LEVI'S FORMS OF HIGHER CODIMENSIONAL SUBMANIFOLDS

ANDREA D'AGNOLO GIUSEPPE ZAMPIERI

ABSTRACT. Let $X \cong \mathbb{C}^n$, let M be a C^2 hypersurface of X, S be a C^2 submanifold of M. Denote by L_M the Levi form of M at $z_0 \in S$. In [K-S 2] two numbers $s^{\pm}(S,p)$, $p \in (\dot{T}_S^*X)_{z_0}$ are defined; for S = M they are the numbers of positive and negative eigenvalues for L_M . For $S \subset M$, $p \in S \times_M \dot{T}_S^*X$, we show here that $s^{\pm}(S,p)$ are still the numbers of positive and negative eigenvalues for L_M when restricted to $T_{z_0}^{\mathbb{C}}S$. Applications to the concentration in degree for microfunctions at the boundary are given.

SUNTO. Sia $X \cong \mathbb{C}^n$, M una ipersuperficie di classe C^2 di X, S una sottovarietà C^2 di M. Sia L_M la forma di Levi di M al punto $z_0 \in S$. In [K-S 2] si definiscono dei numeri $s^{\pm}(S,p), p \in (\dot{T}_S^*X)_{z_0}$ che per S = M coincidono con i numeri di autovalori positivi e negativi di L_M . Per $S \subset M, p \in S \times_M \dot{T}_S^*X$, si prova che $s^{\pm}(S,p)$ sono ancora i numeri di autovalori positivi e negativi di L_M ristretta a $T_{z_0}^{\mathbb{C}}S$. Se ne dà applicazione alla concentrazione in grado di microfunzioni al bordo.

1. Let X be a complex analytic manifold of dimension n. We denote by $\tau : TX \to X$ the tangent bundle and by $\pi : T^*X \to X$ the cotangent bundle to X. If $X^{\mathbf{R}}$ denotes the underlying real analytic manifold structure on X, we recall that there is a natural identification $T^*(X^{\mathbf{R}}) \cong (T^*X)^{\mathbf{R}}$. We will denote by ∂ the holomorphic differential on X, and by $d=\partial + \overline{\partial}$ the differential on $X^{\mathbf{R}}$.

Let M be a C^2 hypersurface of X and S be a C^2 submanifold of M of real codimension s - 1. We denote by T_S^*X the conormal bundle to S in X, a closed submanifold of $T^*X^{\mathbf{R}}$.

Take a point $z_0 \in S$ and assume that, locally at z_0 , one may express M as $\{z \in X; \phi(z) = 0\}$ and S as the set of zeros for the functions ϕ_i (i = 1, ..., s). Here ϕ and the ϕ_i are real valued C^2 functions on X. Let $p = d \phi(z_0) \in S \times_M \dot{T}_M^* X \subset \dot{T}_S^* X$. Let L_M be the Levi form of M at z_0 . Recall that, in a local system of coordinates $(z) \in X$ at z_0 , one has:

$$L_M = \left(\frac{\partial^2}{\partial z_i \partial \overline{z}_j} \phi(z_0)\right)_{i,j}$$

Appeared in: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 2 (1991), no. 1, 29–33.

Let us set:

$$T_{z_0}S = \{z \in T_{z_0}X; Re\langle z, \partial \phi_i \rangle = 0 \ \forall i\},$$

$$T_{z_0}^{\mathbf{C}}S = \{z \in T_{z_0}X; \langle z, \partial \phi_i \rangle = 0 \ \forall i\},$$

$$\lambda_S(p) = T_p T_S^* X,$$

$$\lambda_0(p) = T_p \pi^{-1} \pi(p),$$

$$\gamma(S, p) = \dim_{\mathbf{C}}(\lambda_S(p) \cap i\lambda_S(p) \cap \lambda_0(p)),$$

$$s(S, p) = \frac{1}{2} \tau(\lambda_S(p), i\lambda_S(p), \lambda_0(p)),$$

$$r(S, p) = n - \operatorname{codim}_X S + 2\gamma(S, p) - \dim_{\mathbf{C}}(\lambda_S(p) \cap i\lambda_S(p)),$$

here $\tau(\cdot, \cdot, \cdot)$ denotes the Maslov index for three Lagrangian planes and codim $_XS$ is the real codimension of S in X (cf. [K-S 2, §7]).

Proposition 1.1. One has:

$$s(S,p) = \operatorname{sgn}\left(L_M|_{T_{z_0}^{\mathbf{C}}S}\right),$$

where sgn denotes the signature.

proof. The proof goes as in [K-S 1, Prop. 11.2.7] so we point out only the main lines.

Define the map:

$$\psi: S \longrightarrow T^*_S X$$
$$z \longmapsto \partial \phi(z)$$

Let:

$$\psi_*: \mathbf{C} \otimes_{\mathbf{R}} T_{z_0} S \longrightarrow \lambda_S(p) + i\lambda_S(p) \subset T_p T^* X$$

be the map induced by ψ on the complexification $\mathbf{C} \otimes_{\mathbf{R}} T_{z_0} S$ of $T_{z_0} S$. If we identify $\mathbf{C} \otimes_{\mathbf{R}} T_{z_0} S$ to the subset of $T_{z_0} X \oplus \overline{T_{z_0} X}$:

$$\{(v,w); \langle v, \partial \phi_i \rangle + \langle w, \overline{\partial} \phi_i \rangle = 0, \ \forall i\},\$$

we have:

$$\psi_*(v,w) = (v;\zeta = \partial \langle \partial \phi, v \rangle + \partial \langle \overline{\partial} \phi, w \rangle).$$

We have:

$$\lambda_{S}(p) = \{(v,\zeta); Re\langle v, \partial \phi_{i} \rangle = 0, \\ \zeta = \sum t_{j} \partial \phi_{j}(z_{0}) + \partial \langle \partial \phi, v \rangle + \partial \langle \overline{\partial} \phi, \overline{v} \rangle) \}.$$

We need now a lemma.

Lemma 1.2. One has:

$$\psi_*\overline{T_{z_0}S} + (\lambda_0(p) \cap \lambda_S(p))^{\mathbf{C}} = \lambda_0(p) \cap (\lambda_S(p) + i\lambda_S(p)).$$

proof. Recall that one has the identification:

$$\psi_*\overline{T_{z_0}S} = \{(0,\zeta); \zeta = \partial \langle \overline{\partial}\phi, w \rangle, \ \langle w, \overline{\partial}\phi_i \rangle = 0, \ \forall i \le s\},\$$

and also

$$(\lambda_0(p) \cap \lambda_S(p))^{\mathbf{C}} = \{(0,\zeta); \zeta = \sum_i \tau_i \partial \phi_i(z_0), \ \tau_i \in \mathbf{C}\}$$

In conclusion:

$$\psi_* \overline{T_{z_0}S} + (\lambda_0(p) \cap \lambda_S(p))^{\mathbf{C}} = \{(0,\zeta); \zeta = \sum_i \tau_i \partial \phi_i(z_0) + \partial \langle \overline{\partial} \phi, w \rangle, \ \langle \overline{\partial} \phi_i, w \rangle = 0 \ \forall i \le s \}$$
$$= \lambda_0(p) \cap (\lambda_S(p) + i\lambda_S(p)).$$

Q.E.D.

One sees that $\psi_*(0,v) + \psi_*(\overline{v},0) \in \lambda_S(p)$ and $\psi_*(0,v) - \psi_*(\overline{v},0) \in i\lambda_S(p)$ and thus $\psi_*(\overline{v},0)$ is the "conjugate" to $\psi_*(0,v)$ in $T_pT^*X/(\lambda_S(p) \cap \lambda_S(p))$ with respect to the space $\lambda_S(p)/(\lambda_S(p) \cap \lambda_S(p))$. The conclusion is then as in [K-S 1]. Q.E.D.

Proposition 1.3. One has:

$$r(S,p) = \operatorname{rank}\left(L_M|_{T_{z_0}^{\mathbf{c}}S}\right).$$

proof. One has:

$$\begin{split} \lambda_{S}(p) \cap i\lambda_{S}(p) =&\{(v,\zeta); \langle v, \partial\phi_{i} \rangle = 0 \ \forall i \leq s, \zeta = \sum_{i} t_{i} \partial\phi_{i}(z_{0}) + \partial\langle\partial\phi, v \rangle + \partial\langle\overline{\partial}\phi, v \rangle, \\ \zeta =& \sum_{i} is_{i} \partial\phi_{i}(z_{0}) + \partial\langle\partial\phi, v \rangle - \partial\langle\overline{\partial}\phi, v \rangle \} \\ =&\{(v,\zeta); \langle v, \partial\phi_{i} \rangle = 0 \ \forall i \leq s, \langle\partial\langle\overline{\partial}\phi, \overline{v} \rangle, w \rangle = 0, \ \forall w \in T_{z_{0}}^{\mathbf{C}}S, \\ \zeta =& \sum_{i} t_{i} \partial\phi_{i}(z_{0}) + \partial\langle\partial\phi, v \rangle + \partial\langle\overline{\partial}\phi, v \rangle, \\ \sum_{i} (-t_{i} + is_{i}) \partial\phi_{i}(z_{0}) = 2\partial\langle\overline{\partial}\phi, \overline{v} \rangle \}. \end{split}$$

Thus $\zeta - \partial \langle \partial \phi, v \rangle - \partial \langle \overline{\partial} \phi, v \rangle$ is the first term in a decomposition:

$$-2\partial \langle \overline{\partial}\phi, \overline{v} \rangle = \sum_{i} t_i \partial \phi_i(z_0) - i \sum_{i} s_i \partial \phi_i(z_0),$$

 $t_i, s_i \in \mathbf{R}$. This last decomposition being unique modulo $\lambda_S(p) \cap i\lambda_S(p) \cap \lambda_0(p)$, we get:

$$\dim_{\mathbf{C}}(\lambda_{S}(p) \cap i\lambda_{S}(p)) = \dim_{\mathbf{C}}\{v \in T_{z_{0}}^{\mathbf{C}}S; \langle \partial \langle \overline{\partial}\phi, \overline{v} \rangle, w \rangle = 0, \ \forall w \in T_{z_{0}}^{\mathbf{C}}S\} + \dim_{\mathbf{C}}(\lambda_{S}(p) \cap i\lambda_{S}(p) \cap \lambda_{0}(p)).$$

We have, recalling that $T_{z_0}^{\mathbf{C}}S = T_{z_0}S \cap iT_{z_0}S$:

$$\dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}} S = n - \operatorname{codim}_X S + \dim_{\mathbf{C}} (\lambda_S(p) \cap i\lambda_S(p) \cap \lambda_0(p)),$$

and hence:

$$\operatorname{rank} L_M|_{T_{z_0}^{\mathbf{C}}S} = \dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}}S - \dim_{\mathbf{C}} \{ v \in T_{z_0}^{\mathbf{C}}S; \langle \partial \langle \overline{\partial} \phi, \overline{v} \rangle, w \rangle = 0, \ \forall w \in T_{z_0}^{\mathbf{C}}S \}$$
$$= (n - \operatorname{codim}_X S + \dim_{\mathbf{C}} (\lambda_S(p) \cap i\lambda_S(p) \cap \lambda_0(p))) - (\dim_{\mathbf{C}} (\lambda_S(p) \cap i\lambda_S(p) \cap i\lambda_S(p) \cap \lambda_0(p))) =$$
$$= r(S, p).$$

Q.E.D.

Let us define $s^{\pm}(S, p)$ as the solutions of the system:

$$\begin{cases} s(S,p) = s^+(S,p) - s^-(S,p) \\ r(S,p) = s^+(S,p) + s^-(S,p), \end{cases}$$

and $s^0(S, p)$ as:

$$s^{0}(S,p) = \dim_{\mathbf{C}} \{ v \in T_{z_{0}}^{\mathbf{C}}S; \langle \partial \langle \overline{\partial} \phi, \overline{v} \rangle, w \rangle = 0, \ \forall w \in T_{z_{0}}^{\mathbf{C}}S \}$$

Due to Propositions 1.1, 1.3, we get at once the following theorem.

Theorem 1.4. $s^+(S,p)$, $s^-(S,p)$ and $s^0(S,p)$ are the number of the positive, negative and null eigenvalues for the form $L_M|_{T_{z_0}^{\mathbf{C}}S}$.

2. We give now application of the preceding results to the concentration in degree for microfunctions at the boundary.

We shall be working with the derived category $D^b(X)$ of the category of bounded complexes of sheaves of abelian groups on X. In [K-S 1] a bifunctor μhom : $D^b(X)^\circ \times D^b(X) \to D^b(T^*X)$ is defined. For a subset $Z \subset X$ one sets $\mu_Z(\mathcal{O}_X) =$ $\mu hom(\mathbf{C}_Z, \mathcal{O}_X)$, where \mathcal{O}_X denotes the sheaf of holomorphic functions on X and \mathbf{C}_Z is the sheaf which is 0 on $X \setminus Z$ and the constant sheaf with fiber \mathbf{C} on Z.

In what follows π_M will denote the projection $\pi_M: T_M^*X \to M, \omega$ will denote the complex canonical 1-form on X, H the hamiltonian isomorphism $T^*T^*X \cong$ TT^*X induced by the symplectic 2-form d ω and, in the case of T^*_MX being d ω^I symplectic, H^{I} will denote the hamiltonian isomorphism $T^{*}T_{M}^{*}X \cong TT_{M}^{*}X$ induced by the symplectic 2-form $d\omega^I$ (ω^I being the imaginary part of ω)

Proposition 2.1. Let $S \subset M \subset X$ be C^2 subvarieties of X, M being an hypersurface. Then, for $p \in S \times_M \dot{T}^*_M X$:

- (i) $0 \le s^{\pm}(M, p) s^{\pm}(S, p) \le cod_M S [\gamma(S, p) \gamma(M, p)],$ (ii) $-cod_M S + [\gamma(S, p) \gamma(M, p)] \le s^0(M, p) s^0(S, p) \le cod_M S [\gamma(S, p) \gamma(N, p)] \le cod_M S [\gamma(S, p) \gamma(N, p)]$ $\gamma(M,p)].$

Proof. Recall that $T_{z_0}^{\mathbf{C}}M = T_{z_0}M \cap iT_{z_0}M$. We have:

$$\dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}} S = \dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}} M - [\operatorname{codim}_M S - (\gamma(S, p) - \gamma(M, p))].$$

Let us define (for * = +, -, 0):

$$V_M^* = \{ v \in T_{z_0}^{\mathbf{C}} M; v \text{ and } v^{\perp} \text{ generate } T_{z_0}^{\mathbf{C}} M, {}^t v L_M v \begin{cases} > 0 & \text{for } * = + \\ < 0 & \text{for } * = - \end{cases} \\ = 0 & \text{for } * = 0 \end{cases}$$

(where $v^{\perp} = \{w \in T_{z_0}^{\mathbf{C}}M; {}^{t}\!vL_Mw = 0\}$), and similarly for V_S^* . In order to prove that the right hand side estimates on (i) and (ii) hold, it is enough to observe that $V_S^* \supset V_M^* \cap T_{z_0}^{\mathbf{C}}S$.

Let now v_1, \ldots, v_s be a base for V_S^+ , completed in a basis $v_1, \ldots, v_s, \tilde{v}_{s+1}, \ldots, \tilde{v}_r$ of $T_{z_0}^{\mathbf{C}}M$, and let $(a_{ij})_{i,j\leq r}$ be the matrix of L_M in such a base. If we write $v_{s+1} = \tilde{v}_{s+1} - (a_{1s+1}/a_{11}v_1 + \cdots + a_{ss+1}/a_{ss}v_s)$, and similarly for $v_j, s+1 < j \leq r$, we get a new base for $T_{z_0}^{\mathbf{C}}M$ such that ${}^t\!v_i L_M v_j = 0$, $\forall i \leq s, \forall j \leq m$. This proves that the left hand side estimate on (i) holds.

In order to prove that the left hand side estimates on (ii) holds, assume at first that $\dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}} M - \dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}} S = 1$ and let $u \in T_{z_0}^{\mathbf{C}} M \setminus T_{z_0}^{\mathbf{C}} S$. Let $v_1, v_2 \in T_{z_0}^{\mathbf{C}} S$, with ${}^{t} v_i (L_M|_{T_{z_0}^{\mathbf{C}} S}) w = 0$,

 $\forall i = 1, 2, \ \forall w \in T_{z_0}^{\mathbf{C}}S.$ Assume that ${}^{t}\!v_1 L_M u \neq 0$ and hence there exists an $\alpha \in \mathbf{C}$ with ${}^{t}\!(\alpha v_1 + v_2)L_M u = 0.$ This means $(\alpha v_1 + v_2)^{\perp} = T_{z_0}^{\mathbf{C}}M.$ The case $\dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}}M - \dim_{\mathbf{C}} T_{z_0}^{\mathbf{C}}S > 1$ is similarly proven. Q.E.D.

Proposition 2.2. Let $S \subset M \subset X$ be C^2 subvarieties of X, M an hypersurface, and take $p_0 \in S \times_M \dot{T}^*_M X$. Let $\Omega = M \setminus S$. Assume the following conditions for pin a neighborhood of p_0 :

- (1) $\dim_{\mathbf{R}}(\lambda_S(p) \cap \nu(p)) = 1$ (here $\nu(p) = \mathbf{C} H(\omega(p))$ is the radial direction),
- (2) $s^{-}(S,p) \gamma(S,p)$ is constant for $p \in T^*_S X$,
- (3) $s^{-}(M,p) \gamma(M,p)$ is constant for $p \in T^*_M X$.

Then $\mu_{\Omega}(\mathcal{O}_X)$ is concentrated in degrees $[\alpha - 1, \alpha' \lor \alpha]$, where we set $\alpha = \operatorname{codim}_X M + s^-(M, p) - \gamma(M, p)$, $\alpha' = \alpha + \operatorname{codim}_M S - [\gamma(S, p) - \gamma(M, p)] - 1$.

proof. By [K-S 1, Prop. 2.3] we have that $\mu_M(\mathcal{O}_X)$ is concentrated in degree α and $\mu_S(\mathcal{O}_X)$ is concentrated in degree $\alpha'' = cod_X S + s^-(S, p) - \gamma(S, p)$. Due to Corollary 2.1 we then have $\alpha \leq \alpha'' \leq \alpha' + 1$ and we conclude. Q.E.D.

Remark 2.3. If we assume in addition that:

 $\begin{cases} T_M^* X \text{ is } d\,\omega^I \text{ symplectic } (\operatorname{cod}_X M = 1), \\ S \times_M T_M^* X \text{ is } d\,\omega^I \text{ involutive,} \\ i p_0 \notin T_S^* M \text{ in the identification } T_S^* M \cong i H^I(\pi_M^*(T_S^* M)) \end{cases}$

then $\mu_{\Omega}(\mathcal{O}_X)$ is concentrated in degrees $[\alpha, \alpha + \operatorname{codim}_M S - 1]$. In fact $\mu_M(\mathcal{O}_X)$ is concentrated in degree $\alpha = \operatorname{codim}_X M + s^-(M, p)$. By a complex quantized contact transformation it is not restrictive to assume $s^-(M, p) = 0$, and hence $s^-(S, p) = 0$ due to Proposition 2.1. Moreover, since $(T_M^* X, d \, \omega^I)$ is symplectic and $S \times_M T_M^* X$ is regular involutive, then $\gamma(S, p) = 0$ (cf [D'A-Z]). This implies (cf [K-S 2, Prop. 11.2.8]) that $\mu_S(\mathcal{O}_X)$ is concentrated in degree $\operatorname{codim}_X S + s^-(S, p)$. Note that if $\operatorname{codim}_X M + s^-(M, p) = \operatorname{codim}_X S + s^-(S, p)$, the concentration in degree α for $\mu_\Omega(\mathcal{O}_X)$ follows by applying a quantized contact transformation that interchanges $T_M^* X$ with $T_{M'}^* X'$ (for $M' \cong \mathbf{R}^n$) and $S \times_M T_M^* X$ with $S' \times_{M'} T_{M'}^* X'$. The concentration for $\mu_{\Omega'}(\mathcal{O}_X)$ ($\Omega' = M' \setminus S'$) is then a classical argument due to P. Schapira. **Remark 2.4.** If we assume that:

$$\begin{array}{l} T_M^*X \text{ is } d\,\omega^I \text{ symplectic } (\operatorname{cod}_X M = 1), \\ \operatorname{codim}_M S = 1, \\ i p_0 \notin T_S^*M \text{ in the identification } T_S^*M \cong i H^I(\pi_M^*(T_S^*M)) \end{array}$$

then $\mu_{\Omega}(\mathcal{O}_X)$ is concentrated in degree $\alpha = \operatorname{codim}_X M + s^-(M, p)$. In fact, by a quantized contact transformation, we can reduce to the case $s^-(S, p) \equiv 0$, $s^-(M, p) \equiv 0$, M being the boundary of a strictly pseudo-convex set, moreover, in this case of codim $_S X = 2$, we have $\gamma(S, p) = 0$.

Proposition 2.5. Let $S \subset M \subset X$ be C^2 subvarieties of X, set $\Omega = M \setminus S$ and take $p_0 \in S \times_M \dot{T}^*_M X$. Then $\mu_{\Omega}(\mathcal{O}_X)$ is concentrated in degrees $[\alpha - 1, \beta + \operatorname{codim}_M S - 1]$, where we set $\alpha = \operatorname{codim}_X M + s^-(M, p) - \gamma(M, p)$ and $\beta = n - s^+(M, p) + \gamma(M, p)$.

proof. Due to [K-S 2, Th. 2.2] one has that $\mu_M(\mathcal{O}_X)$ is concentrated in degree $[\alpha, \beta]$ and $\mu_S(\mathcal{O}_X)$ is concentrated in degree $[\alpha', \beta']$, for: $\alpha' = \operatorname{codim}_X S + s^-(S, p) - \gamma(S, p), \beta' = n - s^+(S, p) + \gamma(S, p)$. Due to Corollary 2.1 we have:

$$s^{\pm}(S,p) \ge s^{\pm}(M,p) - \operatorname{codim}_{M}S + [\gamma(S,p) - \gamma(M,p)],$$

and hence:

$$\alpha \leq \alpha',$$

$$\beta' \leq n - s^+(M, p) + cod_M S - (\gamma(S, p) - \gamma(M, p)) + \gamma(S, p)$$

$$= \beta + cod_M S.$$

Q.E.D.

References

- [D'A-Z] A. D'Agnolo, G. Zampieri, A vanishing theorem at the boundary for a class of systems with simple characteristics, to appear.
- [K-S 1] M. Kashiwara, P. Schapira, *Microlocal study of sheaves*, Astérisque 128 (1985).
- [K-S 2] M. Kashiwara, P. Schapira, A vanishing theorem for a class of systems with simple characteristics, Invent. Math. 82 (1985), 579–592.
- [S] P. Schapira, Condition de positivité dans une variété symplectique complexe. Applications à l'étude des microfonctions, Ann. Sci. Ec. Norm. Sup. 14 (1981), 121–139.

DIPARTIMENTO DI MATEMATICA, VIA BELZONI 7, 35131 PADOVA, ITALY