EXTENSION OF CR FUNCTIONS TO "WEDGE TYPE" DOMAINS

ANDREA D'AGNOLO PIERO D'ANCONA GIUSEPPE ZAMPIERI

ABSTRACT. Let X be a complex manifold, S a generic submanifold of $X^{\mathbf{R}}$, the real underlying manifold to X. Let Ω be an open subset of S with $\partial \Omega$ analytic, Y a complexification of S.

We first recall the notion of Ω -tuboid of X and of Y and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary.

We relate the regularity at the boundary for $\overline{\partial}_b$ to the extendability of CR functions on Ω to Ω -tuboids of X.

Next, if X has complex dimension 2, we give results on extension for some classes of hypersurfaces (which correspond to some $\overline{\partial}_b$ whose Poisson bracket between real and imaginary part is ≥ 0 .

The main tools of the proof are the complex $\mathcal{C}_{\Omega|Y}$ by Schapira and the theorem of Ω -regularity of [S-Z] and [U-Z]

1. The system $\overline{\partial}_b$. Let X be a complex manifold of complex dimension n, S a real analytic submanifold of $X^{\mathbf{R}}$ of dimension m ($X^{\mathbf{R}}$ being the real underlying manifold to X), Y a complexification of S. Due to the complex structure of X we get a commutative diagram

$$\begin{array}{ccc} S & \stackrel{\phi}{\longrightarrow} & X \\ \downarrow & \nearrow_{\widetilde{\phi}} \\ Y & \end{array}$$

In this article we will assume S to be a generic submanifold of X, i.e. $S \times_X TX =$ $TS +_S \sqrt{-1}TS$. In particular a hypersurface is always generic.

Remark 1.1. The genericity of S implies that ϕ is smooth. In fact one has: $\widetilde{\phi'}(S \times_Y TY) = \widetilde{\phi'}(TS \oplus_S \sqrt{-1}TS) = \widetilde{\phi'}(TS) +_S \sqrt{-1}\widetilde{\phi'}(TS) = TS +_S \sqrt{-1}TS = \widetilde{\phi'}(TS) +_S \sqrt{-1}TS = \widetilde{\phi'}(TS)$ $S \times_X TX$. Where the third equality follows from $\widetilde{\phi}\Big|_S = \phi$.

Due to Remark 1.1, ${}^{t}\widetilde{\phi}'(T^*X) = Y \times_X T^*X$ is a sub-bundle of T^*Y .

One defines $\overline{\partial}_b$ as the system of complex vector fields on Y which annihilate $Y \times_X T^*X.$

Remark 1.2. One has

- (1) $\widetilde{\phi}^{-1}(\mathcal{O}_X) = \mathcal{O}_Y^{\overline{\partial}_b},$ (2) $char(\overline{\partial}_b) = Y \times_X T^*X.$

The content of this paper has been the subject of a talk given at the meeting "Deux journées microlocales" held in Paris, 12-13 june 1989.

Appeared in: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 2 (1991), no. 1, 35–42.

(Here $\mathcal{O}_Y^{\overline{\partial}_b}$ is the sheaf of germs of holomorphic functions annihilated by $\overline{\partial}_b$.) In fact, according to Remark 1.1 one can take as a system of coordinates in Y $(z_i)_{i=1,\ldots,m}$ with $z_i = \widetilde{\phi}_i$, $i = 1,\ldots,n$. Then clearly $\overline{\partial}_b = (\partial/\partial z_{n+1},\ldots,\partial/\partial z_m)$ and the claim follows. In particular, since TS is preserved by $\widetilde{\phi}'$, one has

(1.1)
$$(char(\overline{\partial}_b)) \cap T^*_S Y \cong T^*_S X.$$

2. A brief review on the language of tuboids. Let $S \subset WX$ be C^2 -manifolds, $\Omega \subset X$ an open set with $N(\Omega) \neq \emptyset$ (here $N(\Omega)$ denotes the normal cone to Ω in S of [K-S,§1.2.3]).

Definition 2.1. Let γ be an open convex cone of $\overline{\Omega} \times_S T_S X$. A set $U \subset X$ is said to be an Ω -tuboid of X with profile γ iff

(1) $\rho(TX \setminus C(X \setminus U, \overline{\Omega})) \supset \gamma$. (Where $\rho: TX \to T_S X$.)

Remark 2.2. If one chooses a local coordinate system $(x, y) \in X$, $S = \{(x, y) : y = 0\}$ then U is an Ω -tuboid with profile γ iff for every $\gamma' \subset \subset \gamma$ there exists $\varepsilon = \varepsilon_{\gamma'}$, so that

$$U \supset \{(x, y) \in \Omega \times_V \gamma' : |y| < \varepsilon \, dist(x, \partial \Omega) \wedge 1\}.$$

(Here we identify $T_S X \cong X$ in local coordinates.)

3. A link between tuboids in Y and in X. Let S, X, Y be as in §1, let $\Omega \subset S$ be an open set with analytic boundary.

Our aim is to give a relation between Ω -tuboids in Y and in X.

Let $U \subset X$ be an open set, $\gamma \subset T_S X$, $U' = \widetilde{\phi}^{-1}(U) \subset Y$, $\gamma' = \widetilde{\phi}'^{-1}(\gamma) \subset T_S Y$ (we still denote by $\widetilde{\phi}'$ the induced map $\widetilde{\phi}' : T_S Y \to T_S X$).

Lemma 3.1. U is an Ω -tuboid of X with profile γ iff U' is an Ω -tuboid of Y with profile γ' .

Proof. Since $\Omega \subset S$, we have $\overline{\Omega} = \phi(\overline{\Omega})$.

If $\rho(TY \setminus C(Y \setminus U', \overline{\Omega})) \supset \gamma'$ then $\rho(TX \setminus C(X \setminus U, \overline{\Omega})) = \rho(TX \setminus C(X \setminus \widetilde{\phi}(U'), \overline{\Omega})) = \rho(\widetilde{\phi}'(TY \setminus C(Y \setminus U', \overline{\Omega}))) = \widetilde{\phi}'(\rho(TY \setminus C(Y \setminus U', \overline{\Omega}))) \supset \widetilde{\phi}'(\widetilde{\phi}'^{-1}(\gamma)) = \gamma.$ If $\rho(TX \setminus C(X \setminus U, \overline{\Omega})) \supset \gamma$ then $\rho(TY \setminus C(Y \setminus U', \overline{\Omega})) = \rho(TY \setminus C(Y \setminus \widetilde{\phi})) = \rho(TY \setminus C(Y \setminus \widetilde{\phi})) = \rho(\widetilde{\phi}'^{-1}(TX \setminus C(X \setminus U, \overline{\Omega}))) = \widetilde{\phi}'^{-1}(\rho(TX \setminus C(X \setminus U, \overline{\Omega}))) = \widetilde{\phi}'^{-1}(\gamma) = \gamma'.$

Using this lemma and 1, 2 of Remark 1.2 we can then claim

Proposition 3.2. Let U be an Ω -tuboid of X with profile γ , $U' = \widetilde{\phi}^{-1}(U)$, $\gamma' = \widetilde{\phi}'^{-1}(\gamma)$. We have $f \in \mathcal{O}_X(U)$ iff $f \circ \widetilde{\phi} \in \mathcal{O}_Y^{\overline{\partial}_b}(U')$.

4. A microlocal approach. Let S, X, Y as before, $\Omega \subset S$ an open set with analytic boundary (Ω locally on one side of $\partial \Omega$).

The framework of this paragraph is the microlocal study of sheaves by Kashiwara and Schapira (cf [K-S]).

We will still denote by $\overline{\partial}_b$ the coherent \mathcal{D}_Y -module associated to the system of complex vector fields, i.e. $\overline{\partial}_b = \widetilde{\phi}^*(\mathcal{D}_X)$.

In [S] Schapira defined the complex of microfunctions at the boundary

$$\mathcal{C}_{\Omega|Y} = \mu hom(\mathbf{Z}_{\Omega}, \mathcal{O}_{Y}) \otimes or_{S|Y}[m],$$

similarly we set

$$\mathcal{C}_{\Omega|X} = \mu hom(\mathbf{Z}_{\Omega}, \mathcal{O}_X) \otimes or_{S|X}[2n-m].$$

To give a relation between $C_{\Omega|X}$ and $C_{\Omega|Y}$ we first need to translate in the language of derived categories the results of section 1.

Proposition 4.1. One has

$$\phi^{-1}(\mathcal{O}_X) = \mathbf{R}\mathcal{H}om_{\mathcal{D}_Y}(\overline{\partial}_b, \mathcal{O}_Y)$$

Proof. $\tilde{\phi}^{-1}(\mathcal{O}_X) = \tilde{\phi}^{-1} \mathbf{R} \mathcal{H}om_{\mathcal{D}_X}(\mathcal{D}_X, \mathcal{O}_X) = \mathbf{R} \mathcal{H}om_{\mathcal{D}_Y}(\overline{\partial}_b, \mathcal{O}_Y)$, where the second equality is the Cauchy-Kowalevsky-Kashiwara's theorem which holds since $\tilde{\phi}$ is non-characteristic for \mathcal{D}_X . \Box

We then have

Theorem 4.2.

(4.1)
$$\mathcal{C}_{\Omega|X} \cong \mathbf{R}\mathcal{H}om_{\mathcal{D}_Y}(\overline{\partial}_b, \mathcal{C}_{\Omega|Y}).$$

Proof. One has $\mu hom(\mathbf{Z}_{\Omega}, \mathcal{O}_X) \cong \mu hom(\mathbf{Z}_{\Omega}, \widetilde{\phi}^! \mathcal{O}_X)$ due to [K-S, Corollary 5.5.6]. Here one notices that both complexes are supported by $Y \times_X T^* X$.

On the other hand by [K-S, Proposition 1.3.1] $\phi^{!}\mathcal{O}_{X} = \phi^{-1}\mathcal{O}_{X} \otimes or_{Y|X}[2m - 2n] = \mathbf{R}\mathcal{H}om_{\mathcal{D}_{Y}}(\overline{\partial}_{b}, \mathcal{O}_{Y}) \otimes or_{Y|X}[2m - 2n]$, and the claim follows. \Box

Next, similarly to the sheaf of Sato's hyperfunctions

$$\mathcal{B}_S = H^0(\mathbf{R}\Gamma_S(\mathcal{O}_Y) \otimes or_{S|Y}[m]),$$

one sets (e.g. cf [S-T])

$$\mathcal{B}_{S|X} = H^0(\mathbf{R}\Gamma_S(\mathcal{O}_X) \otimes or_{S|X}[2n-m]).$$

Recall that, S being generic, $H^j(\mathbf{R}\Gamma_S\mathcal{O}_X) = 0 \forall j < 2n-m$, then by applying $\mathbf{R}^0\pi_*$ in Theorem 4.2 we get

(4.2)
$$\mathcal{H}om_{\mathcal{D}_Y}(\partial_b, \Gamma_\Omega(\mathcal{B}_S)) \cong \Gamma_\Omega(\mathcal{B}_{S|X}).$$

Let

$$\alpha : \pi^{-1} \mathcal{H}om_{\mathcal{D}_Y}(\overline{\partial}_b, \Gamma_\Omega(\mathcal{B}_S)) \to H^0(\mathbf{R}\mathcal{H}om_{\mathcal{D}_Y}(\overline{\partial}_b, \mathcal{C}_{\Omega|Y}))$$
$$\beta : \pi^{-1}\Gamma_\Omega(\mathcal{B}_{S|X}) \to H^0(\mathcal{C}_{\Omega|X}),$$

be the canonical maps and define

$$SS_{\Omega|Y}^{\overline{\partial}_{b},0}(f) = supp(\alpha(f)), \qquad f \in \mathcal{H}om_{\mathcal{D}_{Y}}(\overline{\partial}_{b},\Gamma_{\Omega}(\mathcal{B}_{S})),$$
$$SS_{\Omega|X}(g) = supp(\beta(g)), \qquad g \in \Gamma_{\Omega}(\mathcal{B}_{S|X}).$$

Corollary 4.3. Let $u \in \Gamma_{\Omega}(\mathcal{B}_{S|X})$ then

$$SS_{\Omega|X}(u) = SS_{\Omega|Y}^{\overline{\partial}_b,0}(u \circ \phi).$$

Note that, after [Z], there is a tight relation between this corollary and Proposition 3.2.

Remark 4.4. Note that $\mathcal{H}om_{\mathcal{D}_Y}(\overline{\partial}_b, \Gamma_\Omega(\mathcal{B}_S))$ are nothing but the CR functions in Ω (i.e. hyperfunction solutions of the system $\overline{\partial}_b$).

5. The case of a hypersurface. Let X, S, Y, Ω as before; from now on assume moreover S being a hypersurface of $X^{\mathbf{R}}$.

In this case $\dot{T}_S X$ is the union of two half rays, say $\pm \gamma$; set $\pm \gamma' = \tilde{\phi}'^{-1}(\pm \gamma)$.

Fix a point $x_0 \in \partial \Omega$ and call X^{\pm} the two connected components of $X \setminus S$ near x_0 .

Let U be a neighborhood of Ω at x_0 and let $f \in \mathcal{O}_X(U \cap X^+)$. In this case, using Proposition 3.2, we then get an equivalent of (4.1), (4.2) without using the results of §4:

Proposition 5.1. f extends to an Ω -tuboid of X with profile $\overline{\Omega} \times_S \gamma$ iff $f \circ \widetilde{\phi}$ extends, as a solution of $\overline{\partial}_b$, to an Ω -tuboid of Y with profile $\overline{\Omega} \times_S \gamma'$.

To prove this statement, recall that, by using [Z] we get that f (resp $f \circ \phi$) extends to a tuboid with profile γ (resp $\gamma' = \widetilde{\phi}'^{-1}\gamma$) iff $\gamma^* \notin SS_{\Omega|X}(b(f))$ (resp $\gamma'^* \notin SS_{\Omega|Y}^{\overline{\partial}_b,0}(b(f \circ \widetilde{\phi})))$.

In fact the latter is equivalent to $b(f) \in \pi_* \Gamma_{\gamma^{*a}}((\mathcal{C}_{\Omega|X})_{T_S^*X})$ (resp. is equivalent to $b(f \circ \widetilde{\phi}) \in \pi_* \Gamma_{\gamma'^{*a}}((\mathcal{C}_{\Omega|Y})_{T_S^*Y}))$. (We recall that $H^j(\mathcal{C}_{\Omega|X})_{T_S^*X} = 0 \forall j < 0$.)

This last remark, together with Proposition 5.1, gives the following:

(5.1)
$$\operatorname{SS}_{\Omega|X}(b(f)) = \operatorname{SS}_{\Omega|Y}^{\overline{\partial}_b,0}(b(f \circ \widetilde{\phi})).$$

We will make use of the following mixed version of (5.1) and Proposition 5.1:

Proposition 5.2. f extends to a tuboid of X with profile $\overline{\Omega} \times_S \gamma$ iff $\gamma'^* \cap SS_{\Omega|Y}^{\overline{\partial}_b,0}(b(f \circ \widetilde{\phi})) = \emptyset$.

6. Ω -regularity. Let *S* be a real analytic manifold, *Y* a complexification of *S*, $\Omega \subset S$ an open set with analytic boundary (Ω locally on one side of $\partial\Omega$). Let ω be the canonical 1-form.

We shall endow T^*Y of a real symplectic structure by $\operatorname{Re} d\omega$ and $T^*_S Y$ by $\operatorname{Im} d\omega$. We shall denote by $H^{\mathbf{R}}$ and $H^{\mathbf{I}}$ the corresponding hamiltonian isomorphisms.

Choose coordinates $(x; \partial/\partial x) \in TS$, and the dual coordinates $(x; \sqrt{-1}\eta) \in T_S^*Y$; assume $\Omega = \{x: \varphi > 0\}$.

Let $P(x; \partial/\partial x) \in (\mathcal{E}_Y)_{\lambda}, \lambda \in \partial \Omega \times_S \dot{T}_S^* Y$. Set $p = \operatorname{Re} \sigma(P)|_{T_S^* Y}, q = \operatorname{Im} \sigma(P)|_{T_S^* Y}$. We assume that $\{p, \varphi\} \equiv 1$ (and $p(\lambda) = q(\lambda) = \varphi(\lambda) = 0$).

It follows that $dp \wedge d\varphi \wedge \operatorname{Im} \omega \neq 0$ and thus one can divide $q = a + \varphi b$ with $\{p, a\} \equiv 0$.

Proposition 6.1. Assume that in a neighborhood of λ :

(6.1)
$$\begin{cases} \{p,\varphi\} \equiv 1, \\ \{\varphi,q\}|_{\{\varphi=0\}} \equiv 0, \\ da \neq 0 \quad or \quad da \equiv 0, \\ \{b,a\} \equiv 0. \end{cases}$$

Assume also

(6.2)
$$b \ge 0 \quad for \quad \varphi \ge 0.$$

Then P is Ω -regular at λ (i.e.

(6.3)
$$\mathcal{H}om(P,\Gamma_{\dot{\pi}^{-1}(\overline{S\setminus\Omega})}\mathcal{C}_{\Omega|Y})_{\lambda}=0).$$

(Here we still denote by P the module $\mathcal{M} = \mathcal{D}_Y / \mathcal{D}_Y P$.)

proof. We first choose coordinates $x = (x_1, x'), x' = (x_2, x'')$ in $S, (x; \sqrt{-1}\eta) \in T_S^*Y$ so that

 $p = \eta_1, \qquad \varphi = x_1.$

We observe that (6.2) implies $\{\varphi, a\} \equiv 0$. Thus:

$$q(x; \sqrt{-1}\,\eta) = a(x'; \sqrt{-1}\,\eta') + x_1 b(x; \sqrt{-1}\,\eta).$$

Assume $da \neq 0$; by the trick of the dummy variable (that do not affect the conclusion of the theorem) it is not restrictive to assume $da \wedge \omega \neq 0$.

One can then change the coordinates $(x'; \sqrt{-1} \eta')$ so that

$$a = \eta_2, \quad b = b(x_1, x''; \sqrt{-1} \eta),$$

 $\lambda = (0; \sqrt{-1} \eta_0), \quad \eta_0 = (0, \dots, 0, 1).$

Let

$$N = \{ x : \varphi = 0 \},\$$

$$V = \{ (x; \sqrt{-1} \eta) : \eta_2 = 0 \}.$$

We note that $N \times_S V$ is regular involutive. We also recall that $b \ge 0$ when $x_1 \ge 0$. We claim that then

 $(C, A) \qquad HB(-1) \neq C(-1) + (A, A) = \widetilde{V}$

(6.4)
$$-H^{\mathbf{r}}(-d\varphi) \notin C_{\lambda}(char(\mathcal{M}), V_{\overline{\Omega}}),$$

 $\widetilde{V}_{\overline{\Omega}}$ being the union of the leaves of $V^{\mathbf{C}}$ issued from $\Omega \times_S V$ and $C(\cdot, \cdot)$ the normal cone in the sense of [K-S]. In fact let $(z; \zeta), z = x + \sqrt{-1}y, \zeta = \xi + \sqrt{-1}\eta$ be coordinates on T^*Y . If $\operatorname{Im} \sigma(p + \sqrt{-1}q) = 0$ then

$$\xi_1 = \eta_2 + x_1 b^{\mathbf{R}} - y_1 b^{\mathbf{I}}.$$

We have

$$b^{\mathbf{R}} = b|_{T^*_S Y} + O((|y_1| + |y''|)|\eta| + |\xi|),$$

thus we have for some c:

$$x_1 b^{\mathbf{R}} + c((|y_1| + |y''|)|\eta| + |\xi|) \ge \begin{cases} 0, & x_1 \ge 0\\ -c|x_1||\eta|, & x_1 \le 0. \end{cases}$$

It follows for a new c:

$$\xi_1 \ge -c[|\zeta_2| + |\xi''| + (|y_1| + |y''| + Y(-x_1)|x_1|)|\eta|],$$

and hence (6.4).

Finally (6.4) implies (6.3) by [S-Z], [U-Z].

As for the case $a \equiv 0$ it can be handled by using the results on $\overline{\Omega}$ -hyperbolicity instead of $\overline{\Omega} - V$ -hyperbolicity (i.e. for $V = T_S^* Y$).(cf [S-Z,§3].) \Box

7. An application. Let $X \cong \mathbb{C}^2 \ni (u_1, u_2)$, $S \ni (x_1, x_2, x_3)$ a real hypersurface of X, Y a complexification of $S, \Omega = \{x : \varphi > 0\} \subset S$ an open set with analytic boundary. Let $x_0 \in \partial\Omega$, U a neighborhood of Ω at x_0, X^{\pm} the two components of $X \setminus S$ near x_0 .

In this case $\overline{\partial}_b$ is a vector field $p(x; \partial/\partial x) + \sqrt{-1} q(x; \partial/\partial x)$. We still denote by $p = \sqrt{-1} q$ the symbol $\sigma(\overline{\partial}_b)|_{T^*_{\sigma}Y}$.

Let γ be the half space $N(X^+)$ and γ'^* the half ray $\gamma'^* = {}^t \widetilde{\phi}'(\gamma^*)$. Let U be a neighborhood of Ω at x_0 .

Proposition 7.1. Assume that the functions p, q, φ satisfy (6.1), (6.2) at $\lambda = \gamma'_{x_0}^*$ and let $f \in \mathcal{O}_X(X^+ \cap U)$. Then f extends to a tuboid of X with profile $\overline{\Omega} \times_S \gamma$.

Proof. Clearly $b(f \circ \widetilde{\phi}) \in \mathcal{H}om(\overline{\partial}_b, \Gamma_{\dot{\pi}^{-1}(\overline{S \setminus \Omega})}(\mathcal{C}_{\Omega|Y}))_{\lambda}$. By Theorem 6.1, $\lambda \notin SS^{\overline{\partial}_b, 0}_{\Omega|Y}(b(f \circ \widetilde{\phi}))$. Then f extends to U verifying (2.5) on account of Corollary 4.3. \Box

Example 7.2. Assume that

- (i) $S = \{(u_1, u_2) \in X : u_j = \chi_j(x) + \sqrt{-1}\psi_j(x), \ j = 1, 2, \ x \in S\},\$
- (ii) $\varphi = \psi_1$,
- (iii) $d \chi_1 \wedge d \chi_2 \wedge d \varphi \neq 0.$
- (iv) $\partial_{x_2}\psi_2 + \partial_{x_1}\psi_2\partial_{x_3}\psi_2$.

By (ii), (iii), $\|\partial \chi_j / \partial x_i\|_{j=1,2;i=2,3}$ is non singular; one can then set $\chi_1 = x_2, \chi_2 = x_3, \psi_1 = x_1.$

In such a case we have:

$$\overline{\partial}_b = \partial_{x_1} - \sqrt{-1} \left[\partial_{x_2} + \beta(x_1, x_2, x_3) \partial_{x_3} \right],$$

for β solving:

$$\sqrt{-1}\,\partial_{x_1}\psi_2 + \partial_{x_2}\psi_2 - \sqrt{-1}\,\beta + \beta\partial_{x_3}\psi_2 = 0.$$

Setting $\beta = \partial_{x_1} \psi_2$, we get:

(7.1)
$$\overline{\partial}_b = \partial_{x_1} - \sqrt{-1} \left[\partial_{x_2} + \partial_{x_1} \psi_2 \partial_{x_3} \right].$$

Write $\psi_2 = x_1 a(x_2, x_3) + x_1^2 c(x_1, x_2, x_3)$ and set $b = 2c + x_1 \partial_{x_1} c$. Assume $\{\xi_2 + a\xi_3, b\xi_3\} \equiv 0$ (for instance take $a(x_2, x_3) = a$ and $c(x_1, x_2, x_3) = c(x_1)$, or take any $a(x_2, x_3)$ and let $c(x_1, x_2, x_3) = 0$).

Under such hypotheses (6.1) is satisfied. If we then assume $b \leq 0$ for $x_1 \geq 0$ and $(x_0; \sqrt{-1} \eta \sim (x_0; \sqrt{-1} \eta_0))$, we get Ω -regularity at $(x_0; \sqrt{-1} \eta_0)$.

Remark 7.3. Note that if $b \leq 0$ for $x_1 \leq 0$, we get $S \setminus \overline{\Omega}$ -regularity at $(x_0; \sqrt{-1}\eta_0)$.

Thus for instance for $S = \{u : u_1 = x_2 + \sqrt{-1}x_1, u_2 = x_3 + \sqrt{-1}x_1^2\}, \Omega = \{x : x_1 > 0\}$ and $\gamma^+ = N(\{u : \operatorname{Im} u_2 > \operatorname{Im} u_1^2\})$ then any f^+ (resp g^+) defined in $X^+ \cap W^+$ (resp $X^+ \cap W^-$) for W^{\pm} a neighborhood of $S \cap \{\pm \operatorname{Im} u_1 > 0\}$, extends to a domain of type $\{u : \operatorname{Im} u_1 > 0, (\operatorname{respIm} u_1 < 0) \operatorname{Im} u_1^2 < \operatorname{Im} u_2 < \varepsilon \operatorname{Im} u_1\}$ (for $\gamma^{+*} = -\sqrt{-1} d\operatorname{Re} u_2$ in the duality $T_M X \times T_M^* X \to \mathbf{R}$ associated to $-\operatorname{Im} \omega$).

This is of course classical by Bochner's theorem.

On the contrary for $S = \{u : u_1 = x_2 + \sqrt{-1}x_1, u_2 = x_3 + \sqrt{-1}x_1^3\}$ and for W^{\pm} a neighborhood of $S \cap \{\sqrt{-1} u_1 > 0\}$, one has extension for f^+ (resp g^-) from $X^+ \cap W^+$ (resp $X^- \cap W^-$) to a domain of type $\{u; \operatorname{Im} u_1 > 0, \operatorname{Im} u_1^2 < \operatorname{Im} u_2 < \varepsilon \operatorname{Im} u_1\}$ (resp. $\{u; \text{Im}u_1 < 0, -\varepsilon \text{Im}u_1 < \text{Im}u_2 < -\text{Im}u_1^2\}$)

Remark 7.4. Let $S = \{u : u_1 = x_2 + \sqrt{-1} x_1, u_2 = x_3 + \sqrt{-1} a(x_2, x_3) x_1\}$, with $\partial a/\partial x_2 + a\partial a/\partial x_3 = 0$ and $\Omega = \{x : x_1 > 0\}.$

We have

$$\overline{\partial}_b = \frac{\partial}{\partial x_1} - \sqrt{-1} \left[\frac{\partial}{\partial x_2} + a(x_2, x_3) \frac{\partial}{\partial x_3} \right],$$

(which corresponds to the case $b \equiv 0$ in Proposition 6.1). Then one gets Ω and $S \setminus \overline{\Omega}$ -regularity at both points in $T^*_S Y \cap char \overline{\partial}_b$.

8. Removable singularities. Let $S \subset X \cong \mathbf{C}^2$ be a generic hypersurface, Y a complexification of S. Let $N \subset S$ be an hypersurface, generic on X, given by $N = \{x; \varphi(x) = 0\}$. Let $N^{\mathbf{C}}$ be a complexification of N. Assume that, for $\overline{\partial}_b =$ $p + \sqrt{-1}q$, one has $\{p, \varphi\} \equiv 1$. For $q = a + \varphi b$ ($\{p, a\} \equiv 0$), set $V = \{x; a(x) = 0\}$. Assume (6.1) to hold and moreover:

(6.2)' $b \ge 0$ on T_S^*X (for any φ).

Let $\Sigma \subset N$ be such that $\sqrt{-1}N^*(\Sigma) \subset \rho \varpi(V)$ (here we denoted by ρ and ϖ the maps: $T^*N^{\mathbf{C}} \xleftarrow{\rho} N^{\mathbf{C}} \times_Y T^*_S Y \widetilde{T}^* Y).$

Take $u \in \Gamma_{S \setminus \Sigma}(\mathcal{B}_{S|Y})_{x_0}, x_0 \in \partial \Sigma$.

Proposition 8.1. If $\pm \lambda \notin SS(u|_{S \setminus \Sigma})$ then u extends to S at x_0 to a function \tilde{u} with $\pm \lambda \notin SS(\tilde{u})$.

Sketch of the proof. We can look at u as being a section of $\mathcal{H}om_{\mathcal{D}_Y}(\overline{\partial}_b, \Gamma_{S\setminus\Sigma}\mathcal{B}_{S|Y})_{x_0}$. Let $\varphi = x_1$, let $\Omega^{\pm} = \{\pm x_1 > 0\}$ and denote by $\gamma^{\pm}(u)$ be the traces of u on N. We have $SS(\gamma^{\pm}(u) \subset \rho \varpi^{-1} SS_{\Omega}^{\overline{\partial}_{b},0}(u)$ and so, by Proposition 6.1, $\rho(\lambda^{\pm}) \notin SS(\gamma^{\pm}(u))$. Hence also $\rho \varpi^{-1}(V) \cap SS(\gamma^{\pm}(u)) = \emptyset$. Since $\operatorname{char}(\overline{\partial}_{b}) \cap \rho^{-1} \rho \varpi^{-1} v^{\mathbf{C}} \subset T_{S}^{*}Y$, then $SS(\gamma^{\pm}) \cap \rho \varpi^{-1}(V) = \emptyset$. Since $\gamma^{+} - \varepsilon$

 $\gamma^{-} = 0$ on $S \setminus \Sigma$, we can propagate by the classical sweeping-out theorem. \Box

References

- [B-P] M.S. Baouendi, L. Preiss Rothschild, Normal forms for generic manifolds and holomorphic extension of CR functions, J. Differential Geometry 25 (1987), 431–467.
- [B-T] M.S. Baouendi, F. Treves, A property of the functions and distribution annihilated by a locally integrable system of complex vector fields, Annals of Mathematics 113 (1981), 387 - 421.
- [B-T] M.S. Baouendi, F. Treves, About the holomorphic extension of CR functions on real hypersurfaces in complex space, Duke Math. J. 51, 1 (1984), 77–107.
- [K-S] M. Kashiwara, P. Schapira, *Microlocal study of sheaves*, Astérisque 128 (1985).
- [P-W] J. C. Polking, R. O. Wells jr, Hyperfunction boundary values and a generalized Bochner-Hartogs theorem, Proc. Symp. in Pure Math. 30 (1977), 187–193.

- [S] P. Schapira, Front d'onde analytique au bord I, C. R. Acad. Sci. Paris Sér. I Math. 302
 10 (1986), 383–386; II, Sém. E.D.P. École Polytechnique Exp. 13 (1986).
- [S-T] P. Schapira, J.M. Trépreau, Microlocal pseudoconvexity and "edge of the wedge" theorem, Duke Math. J. 61 (1990), 105–118.
- [S-Z] P. Schapira, G. Zampieri, Microfunctions at the boundary and mild microfunctions, Publ. RIMS, Kyoto Univ. 24 (1988), 495–503.
- [S-Z] P. Schapira, G. Zampieri, Regularity at the boundary for systems of microdifferential equations, Pitman Res. Notes in Math. 158 (1987), 186–201.
- [T] J.M. Trépreau, Prolongement unilateral des fonctions CR, Séminaire Bony-Sjöstrand-Meyer 1984-1985 Exposé XXII.
- [U-Z] M. Uchida, G. Zampieri, Second microfunctions at the boundary, Publ. RIMS, Kyoto Univ. 26 (1990), 205–219.
- [Z] G. Zampieri, Tuboids of \mathbb{C}^n with cone property and domains of holomorphy, Proc. Japan Acad. Ser. A 67 (1991).

A. D'A. and G. Z.: Dipartimento di matematica pura ed applicata, via Belzoni 7, 35131 Padova, Italy

P. D'A.: Scuola Normale Superiore, piazza dei Cavalieri 7, 56100 Pisa, Italy