Erratum

Measurements of charged kaon semileptonic decay branching fractions $K^{\pm} \to \pi^0 \mu^{\pm} \nu$ and $K^{\pm} \to \pi^0 e^{\pm} \nu$ and their ratio

The NA48/2 Collaboration

J.R. Batley¹, C. Lazzeroni¹, D.J. Munday¹, M.W. Slater¹, S.A. Wotton¹, R. Arcidiacono^{2,16}, G. Bocquet²,
N. Cabibbo², A. Ceccucci², D. Cundy^{2,17}, V. Falaleev², M. Fidecaro², L. Gatignon², A. Gonidec², W. Kubischta²,
A. Norton^{2,18}, M. Patel², A. Peters², S. Balev³, P.L. Frabetti³, E. Goudzovski³, P. Hristov^{3,19}, V. Kekelidze^{3,19},
V. Kozhuharov³, L. Litov³, D. Madigozhin³, E. Marinova³, N. Molokanova³, I. Polenkevich³, Y. Potrebenikov³,
S. Stoynev^{3,20}, A. Zinchenko³, E. Monnier^{4,21}, E. Swallow⁴, R. Winston⁴, P. Rubin⁵, A. Walker⁵, W. Baldini⁶,
A. Cotta Ramusino⁶, P. Dalpiaz⁶, C. Damiani⁶, M. Fiorini⁶, A. Gianoli⁶, M. Martini⁶, F. Petrucci⁶, M. Savrié⁶,
M. Scarpa⁶, H. Wahl⁶, A. Bizzeti^{7,22}, M. Calvetti⁷, E. Celeghin⁷, E. Iacopini⁷, M. Lenti⁷, F. Martelli^{7,23},
G. Ruggiero^{7,19}, M. Veltri^{7,23}, M. Behler⁸, K. Eppard⁸, K. Kleinknecht⁸, P. Marouelli⁸, L. Masetti⁸,
U. Moosbrugger⁸, C. Morales Morales⁸, B. Renk⁸, M. Wache⁸, R. Wanke⁸, A. Winhart⁸, D. Coward^{9,24},
A. Dabrowski^{9,a}, T. Fonseca Martin^{9,19}, M. Shieh⁹, M. Szleper⁹, M. Velasco⁹, M.D. Wood^{9,25}, G. Anzivino¹⁰,
P. Cenci¹⁰, E. Imbergamo¹⁰, M. Pepe¹⁰, M.C. Petrucci¹⁰, M. Piccini^{10,19}, M. Raggi¹⁰, M. Valdata-Nappi¹⁰,
C. Cerri¹¹, G. Collazuol¹¹, F. Costantini¹¹, L. DiLella¹¹, N. Doble¹¹, R. Fantechi¹¹, L. Fiorini^{11,26}, S. Giudici¹¹,
J. Lamanna¹¹, I. Mannelli¹¹, A. Michetti¹¹, G. Pierazzini¹¹, M. Sozzi¹¹, B. Bloch-Devaux¹², C. Cheshkov^{12,19},
J.B. Chèze¹², M. De Beer¹², J. Derré¹², G. Marel¹², E. Mazzucato¹², B. Peyaud¹², B. Vallage¹², M. Holder¹³,
A. Maier^{13,19}, M. Ziolkowski¹³, S. Bifani¹⁴, C. Biino¹⁴, N. Cartiglia¹⁴, M. Clemencic^{14,19}, S. Goy Lopez¹⁴,
F. Marchetto¹⁴, H. Dibon¹⁵, M. Jeitler¹⁵, M. Markyta

- ¹ Cavendish Laboratory, University of Cambridge, CB3 0HE, UK^b
- 2 CERN, 1211 Geneva 23, Switzerland
- ³ Joint Institute for Nuclear Research, Dubna, Russian Federation
- 4 The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60126, USA
- ⁵ Department of Physics and Astronomy, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
- 6 Dipartimento di Fisica dell'Università e Sezione dell'INFN di Ferrara, 44100 Ferrara, Italy
- ⁷ Dipartimento di Fisica dell'Università e Sezione dell'INFN di Firenze, 50125 Firenze, Italy
- ⁸ Institut für Physik, Universität Mainz, 55099 Mainz, Germany^c
- ⁹ Department of Physics and Astronomy, Northwestern University, 2145 Sheriden Rd., Evanston, IL 60208-3112, USA
- ¹⁰ Dipartimento di Fisica dell'Università e Sezione dell'INFN di Perugia, 06100 Perugia, Italy
- ¹¹ Dipartimento di Fisica, Scuola Normale Superiore e Sezione dell'INFN di Pisa, 56100 Pisa, Italy
- ¹² DSM/DAPNIA CEA Saclay, 91191 Gif-sur-Yvette, France
- ¹³ Fachbereich Physik, Universität Siegen, 57068 Siegen, Germany^d
- ¹⁴ Dipartimento di Fisica Sperimentale dell'Università e Sezione dell'INFN di Torino, 10125 Torino, Italy
- ¹⁵ Österreichische Akademie der Wissenschaften, Institut für Hochenergiephysik, 10560 Wien, Austria^e
- ¹⁶ Present address: Dipartimento di Fisica Sperimentale dell'Universit Sezione dell'INFN di Torino, 10125 Torino, Italy
- ¹⁷ Present address: Istituto di Cosmogeofisica del CNR di Torino, 10133 Torino, Italy
- ¹⁸ Present address: Dipartimento di Fisica dell'Università e Sezione Ferrara, 44100 Ferrara, Italy
- ¹⁹ Present address: CERN, 1211 Geneva 23, Switzerland
- ²⁰ Present address: Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112, USA
- ²¹ Also at Centre de Physique des Particules de Marseille, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
- 22 Also Dipartimento di Fisica, Università di Modena, 41100 Modena, Italy
- 23 Istituto di Fisica, Università di Urbino, 61029
 Urbino, Italy
- ²⁴ Permanent address: SLAC, Stanford University, Menlo Park, CA 94025, USA
- 25 Present address: UCLA, Los Angeles, CA 90024, USA
- ²⁶ Present address: Institut de Fisica d'RAltes Energies, Universitat A Barcelona, 08193 Bellaterra (Barcelona), Spain

Received: 5 October 2007 /

Published online: 1 November 2007 – © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. In an earlier paper [1], the background for K_{e3} was over estimated due to an erroneous calculation of the electron identification efficiency. The correct ratios of the partial widths involving this channel are $\mathcal{R}_{Ke3/K2\pi} = 0.2470 \pm 0.0009$ (stat) ± 0.0004 (syst) and $\mathcal{R}_{K\mu3/Ke3} = 0.663 \pm 0.003$ (stat) ± 0.001 (syst). Assuming the PDG value [2] for the $K_{2\pi}$ branching ratio, the measured branching fraction of Br (K_{e3}) continues to exceed the current PDG value [2]. The extracted value of $|V_{us}|f_+(0)$ is in agreement with the CKM unitary prediction; thus, our conclusions in [1] do not change.

Erratum to: Eur. Phys. J. C 50, 329–340 (2007) DOI 10.1140/epjc/s10052-007-0253-3

In the analysis of charged kaon semileptonic decays presented in an earlier paper [1], the background for K_{e3} was unfortunately overestimated due to an erroneous calculation of the electron identification efficiency. The average electron identification efficiency is corrected to be $(98.59 \pm 0.09)\%$, see Fig. 4a, and this is the only input into the calculation that has been modified. Table 1 lists the corresponding quantities needed to evaluate the branching fractions, and Table 2 lists the expected background, based on the corrected electron identification efficiency.

The updated results of Table 4 in [1] for $\mathcal{R}_{Ke3/K2\pi}$ and $\mathcal{R}_{K\mu3/Ke3}$ are

$$\mathcal{R}_{Ke3/K2\pi} = 0.2476 \pm 0.0011 \,(\text{stat}) \pm 0.0005 \,(\text{syst}) \quad [K^+]$$

$$\mathcal{R}_{Ke3/K2\pi} = 0.2460 \pm 0.0015 \,(\text{stat}) \pm 0.0006 \,(\text{syst}) \quad [K^-],$$

$$\mathcal{R}_{K\mu3/Ke3} = 0.6605 \pm 0.0040 \,(\text{stat}) \pm 0.0017 \,(\text{syst}) \quad [K^+]$$

and

$$\mathcal{R}_{K\mu3/Ke3} = 0.6661 \pm 0.0055 \,(\text{stat}) \pm 0.0019 \,(\text{syst}) \quad [K^-].$$

The results for K^+ and K^- combined are

$$\mathcal{R}_{Ke3/K2\pi} = 0.2470 \pm 0.0009 \,(\text{stat}) \pm 0.0004 \,(\text{syst})$$

and

$$\mathcal{R}_{K\mu3/Ke3} = 0.663 \pm 0.003 \,(\text{stat}) \pm 0.001 \,(\text{syst})$$

and they are shown in Figs. 8 and 9, respectively. The result for $\mathcal{R}_{K\mu3/K2\pi}$ remains unchanged [1].

Taking the current PDG value for the $K_{2\pi}$ branching fraction [2], the branching fraction for K_{e3} is found to be Br $(K_{e3}) = 0.05168 \pm 0.00019 \text{ (stat)} \pm 0.00008 \text{ (syst)} \pm 0.00030 \text{ (norm)}$. Using this branching fraction and the input values listed in [1], the $|V_{us}|$ matrix element times the vector form factor $f_{+}(0)$ is found to be

$$\begin{aligned} |V_{us}|f_{+}(0) &= 0.2193 \pm 0.0012 \quad [K_{e3}] \tag{1} \\ &= 0.21928 \pm 0.00039 \; (\text{stat}) \pm 0.00017 \; (\text{syst}) \\ &\pm 0.00062 \; (\text{norm}) \pm 0.00096 \; (\text{ext}) \,. \end{aligned}$$

Combining this $|V_{us}|f_+(0)$ value for K_{e3} with the corresponding value for $K_{\mu3}$ in [1] and shown in Fig. 10, we

Fig. 4. a The E/pc particle identification efficiency for electrons from clean subsamples of K_{e3} decays

Fig. 8. $\mathcal{R}_{Ke3/K2\pi}$ result compared to the corresponding PDG value [2]. The $\mathcal{R}_{K\mu3/K2\pi}$ result is unchanged and shown in Fig. 8 of [1]

The online version of the original article can be found at http://dx.doi.org/10.1140/epjc/s10052-007-0253-3.

^a e-mail: anne@lotus.phys.northwestern.edu

^b Funded by the U.K. Particle Physics and Astronomy Research Council

 $^{^{\}rm c}$ Funded by the German Federal Minister for Education and research under contract $05{\rm H}{\rm K}1{\rm U}{\rm M}1/1$

 $^{^{\}rm d}$ Funded by the German Federal Minister for Research and Technology (BMBF) under contract 056SI74

^e Funded by the Austrian Ministry for Traffic and Research under the contract GZ 616.360/2-IV GZ 616.363/2-VIII, and by the Fonds für Wissenschaft und Forschung FWF Nr. P08929-PHY

Table 1. Updated information used to extract the branching ratio, where track $= e^{\pm}, \pi^{\pm}$ for $i = K_{e3}^{\pm}, K_{2\pi}^{\pm}$

Decay type	$\begin{array}{c} \text{Raw} \\ \text{number of} \\ \text{events } (N_i) \end{array}$	$\begin{array}{l} \text{Acceptance} \times \\ \text{particle ID} \\ (\text{Acc}_i \times \epsilon_{\text{track}_{\text{ID}}}) \end{array}$	$egin{array}{c} ext{Backgrounds}/\ ext{signal}\ (arDelta_i) \end{array}$	$\begin{array}{c} \text{Trigger} \\ \text{efficiency} \\ (\text{Trig}_i) \end{array}$
$\begin{array}{c} K_{e3}^+ \\ K_{e3}^- \end{array}$	$56.196 \\ 30.898$	$\begin{array}{c} 0.0698 \pm 0.0001 \\ 0.0694 \pm 0.0001 \end{array}$	$(0.0200 \pm 0.0008)\% \ (0.0209 \pm 0.0010)\%$	$\begin{array}{c} 0.9990 \pm 0.0005 \\ 0.9982 \pm 0.0008 \end{array}$
$\begin{array}{c} K^+_{2\pi} \\ K^{2\pi} \end{array}$	$\begin{array}{c} 461.837 \\ 256.619 \end{array}$	$\begin{array}{c} 0.1418 \pm 0.0001 \\ 0.1412 \pm 0.0001 \end{array}$	$egin{aligned} (0.2893 \pm 0.0058)\% \ (0.2896 \pm 0.0058)\% \end{aligned}$	$\begin{array}{c} 0.9987 \pm 0.0002 \\ 0.9990 \pm 0.0002 \end{array}$

Table 2. Recalculated percentage of expected background from Monte Carlo simulation for K_{e3} and $K_{2\pi}$ from the main contributors to their total background

Contributing channel	K^+	K^{-}
	K_{e3}	
$K_{\pi^{\pm}\pi^{0}\pi^{0}} K_{2\pi}$	$egin{aligned} (0.0130 \pm 0.0007)\% \ (0.0070 \pm 0.0003)\% \end{aligned}$	$egin{array}{l} (0.0139 \pm 0.0009)\% \ (0.0071 \pm 0.0004)\% \end{array}$
	$K_{2\pi}$	
$K_{\mu3} \\ K_{e3}$	$egin{aligned} (0.2848 \pm 0.0058)\% \ (0.0045 \pm 0.0006)\% \end{aligned}$	$(0.2846 \pm 0.0058)\% \ (0.0050 \pm 0.0008)\%$

Fig. 9. $\mathcal{R}_{K\mu3/Ke3}$ results compared to KEK-246 results [4], the corresponding PDG value of 2006 [2] and to the predictions assuming μ -*e* universality, (6) in [1], with the λ_+ and λ_0 values given for K^{\pm} in the PDG of 2006 [2]

obtain

$$|V_{us}|f_+(0) = 0.2188 \pm 0.0012, \qquad (2)$$

Fig. 10. Comparison of the NA48 measurement of $|V_{us}|f_+(0)$ from K_{e3} data in (1) and from $K_{\mu3}$ data in [1], and the K_{e3} BNL-E865 result [3]. The theoretical prediction shown is obtained assuming unitarity of the CKM matrix and using the values for V_{ud} and V_{ub} as input and the choice of $f_+(0)$ all as described in [1]

$$|V_{us}| = 0.2277 \pm 0.0013 \text{ (other)} \pm 0.0019 \text{ (theo)}, \quad (3)$$

which is consistent with the unitarity prediction as calculated in [1], namely, $|V_{us}|_{unitary} = 0.2274 \pm 0.0013$.

References

- 1. J.R. Batley et al., Eur. Phys. J. C 50, 329340 (2007)
- Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1 (2006) [http://pdg.lbl.gov]
- A. Sher et al., Phys. Rev. Lett. **91**, 261802 (2003) [arXiv: hep-ex/0305042]
- 4. K. Horie et al., Phys. Lett. B **513**, 311 (2001)