# EXTENSION OF CR FUNCTIONS TO "WEDGE TYPE" DOMAINS 

Andrea D'Agnolo Piero D'Ancona Giuseppe Zampieri


#### Abstract

Let $X$ be a complex manifold, $S$ a generic submanifold of $X^{\mathbf{R}}$, the real underlying manifold to $X$. Let $\Omega$ be an open subset of $S$ with $\partial \Omega$ analytic, $Y$ a complexification of $S$.

We first recall the notion of $\Omega$-tuboid of $X$ and of $Y$ and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary.

We relate the regularity at the boundary for $\bar{\partial}_{b}$ to the extendability of CR functions on $\Omega$ to $\Omega$-tuboids of $X$.

Next, if $X$ has complex dimension 2, we give results on extension for some classes of hypersurfaces (which correspond to some $\bar{\partial}_{b}$ whose Poisson bracket between real and imaginary part is $\geq 0$.

The main tools of the proof are the complex $\mathcal{C}_{\Omega \mid Y}$ by Schapira and the theorem of $\Omega$-regularity of [S-Z] and [U-Z].


1. The system $\bar{\partial}_{b}$. Let $X$ be a complex manifold of complex dimension $\mathrm{n}, S$ a real analytic submanifold of $X^{\mathbf{R}}$ of dimension $\mathrm{m}\left(X^{\mathbf{R}}\right.$ being the real underlying manifold to $X$ ), $Y$ a complexification of $S$. Due to the complex structure of $X$ we get a commutative diagram


In this article we will assume $S$ to be a generic submanifold of $X$, i.e. $S \times{ }_{X} T X=$ $T S+S \sqrt{-1} T S$. In particular a hypersurface is always generic.
Remark 1.1. The genericity of $S$ implies that $\widetilde{\phi}$ is smooth. In fact one has: $\widetilde{\phi^{\prime}}\left(S \times_{Y} T Y\right)=\widetilde{\phi^{\prime}}\left(T S \oplus_{S} \sqrt{-1} T S\right)=\widetilde{\phi^{\prime}}(T S)+_{S} \sqrt{-1} \widetilde{\phi^{\prime}}(T S)=T S+_{S} \sqrt{-1} T S=$ $S \times_{X} T X$. Where the third equality follows from $\left.\widetilde{\phi}\right|_{S}=\phi$.

Due to Remark 1.1, ${ }^{t} \widetilde{\phi}^{\prime}\left(T^{*} X\right)=Y \times_{X} T^{*} X$ is a sub-bundle of $T^{*} Y$.
One defines $\bar{\partial}_{b}$ as the system of complex vector fields on $Y$ which annihilate $Y \times_{X} T^{*} X$.

## Remark 1.2. One has

(1) $\tilde{\phi}^{-1}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}^{\bar{\partial}_{b}}$,
(2) $\operatorname{char}\left(\bar{\partial}_{b}\right)=Y \times_{X} T^{*} X$.

The content of this paper has been the subject of a talk given at the meeting "Deux journées microlocales" held in Paris, 12-13 june 1989.

Appeared in: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 2 (1991), no. 1, 35-42.
(Here $\mathcal{O}_{Y}^{\bar{\partial}_{b}}$ is the sheaf of germs of holomorphic functions annihilated by $\bar{\partial}_{b}$.) In fact, according to Remark 1.1 one can take as a system of coordinates in $Y$ $\left(z_{i}\right)_{i=1, \ldots, m}$ with $z_{i}=\widetilde{\phi}_{i}, i=1, \ldots, n$. Then clearly $\bar{\partial}_{b}=\left(\partial / \partial z_{n+1}, \ldots, \partial / \partial z_{m}\right)$ and the claim follows. In particular, since $T S$ is preserved by $\widetilde{\phi}^{\prime}$, one has

$$
\begin{equation*}
\left(\operatorname{char}\left(\bar{\partial}_{b}\right)\right) \cap T_{S}^{*} Y \cong T_{S}^{*} X \tag{1.1}
\end{equation*}
$$

2. A brief review on the language of tuboids. Let $S \subset W X$ be $C^{2}$-manifolds, $\Omega \subset X$ an open set with $N(\Omega) \neq \emptyset$ (here $N(\Omega)$ denotes the normal cone to $\Omega$ in $S$ of [K-S, $\S 1.2 .3]$ ).
Definition 2.1. Let $\gamma$ be an open convex cone of $\bar{\Omega} \times{ }_{S} T_{S} X$. A set $U \subset X$ is said to be an $\Omega$-tuboid of $X$ with profile $\gamma$ iff
(1) $\rho(T X \backslash C(X \backslash U, \bar{\Omega})) \supset \gamma$.
(Where $\rho: T X \rightarrow T_{S} X$.)
Remark 2.2. If one chooses a local coordinate system $(x, y) \in X, S=\{(x, y)$ : $y=0\}$ then $U$ is an $\Omega$-tuboid with profile $\gamma$ iff for every $\gamma^{\prime} \subset \subset \gamma$ there exists $\varepsilon=\varepsilon_{\gamma^{\prime}}$, so that

$$
U \supset\left\{(x, y) \in \Omega \times_{V} \gamma^{\prime}:|y|<\varepsilon \operatorname{dist}(x, \partial \Omega) \wedge 1\right\} .
$$

(Here we identify $T_{S} X \cong X$ in local coordinates.)
3. A link between tuboids in $Y$ and in $X$. Let $S, X, Y$ be as in $\S 1$, let $\Omega \subset S$ be an open set with analytic boundary.

Our aim is to give a relation between $\Omega$-tuboids in $Y$ and in $X$.
Let $U \subset X$ be an open set, $\gamma \subset T_{S} X, U^{\prime}=\widetilde{\phi}^{-1}(U) \subset Y, \gamma^{\prime}=\widetilde{\phi^{\prime}-1}(\gamma) \subset T_{S} Y$ (we still denote by $\widetilde{\phi^{\prime}}$ the induced map $\widetilde{\phi^{\prime}}: T_{S} Y \rightarrow T_{S} X$ ).
Lemma 3.1. $U$ is an $\Omega$-tuboid of $X$ with profile $\gamma$ iff $U^{\prime}$ is an $\Omega$-tuboid of $Y$ with profile $\gamma^{\prime}$.
Proof. Since $\Omega \subset S$, we have $\bar{\Omega}=\widetilde{\phi}(\bar{\Omega})$.
If $\rho\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right) \supset \gamma_{\sim}^{\prime}$ then $\rho(T X \backslash C(X \backslash U, \bar{\Omega}))=\underset{\sim}{\rho}\left(T X \backslash C\left(X \backslash \widetilde{\phi^{\prime}}\left(U^{\prime}\right), \bar{\Omega}\right)\right)=$ $\rho\left(\widetilde{\phi^{\prime}}\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right)\right)=\widetilde{\phi^{\prime}}\left(\rho\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right)\right) \supset \widetilde{\phi}^{\prime}\left(\widetilde{\phi^{\prime}-1}(\gamma)\right)=\gamma$.

If $\rho(T X \backslash C(X \backslash U, \bar{\Omega})) \supset \gamma$ then $\rho\left(T Y \backslash C\left(Y \backslash U^{\prime}, \bar{\Omega}\right)\right)=\rho(T Y \backslash C(Y \backslash$ $\left.\left.\widetilde{\phi}^{-1}(U), \bar{\Omega}\right)\right)=\rho\left(\widetilde{\phi}^{\prime-1}(T X \backslash C(X \backslash U, \bar{\Omega}))\right)=\widetilde{\phi^{\prime-1}}(\rho(T X \backslash C(X \backslash U, \bar{\Omega})))=\widetilde{\phi^{\prime-1}}(\gamma)=$ $\gamma^{\prime}$.

Using this lemma and 1, 2 of Remark 1.2 we can then claim
Proposition 3.2. Let $U$ be an $\Omega$-tuboid of $X$ with profile $\gamma, U^{\prime}=\widetilde{\phi}^{-1}(U), \gamma^{\prime}=$ $\widetilde{\phi}^{\prime-1}(\gamma)$. We have $f \in \mathcal{O}_{X}(U)$ iff $f \circ \widetilde{\phi} \in \mathcal{O}_{Y}^{\bar{\partial}_{b}}\left(U^{\prime}\right)$.
4. A microlocal approach. Let $S, X, Y$ as before, $\Omega \subset S$ an open set with analytic boundary ( $\Omega$ locally on one side of $\partial \Omega$ ).

The framework of this paragraph is the microlocal study of sheaves by Kashiwara and Schapira (cf [K-S]).

We will still denote by $\bar{\partial}_{b}$ the coherent $\mathcal{D}_{Y}$-module associated to the system of complex vector fields, i.e. $\bar{\partial}_{b}=\widetilde{\phi}^{*}\left(\mathcal{D}_{X}\right)$.

In $[S]$ Schapira defined the complex of microfunctions at the boundary

$$
\mathcal{C}_{\Omega \mid Y}=\mu \operatorname{hom}\left(\mathbf{Z}_{\Omega}, \mathcal{O}_{Y}\right) \otimes o r_{S \mid Y}[m]
$$

similarly we set

$$
\mathcal{C}_{\Omega \mid X}=\mu \operatorname{hom}\left(\mathbf{Z}_{\Omega}, \mathcal{O}_{X}\right) \otimes o r_{S \mid X}[2 n-m] .
$$

To give a relation between $\mathcal{C}_{\Omega \mid X}$ and $\mathcal{C}_{\Omega \mid Y}$ we first need to translate in the language of derived categories the results of section 1.
Proposition 4.1. One has

$$
\tilde{\phi}^{-1}\left(\mathcal{O}_{X}\right)=\mathbf{R} \mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \mathcal{O}_{Y}\right) .
$$

Proof. $\widetilde{\phi}^{-1}\left(\mathcal{O}_{X}\right)=\widetilde{\phi}^{-1} \mathbf{R} \mathcal{H o m}_{\mathcal{D}_{X}}\left(\mathcal{D}_{X}, \mathcal{O}_{X}\right)=\mathbf{R} \mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \mathcal{O}_{Y}\right)$, where the second equality is the Cauchy-Kowalevsky-Kashiwara's theorem which holds since $\widetilde{\phi}$ is non-characteristic for $\mathcal{D}_{X}$.

We then have

## Theorem 4.2.

$$
\begin{equation*}
\mathcal{C}_{\Omega \mid X} \cong \mathbf{R} \mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \mathcal{C}_{\Omega \mid Y}\right) \tag{4.1}
\end{equation*}
$$

Proof. One has $\mu \operatorname{hom}\left(\mathbf{Z}_{\Omega}, \mathcal{O}_{X}\right) \cong \mu \operatorname{hom}\left(\mathbf{Z}_{\Omega}, \widetilde{\phi}^{\prime} \mathcal{O}_{X}\right)$ due to [K-S, Corollary 5.5.6]. Here one notices that both complexes are supported by $Y \times_{X} T^{*} X$.

On the other hand by [K-S, Proposition 1.3.1] $\widetilde{\phi}^{\prime} \mathcal{O}_{X}=\widetilde{\phi}^{-1} \mathcal{O}_{X} \otimes o r_{Y \mid X}[2 m-$ $2 n]=\mathbf{R} \mathcal{H o m} \mathcal{D}_{Y}\left(\bar{\partial}_{b}, \mathcal{O}_{Y}\right) \otimes o r_{Y \mid X}[2 m-2 n]$, and the claim follows.

Next, similarly to the sheaf of Sato's hyperfunctions

$$
\mathcal{B}_{S}=H^{0}\left(\mathbf{R} \Gamma_{S}\left(\mathcal{O}_{Y}\right) \otimes o r_{S \mid Y}[m]\right)
$$

one sets (e.g. cf $[\mathrm{S}-\mathrm{T}]$ )

$$
\mathcal{B}_{S \mid X}=H^{0}\left(\mathbf{R} \Gamma_{S}\left(\mathcal{O}_{X}\right) \otimes o r_{S \mid X}[2 n-m]\right) .
$$

Recall that, $S$ being generic, $H^{j}\left(\mathbf{R} \Gamma_{S} \mathcal{O}_{X}\right)=0 \forall j<2 n-m$, then by applying $\mathbf{R}^{0} \pi_{*}$ in Theorem 4.2 we get

$$
\begin{equation*}
\mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\mathcal{B}_{S}\right)\right) \cong \Gamma_{\Omega}\left(\mathcal{B}_{S \mid X}\right) \tag{4.2}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \alpha: \pi^{-1} \mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\mathcal{B}_{S}\right)\right) \rightarrow H^{0}\left(\mathbf{R} \mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \mathcal{C}_{\Omega \mid Y}\right)\right) \\
& \beta: \pi^{-1} \Gamma_{\Omega}\left(\mathcal{B}_{S \mid X}\right) \rightarrow H^{0}\left(\mathcal{C}_{\Omega \mid X}\right),
\end{aligned}
$$

be the canonical maps and define

$$
\begin{aligned}
\mathrm{SS}_{\Omega \mid Y}^{\bar{\partial}_{b}, 0}(f)=\operatorname{supp}(\alpha(f)), & f \in \mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\mathcal{B}_{S}\right)\right), \\
\mathrm{SS}_{\Omega \mid X}(g)=\operatorname{supp}(\beta(g)), & g \in \Gamma_{\Omega}\left(\mathcal{B}_{S \mid X}\right)
\end{aligned}
$$

Corollary 4.3. Let $u \in \Gamma_{\Omega}\left(\mathcal{B}_{S \mid X}\right)$ then

$$
S S_{\Omega \mid X}(u)=S S_{\Omega \mid Y}^{\bar{d}_{b}, 0}(u \circ \phi)
$$

Note that, after [Z], there is a tight relation between this corollary and Proposition 3.2.

Remark 4.4. Note that $\mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \Gamma_{\Omega}\left(\mathcal{B}_{S}\right)\right)$ are nothing but the CR functions in $\Omega$ (i.e. hyperfunction solutions of the system $\bar{\partial}_{b}$ ).
5. The case of a hypersurface. Let $X, S, Y, \Omega$ as before; from now on assume moreover $S$ being a hypersurface of $X^{\mathbf{R}}$.

In this case $\dot{T}_{S} X$ is the union of two half rays, say $\pm \gamma$; set $\pm \gamma^{\prime}=\widetilde{\phi}^{\prime-1}( \pm \gamma)$.
Fix a point $x_{0} \in \partial \Omega$ and call $X^{ \pm}$the two connected components of $X \backslash S$ near $x_{0}$.

Let $U$ be a neighborhood of $\Omega$ at $x_{0}$ and let $f \in \mathcal{O}_{X}\left(U \cap X^{+}\right)$. In this case, using Proposition 3.2, we then get an equivalent of (4.1), (4.2) without using the results of $\S 4$ :

Proposition 5.1. $f$ extends to an $\Omega$-tuboid of $X$ with profile $\bar{\Omega} \times{ }_{S} \gamma$ iff $f \circ \widetilde{\phi}$ extends, as a solution of $\bar{\partial}_{b}$, to an $\Omega$-tuboid of $Y$ with profile $\bar{\Omega} \times{ }_{S} \gamma^{\prime}$.

To prove this statement, recall that, by using [Z] we get that $f$ (resp $f \circ \widetilde{\phi}$ ) extends to a tuboid with profile $\gamma$ (resp $\gamma^{\prime}=\widetilde{\phi^{\prime-1}} \gamma$ ) iff $\gamma^{*} \notin \operatorname{SS}_{\Omega \mid X}(b(f))$ (resp $\left.\gamma^{\prime *} \notin \mathrm{SS}_{\Omega \mid Y}^{\bar{b}_{b}, 0}(b(f \circ \widetilde{\phi}))\right)$.

In fact the latter is equivalent to $b(f) \in \pi_{*} \Gamma_{\gamma^{* a}}\left(\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{S}^{*} X}\right)$ (resp. is equivalent to $b(f \circ \widetilde{\phi}) \in \pi_{*} \Gamma_{\gamma^{\prime * a}}\left(\left(\mathcal{C}_{\Omega \mid Y}\right)_{T_{S}^{*} Y}\right)$ ). (We recall that $H^{j}\left(\mathcal{C}_{\Omega \mid X}\right)_{T_{S}^{*} X}=0 \forall j<0$.)

This last remark, together with Proposition 5.1, gives the following:

$$
\begin{equation*}
\mathrm{SS}_{\Omega \mid X}(b(f))=\mathrm{SS}_{\Omega \mid Y}^{\bar{b}_{b}, 0}(b(f \circ \widetilde{\phi})) . \tag{5.1}
\end{equation*}
$$

We will make use of the following mixed version of (5.1) and Proposition 5.1:
Proposition 5.2. $f$ extends to a tuboid of $X$ with profile $\bar{\Omega} \times{ }_{S} \gamma$ iff $\gamma^{\prime *} \cap S S_{\Omega \mid Y}^{\bar{\partial}_{b}, 0}(b(f \circ$ $\widetilde{\phi})=\emptyset$.
6. $\Omega$-regularity. Let $S$ be a real analytic manifold, $Y$ a complexification of $S$, $\Omega \subset S$ an open set with analytic boundary ( $\Omega$ locally on one side of $\partial \Omega$ ). Let $\omega$ be the canonical 1-form.

We shall endow $T^{*} Y$ of a real symplectic structure by $\operatorname{Re} d \omega$ and $T_{S}^{*} Y$ by $\operatorname{Im} d \omega$. We shall denote by $H^{\mathbf{R}}$ and $H^{\mathbf{I}}$ the corresponding hamiltonian isomorphisms.

Choose coordinates $(x ; \partial / \partial x) \in T S$, and the dual coordinates $(x ; \sqrt{-1} \eta) \in T_{S}^{*} Y$; assume $\Omega=\{x: \varphi>0\}$.

Let $P(x ; \partial / \partial x) \in\left(\mathcal{E}_{Y}\right)_{\lambda}, \lambda \in \partial \Omega \times_{S} \dot{T}_{S}^{*} Y . \operatorname{Set} p=\left.\operatorname{Re} \sigma(P)\right|_{T_{S}^{*} Y}, q=\left.\operatorname{Im} \sigma(P)\right|_{T_{S}^{*} Y}$. We assume that $\{p, \varphi\} \equiv 1$ (and $p(\lambda)=q(\lambda)=\varphi(\lambda)=0$ ).

It follows that $d p \wedge d \varphi \wedge \operatorname{Im} \omega \neq 0$ and thus one can divide $q=a+\varphi b$ with $\{p, a\} \equiv 0$.

Proposition 6.1. Assume that in a neighborhood of $\lambda$ :

$$
\left\{\begin{array}{l}
\{p, \varphi\} \equiv 1,  \tag{6.1}\\
\left.\{\varphi, q\}\right|_{\{\varphi=0\}} \equiv 0 \\
d a \neq 0 \text { or } \quad d a \equiv 0 \\
\{b, a\} \equiv 0
\end{array}\right.
$$

Assume also

$$
\begin{equation*}
b \geq 0 \quad \text { for } \quad \varphi \geq 0 \tag{6.2}
\end{equation*}
$$

Then $P$ is $\Omega$-regular at $\lambda$ (i.e.

$$
\begin{equation*}
\left.\mathcal{H o m}\left(P, \Gamma_{\dot{\pi}^{-1}(\overline{S \backslash \Omega})} \mathcal{C}_{\Omega \mid Y}\right)_{\lambda}=0\right) . \tag{6.3}
\end{equation*}
$$

(Here we still denote by $P$ the module $\mathcal{M}=\mathcal{D}_{Y} / \mathcal{D}_{Y} P$.)
proof. We first choose coordinates $x=\left(x_{1}, x^{\prime}\right), x^{\prime}=\left(x_{2}, x^{\prime \prime}\right)$ in $S,(x ; \sqrt{-1} \eta) \in$ $T_{S}^{*} Y$ so that

$$
p=\eta_{1}, \quad \varphi=x_{1} .
$$

We observe that (6.2) implies $\{\varphi, a\} \equiv 0$. Thus:

$$
q(x ; \sqrt{-1} \eta)=a\left(x^{\prime} ; \sqrt{-1} \eta^{\prime}\right)+x_{1} b(x ; \sqrt{-1} \eta)
$$

Assume $d a \neq 0$; by the trick of the dummy variable (that do not affect the conclusion of the theorem) it is not restrictive to assume $d a \wedge \omega \neq 0$.

One can then change the coordinates ( $x^{\prime} ; \sqrt{-1} \eta^{\prime}$ ) so that

$$
\begin{gathered}
a=\eta_{2}, \quad b=b\left(x_{1}, x^{\prime \prime} ; \sqrt{-1} \eta\right), \\
\lambda=\left(0 ; \sqrt{-1} \eta_{0}\right), \quad \eta_{0}=(0, \ldots, 0,1) .
\end{gathered}
$$

Let

$$
\begin{aligned}
N & =\{x: \varphi=0\} \\
V & =\left\{(x ; \sqrt{-1} \eta): \eta_{2}=0\right\}
\end{aligned}
$$

We note that $N \times{ }_{S} V$ is regular involutive. We also recall that $b \geq 0$ when $x_{1} \geq 0$.
We claim that then

$$
\begin{equation*}
-H^{\mathbf{R}}(-d \varphi) \notin C_{\lambda}\left(\operatorname{char}(\mathcal{M}), \widetilde{V}_{\bar{\Omega}}\right) \tag{6.4}
\end{equation*}
$$

$\widetilde{V}_{\bar{\Omega}}$ being the union of the leaves of $V^{\mathbf{C}}$ issued from $\Omega \times_{S} V$ and $C(\cdot, \cdot)$ the normal cone in the sense of $[\mathrm{K}-\mathrm{S}]$. In fact let $(z ; \zeta), z=x+\sqrt{-1} y, \zeta=\xi+\sqrt{-1} \eta$ be coordinates on $T^{*} Y$. If $\operatorname{Im} \sigma(p+\sqrt{-1} q)=0$ then

$$
\xi_{1}=\eta_{2}+x_{1} b^{\mathbf{R}}-y_{1} b^{\mathbf{I}}
$$

We have

$$
b^{\mathbf{R}}=\left.b\right|_{T_{S}^{*} Y}+O\left(\left(\left|y_{1}\right|+\left|y^{\prime \prime}\right|\right)|\eta|+|\xi|\right)
$$

thus we have for some $c$ :

$$
x_{1} b^{\mathbf{R}}+c\left(\left(\left|y_{1}\right|+\left|y^{\prime \prime}\right|\right)|\eta|+|\xi|\right) \geq \begin{cases}0, & x_{1} \geq 0 \\ -c\left|x_{1}\right||\eta|, & x_{1} \leq 0\end{cases}
$$

It follows for a new $c$ :

$$
\xi_{1} \geq-c\left[\left|\zeta_{2}\right|+\left|\xi^{\prime \prime}\right|+\left(\left|y_{1}\right|+\left|y^{\prime \prime}\right|+Y\left(-x_{1}\right)\left|x_{1}\right|\right)|\eta|\right]
$$

and hence (6.4).
Finally (6.4) implies (6.3) by [S-Z], [U-Z].
As for the case $a \equiv 0$ it can be handled by using the results on $\bar{\Omega}$-hyperbolicity instead of $\bar{\Omega}-V$-hyperbolicity (i.e. for $\left.V=T_{S}^{*} Y\right)$. (cf [S-Z, $\left.\S 3\right]$.)
7. An application. Let $X \cong \mathbf{C}^{2} \ni\left(u_{1}, u_{2}\right), S \ni\left(x_{1}, x_{2}, x_{3}\right)$ a real hypersurface of $X, Y$ a complexification of $S, \Omega=\{x: \varphi>0\} \subset S$ an open set with analytic boundary. Let $x_{0} \in \partial \Omega, U$ a neighborhood of $\Omega$ at $x_{0}, X^{ \pm}$the two components of $X \backslash S$ near $x_{0}$.

In this case $\bar{\partial}_{b}$ is a vector field $p(x ; \partial / \partial x)+\sqrt{-1} q(x ; \partial / \partial x)$. We still denote by $p=\sqrt{-1} q$ the symbol $\left.\sigma\left(\bar{\partial}_{b}\right)\right|_{T_{S}^{*} Y}$.

Let $\gamma$ be the half space $N\left(X^{+}\right)$and $\gamma^{\prime *}$ the half ray $\gamma^{\prime *}={ }^{t} \widetilde{\phi}^{\prime}\left(\gamma^{*}\right)$. Let $U$ be a neighborhood of $\Omega$ at $x_{0}$.
Proposition 7.1. Assume that the functions $p, q, \varphi$ satisfy (6.1), (6.2) at $\lambda=\gamma^{\prime *}{ }_{x_{0}}$ and let $f \in \mathcal{O}_{X}\left(X^{+} \cap U\right)$. Then $f$ extends to a tuboid of $X$ with profile $\bar{\Omega} \times{ }_{S} \gamma$.

Proof. Clearly $b(f \circ \widetilde{\phi}) \in \mathcal{H o m}\left(\bar{\partial}_{b}, \Gamma_{\dot{\pi}^{-1}(\overline{S \backslash \Omega})}\left(\mathcal{C}_{\Omega \mid Y}\right)\right)_{\lambda}$. By Theorem 6.1, $\lambda \notin \mathrm{SS}_{\Omega \mid Y}^{\bar{b}_{b}, 0}(b(f \circ$ $\widetilde{\phi})$ ). Then $f$ extends to $U$ verifying (2.5) on account of Corollary 4.3.
Example 7.2. Assume that
(i) $S=\left\{\left(u_{1}, u_{2}\right) \in X: u_{j}=\chi_{j}(x)+\sqrt{-1} \psi_{j}(x), j=1,2, x \in S\right\}$,
(ii) $\varphi=\psi_{1}$,
(iii) $d \chi_{1} \wedge d \chi_{2} \wedge d \varphi \neq 0$.
(iv) $\partial_{x_{2}} \psi_{2}+\partial_{x_{1}} \psi_{2} \partial_{x_{3}} \psi_{2}$.

By (ii), (iii), $\left\|\partial \chi_{j} / \partial x_{i}\right\|_{j=1,2 ; i=2,3}$ is non singular; one can then set $\chi_{1}=x_{2}, \chi_{2}=x_{3}$, $\psi_{1}=x_{1}$.

In such a case we have:

$$
\bar{\partial}_{b}=\partial_{x_{1}}-\sqrt{-1}\left[\partial_{x_{2}}+\beta\left(x_{1}, x_{2}, x_{3}\right) \partial_{x_{3}}\right],
$$

for $\beta$ solving:

$$
\sqrt{-1} \partial_{x_{1}} \psi_{2}+\partial_{x_{2}} \psi_{2}-\sqrt{-1} \beta+\beta \partial_{x_{3}} \psi_{2}=0 .
$$

Setting $\beta=\partial_{x_{1}} \psi_{2}$, we get:

$$
\begin{equation*}
\bar{\partial}_{b}=\partial_{x_{1}}-\sqrt{-1}\left[\partial_{x_{2}}+\partial_{x_{1}} \psi_{2} \partial_{x_{3}}\right] . \tag{7.1}
\end{equation*}
$$

Write $\psi_{2}=x_{1} a\left(x_{2}, x_{3}\right)+x_{1}^{2} c\left(x_{1}, x_{2}, x_{3}\right)$ and set $b=2 c+x_{1} \partial_{x_{1}} c$. Assume $\left\{\xi_{2}+\right.$ $\left.a \xi_{3}, b \xi_{3}\right\} \equiv 0$ (for instance take $a\left(x_{2}, x_{3}\right)=a$ and $c\left(x_{1}, x_{2}, x_{3}\right)=c\left(x_{1}\right)$, or take any $a\left(x_{2}, x_{3}\right)$ and let $\left.c\left(x_{1}, x_{2}, x_{3}\right)=0\right)$.

Under such hypotheses (6.1) is satisfied. If we then assume $b \leq 0$ for $x_{1} \geq 0$ and $\left(x_{0} ; \sqrt{-1} \eta \sim\left(x_{0} ; \sqrt{-1} \eta_{0}\right)\right.$, we get $\Omega$-regularity at $\left(x_{0} ; \sqrt{-1} \eta_{0}\right)$.

Remark 7.3. Note that if $b \leq 0$ for $x_{1} \leq 0$, we get $S \backslash \bar{\Omega}$-regularity at $\left(x_{0} ; \sqrt{-1} \eta_{0}\right)$.
Thus for instance for $S=\left\{u: u_{1}=x_{2}+\sqrt{-1} x_{1}, u_{2}=x_{3}+\sqrt{-1} x_{1}^{2}\right\}, \Omega=$ $\left\{x: x_{1}>0\right\}$ and $\gamma^{+}=N\left(\left\{u: \operatorname{Im} u_{2}>\operatorname{Im} u_{1}^{2}\right\}\right)$ then any $f^{+}\left(\right.$resp $\left.g^{+}\right)$defined in $X^{+} \cap W^{+}$(resp $X^{+} \cap W^{-}$) for $W^{ \pm}$a neighborhood of $S \cap\left\{ \pm \operatorname{Im} u_{1}>0\right\}$, extends to a domain of type $\left\{u: \operatorname{Im} u_{1}>0,\left(\operatorname{resp\operatorname {Im}} u_{1}<0\right) \operatorname{Im} u_{1}^{2}<\operatorname{Im} u_{2}<\varepsilon \operatorname{Im} u_{1}\right\}$ (for $\gamma^{+*}=-\sqrt{-1} d \operatorname{Re} u_{2}$ in the duality $T_{M} X \times T_{M}^{*} X \rightarrow \mathbf{R}$ associated to $\left.-\operatorname{Im} \omega\right)$.

This is of course classical by Bochner's theorem.
On the contrary for $S=\left\{u: u_{1}=x_{2}+\sqrt{-1} x_{1}, u_{2}=x_{3}+\sqrt{-1} x_{1}^{3}\right\}$ and for $W^{ \pm}$a neighborhood of $S \cap\left\{\sqrt{-1} u_{1}>0\right\}$, one has extension for $f^{+}$(resp $g^{-}$) from $X^{+} \cap W^{+}\left(\operatorname{resp} X^{-} \cap W^{-}\right)$to a domain of type $\left\{u ; \operatorname{Im} u_{1}>0, \operatorname{Im} u_{1}^{2}<\operatorname{Im} u_{2}<\varepsilon \operatorname{Im} u_{1}\right\}$ (resp. $\left\{u ; \operatorname{Im} u_{1}<0,-\varepsilon \operatorname{Im} u_{1}<\operatorname{Im} u_{2}<-\operatorname{Im} u_{1}^{2}\right\}$ )
Remark 7.4. Let $S=\left\{u: u_{1}=x_{2}+\sqrt{-1} x_{1}, u_{2}=x_{3}+\sqrt{-1} a\left(x_{2}, x_{3}\right) x_{1}\right\}$, with $\partial a / \partial x_{2}+a \partial a / \partial x_{3}=0$ and $\Omega=\left\{x: x_{1}>0\right\}$.

We have

$$
\bar{\partial}_{b}=\frac{\partial}{\partial x_{1}}-\sqrt{-1}\left[\frac{\partial}{\partial x_{2}}+a\left(x_{2}, x_{3}\right) \frac{\partial}{\partial x_{3}}\right],
$$

(which corresponds to the case $b \equiv 0$ in Proposition 6.1). Then one gets $\Omega$ and $S \backslash \bar{\Omega}$-regularity at both points in $T_{S}^{*} Y \cap \operatorname{char} \bar{\partial}_{b}$.
8. Removable singularities. Let $S \subset X \cong \mathbf{C}^{2}$ be a generic hypersurface, $Y$ a complexification of $S$. Let $N \subset S$ be an hypersurface, generic on $X$, given by $N=\{x ; \varphi(x)=0\}$. Let $N^{\mathbf{C}}$ be a complexification of $N$. Assume that, for $\bar{\partial}_{b}=$ $p+\sqrt{-1} q$, one has $\{p, \varphi\} \equiv 1$. For $q=a+\varphi b(\{p, a\} \equiv 0)$, set $V=\{x ; a(x)=0\}$. Assume (6.1) to hold and moreover:
(6.2)' $b \geq 0$ on $T_{S}^{*} X$ (for any $\varphi$ ).

Let $\Sigma \subset N$ be such that $\sqrt{-1} N^{*}(\Sigma) \subset \rho \varpi(V)$ (here we denoted by $\rho$ and $\varpi$ the maps: $\left.T^{*} N^{\mathbf{C}} \stackrel{\rho}{\leftarrow} N^{\mathbf{C}} \times_{Y} T_{S}^{*} Y \widetilde{T}^{*} Y\right)$.

Take $u \in \Gamma_{S \backslash \Sigma}\left(\mathcal{B}_{S \mid Y}\right)_{x_{0}}, x_{0} \in \partial \Sigma$.
Proposition 8.1. If $\pm \lambda \notin S S\left(\left.u\right|_{S \backslash \Sigma}\right)$ then $u$ extends to $S$ at $x_{0}$ to a function $\tilde{u}$ with $\pm \lambda \notin S S(\tilde{u})$.
Sketch of the proof. We can look at $u$ as being a section of $\mathcal{H o m}_{\mathcal{D}_{Y}}\left(\bar{\partial}_{b}, \Gamma_{S \backslash \Sigma} \mathcal{B}_{S \mid Y}\right)_{x_{0}}$. Let $\varphi=x_{1}$, let $\Omega^{ \pm}=\left\{ \pm x_{1}>0\right\}$ and denote by $\gamma^{ \pm}(u)$ be the traces of $u$ on $N$. We have $S S\left(\gamma^{ \pm}(u) \subset \rho \varpi^{-1} S S_{\Omega}^{\bar{\partial}_{b}, 0}(u)\right.$ and so, by Proposition 6.1, $\rho\left(\lambda^{ \pm}\right) \notin S S\left(\gamma^{ \pm}(u)\right)$. Hence also $\rho \varpi^{-1}(V) \cap S S\left(\gamma^{ \pm}(u)\right)=\emptyset$.

Since char $\left(\bar{\partial}_{b}\right) \cap \rho^{-1} \rho \varpi^{-1} v^{\mathbf{C}} \subset T_{S}^{*} Y$, then $S S\left(\gamma^{ \pm}\right) \cap \rho \varpi^{-1}(V)=\emptyset$. Since $\gamma^{+}-$ $\gamma^{-}=0$ on $S \backslash \Sigma$, we can propagate by the classical sweeping-out theorem.

## References

[B-P] M.S. Baouendi, L. Preiss Rothschild, Normal forms for generic manifolds and holomorphic extension of $C R$ functions, J. Differential Geometry 25 (1987), 431-467.
[B-T] M.S. Baouendi, F. Treves, A property of the functions and distribution annihilated by a locally integrable system of complex vector fields, Annals of Mathematics 113 (1981), 387-421.
[B-T] M.S. Baouendi, F. Treves, About the holomorphic extension of CR functions on real hypersurfaces in complex space, Duke Math. J. 51, 1 (1984), 77-107.
[K-S] M. Kashiwara, P. Schapira, Microlocal study of sheaves, Astérisque 128 (1985).
[P-W] J. C. Polking, R. O. Wells jr, Hyperfunction boundary values and a generalized BochnerHartogs theorem, Proc. Symp. in Pure Math. 30 (1977), 187-193.
[S] P. Schapira, Front d'onde analytique au bord I, C. R. Acad. Sci. Paris Sér. I Math. 302 10 (1986), 383-386; II, Sém. E.D.P. École Polytechnique Exp. 13 (1986).
[S-T] P. Schapira, J.M. Trépreau, Microlocal pseudoconvexity and "edge of the wedge" theorem, Duke Math. J. 61 (1990), 105-118.
[S-Z] P. Schapira, G. Zampieri, Microfunctions at the boundary and mild microfunctions, Publ. RIMS, Kyoto Univ. 24 (1988), 495-503.
[S-Z] P. Schapira, G. Zampieri, Regularity at the boundary for systems of microdifferential equations, Pitman Res. Notes in Math. 158 (1987), 186-201.
[T] J.M. Trépreau, Prolongement unilateral des fonctions CR, Séminaire Bony-Sjöstrand-Meyer 1984-1985 Exposé XXII.
[U-Z] M. Uchida, G. Zampieri, Second microfunctions at the boundary, Publ. RIMS, Kyoto Univ. 26 (1990), 205-219.
[Z] G. Zampieri, Tuboids of $\mathbf{C}^{n}$ with cone property and domains of holomorphy, Proc. Japan Acad. Ser. A 67 (1991).
A. D'A. and G .Z.: Dipartimento di matematica pura ed applicata, via Belzoni 7, 35131 Padova, Italy
P. D'A.: Scuola Normale Superiore, piazza dei Cavalieri 7, 56100 Pisa, Italy

