{\mathbf{C}} S$.

Let now v_{1}, \ldots, v_{s} be a base for V_{S}^{+}, completed in a basis $v_{1}, \ldots, v_{s}, \tilde{v}_{s+1}, \ldots, \tilde{v}_{r}$ of $T_{z_{0}}^{\mathbf{C}} M$, and let $\left(a_{i j}\right)_{i, j \leq r}$ be the matrix of L_{M} in such a base. If we write $v_{s+1}=$ $\tilde{v}_{s+1}-\left(a_{1 s+1} / a_{11} v_{1}+\cdots+a_{s s+1} / a_{s s} v_{s}\right)$, and similarly for $v_{j}, s+1<j \leq r$, we get a new base for $T_{z_{0}}^{\mathrm{C}} M$ such that ${ }^{t} v_{i} L_{M} v_{j}=0, \forall i \leq s, \forall j \leq m$. This proves that the left hand side estimate on (i) holds.

In order to prove that the left hand side estimates on (ii) holds, assume at first that $\operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} M-\operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} S=1$ and let $u \in T_{z_{0}}^{\mathbf{C}} M \backslash T_{z_{0}}^{\mathbf{C}} S$. Let $v_{1}, v_{2} \in T_{z_{0}}^{\mathbf{C}} S$, with

$$
{ }^{t} v_{i}\left(\left.L_{M}\right|_{T_{z_{0}} S}\right) w=0
$$

$\forall i=1,2, \forall w \in T_{z_{0}}^{\mathbf{C}} S$. Assume that ${ }^{t} v_{1} L_{M} u \neq 0$ and hence there exists an $\alpha \in \mathbf{C}$ with ${ }^{t}\left(\alpha v_{1}+v_{2}\right) L_{M} u=0$. This means $\left(\alpha v_{1}+v_{2}\right)^{\perp}=T_{z_{0}}^{\mathbf{C}} M$. The case $\operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} M-$ $\operatorname{dim}_{\mathbf{C}} T_{z_{0}}^{\mathbf{C}} S>1$ is similarly proven. Q.E.D.
Proposition 2.2. Let $S \subset M \subset X$ be C^{2} subvarieties of X, M an hypersurface, and take $p_{0} \in S \times_{M} \dot{T}_{M}^{*} X$. Let $\Omega=M \backslash S$. Assume the following conditions for p in a neighborhood of p_{0} :
(1) $\operatorname{dim}_{\mathbf{R}}\left(\lambda_{S}(p) \cap \nu(p)\right)=1$ (here $\nu(p)=\mathbf{C} H(\omega(p))$ is the radial direction),
(2) $s^{-}(S, p)-\gamma(S, p)$ is constant for $p \in T_{S}^{*} X$,
(3) $s^{-}(M, p)-\gamma(M, p)$ is constant for $p \in T_{M}^{*} X$.

Then $\mu_{\Omega}\left(\mathcal{O}_{X}\right)$ is concentrated in degrees $\left[\alpha-1, \alpha^{\prime} \vee \alpha\right]$, where we set $\alpha=\operatorname{codim}_{X} M+$ $s^{-}(M, p)-\gamma(M, p), \alpha^{\prime}=\alpha+\operatorname{codim}_{M} S-[\gamma(S, p)-\gamma(M, p)]-1$.
proof. By [K-S 1, Prop. 2.3] we have that $\mu_{M}\left(\mathcal{O}_{X}\right)$ is concentrated in degree α and $\mu_{S}\left(\mathcal{O}_{X}\right)$ is concentrated in degree $\alpha^{\prime \prime}=\operatorname{cod}_{X} S+s^{-}(S, p)-\gamma(S, p)$. Due to Corollary 2.1 we then have $\alpha \leq \alpha^{\prime \prime} \leq \alpha^{\prime}+1$ and we conclude. Q.E.D.
Remark 2.3. If we assume in addition that:

$$
\left\{\begin{array}{l}
T_{M}^{*} X \text { is } d \omega^{I} \text { symplectic }\left(\operatorname{cod}_{X} M=1\right) \\
S \times_{M} T_{M}^{*} X \text { is } d \omega^{I} \text { involutive, } \\
i p_{0} \notin T_{S}^{*} M \text { in the identification } T_{S}^{*} M \cong i H^{I}\left(\pi_{M}^{*}\left(T_{S}^{*} M\right)\right)
\end{array}\right.
$$

then $\mu_{\Omega}\left(\mathcal{O}_{X}\right)$ is concentrated in degrees $\left[\alpha, \alpha+\operatorname{codim}_{M} S-1\right]$. In fact $\mu_{M}\left(\mathcal{O}_{X}\right)$ is concentrated in degree $\alpha=\operatorname{codim}_{X} M+s^{-}(M, p)$. By a complex quantized contact transformation it is not restrictive to assume $s^{-}(M, p)=0$, and hence $s^{-}(S, p)=0$ due to Proposition 2.1. Moreover, since $\left(T_{M}^{*} X, d \omega^{I}\right)$ is symplectic and $S \times_{M} T_{M}^{*} X$ is regular involutive, then $\gamma(S, p)=0$ (cf [D'A-Z]). This implies (cf [K-S 2, Prop. 11.2.8]) that $\mu_{S}\left(\mathcal{O}_{X}\right)$ is concentrated in degree $\operatorname{codim}_{X} S+s^{-}(S, p)$. Note that if $\operatorname{codim}_{X} M+s^{-}(M, p)=\operatorname{codim}_{X} S+s^{-}(S, p)$, the concentration in degree α for $\mu_{\Omega}\left(\mathcal{O}_{X}\right)$ follows by applying a quantized contact transformation that interchanges $T_{M}^{*} X$ with $T_{M^{\prime}}^{*} X^{\prime}$ (for $M^{\prime} \cong \mathbf{R}^{n}$) and $S \times{ }_{M} T_{M}^{*} X$ with $S^{\prime} \times_{M^{\prime}} T_{M^{\prime}}^{*} X^{\prime}$. The concentration for $\mu_{\Omega^{\prime}}\left(\mathcal{O}_{X}\right)\left(\Omega^{\prime}=M^{\prime} \backslash S^{\prime}\right)$ is then a classical argument due to P. Schapira.

Remark 2.4. If we assume that:

$$
\left\{\begin{array}{l}
T_{M}^{*} X \text { is } d \omega^{I} \text { symplectic }\left(\operatorname{cod}_{X} M=1\right) \\
\operatorname{codim}_{M} S=1, \\
i p_{0} \notin T_{S}^{*} M \text { in the identification } T_{S}^{*} M \cong i H^{I}\left(\pi_{M}^{*}\left(T_{S}^{*} M\right)\right)
\end{array}\right.
$$

then $\mu_{\Omega}\left(\mathcal{O}_{X}\right)$ is concentrated in degree $\alpha=\operatorname{codim}_{X} M+s^{-}(M, p)$. In fact, by a quantized contact transformation, we can reduce to the case $s^{-}(S, p) \equiv 0$, $s^{-}(M, p) \equiv 0, M$ being the boundary of a strictly pseudo-convex set, moreover, in this case of $\operatorname{codim}_{S} X=2$, we have $\gamma(S, p)=0$.

Proposition 2.5. Let $S \subset M \subset X$ be C^{2} subvarieties of X, set $\Omega=M \backslash S$ and take $p_{0} \in S \times_{M} \dot{T}_{M}^{*} X$. Then $\mu_{\Omega}\left(\mathcal{O}_{X}\right)$ is concentrated in degrees $\left[\alpha-1, \beta+\operatorname{codim}_{M} S-1\right]$, where we set $\alpha=\operatorname{codim}_{X} M+s^{-}(M, p)-\gamma(M, p)$ and $\beta=n-s^{+}(M, p)+\gamma(M, p)$. proof. Due to [K-S 2, Th. 2.2] one has that $\mu_{M}\left(\mathcal{O}_{X}\right)$ is concentrated in degree $[\alpha, \beta]$ and $\mu_{S}\left(\mathcal{O}_{X}\right)$ is concentrated in degree $\left[\alpha^{\prime}, \beta^{\prime}\right]$, for: $\alpha^{\prime}=\operatorname{codim}_{X} S+s^{-}(S, p)-$ $\gamma(S, p), \beta^{\prime}=n-s^{+}(S, p)+\gamma(S, p)$. Due to Corollary 2.1 we have:

$$
s^{ \pm}(S, p) \geq s^{ \pm}(M, p)-\operatorname{codim}_{M} S+[\gamma(S, p)-\gamma(M, p)]
$$

and hence:

$$
\begin{aligned}
\alpha & \leq \alpha^{\prime} \\
\beta^{\prime} & \leq n-s^{+}(M, p)+\operatorname{cod}_{M} S-(\gamma(S, p)-\gamma(M, p))+\gamma(S, p) \\
& =\beta+\operatorname{cod}_{M} S
\end{aligned}
$$

Q.E.D.

References

[D'A-Z] A. D'Agnolo, G. Zampieri, A vanishing theorem at the boundary for a class of systems with simple characteristics, to appear.
[K-S 1] M. Kashiwara, P. Schapira, Microlocal study of sheaves, Astérisque 128 (1985).
[K-S 2] M. Kashiwara, P. Schapira, A vanishing theorem for a class of systems with simple characteristics, Invent. Math. 82 (1985), 579-592.
[S] P. Schapira, Condition de positivité dans une variété symplectique complexe. Applications à l'étude des microfonctions, Ann. Sci. Ec. Norm. Sup. 14 (1981), 121-139.

Dipartimento di matematica, via Belzoni 7, 35131 Padova, Italy

[^0]: Appeared in: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 2 (1991), no. 1, 29-33.

