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ABSTRACT

The outward migration of a pair of resonant-orbit planets, driven by tidal interactions with a gas-dominated disk,
is studied in the context of evolved solar nebula models. The planets’ masses, M1 and M2, correspond to those of
Jupiter and Saturn. Hydrodynamical calculations in two and three dimensions are used to quantify the migration
rates and analyze the conditions under which the outward migration mechanism may operate. The planets are taken
to be fully formed after 106 and before 3 × 106 years. The orbital evolution of the planets in an evolving disk
is then calculated until the disk’s gas is completely dissipated. Orbital locking in the 3:2 mean motion resonance
may lead to outward migration under appropriate conditions of disk viscosity and temperature. However, resonance
locking does not necessarily result in outward migration. This is the case, for example, if convergent migration
leads to locking in the 2:1 mean motion resonance, as post-formation disk conditions seem to suggest. Accretion
of gas on the planets may deactivate the outward migration mechanism by raising the mass ratio M2/M1 and/or by
reducing the accretion rate toward the star, and hence depleting the inner disk. For migrating planets locked in the
3:2 mean motion resonance, there are stalling radii that depend on disk viscosity and on stellar irradiation, when it
determines the disk’s thermal balance. Planets locked in the 3:2 orbital resonance that start moving outward from
within 1–2 AU may reach beyond ≈5 AU only under favorable conditions. However, within the explored space
of disk parameters, only a small fraction—less than a few percent—of the models predict that the interior planet
reaches beyond ≈4 AU.

Key words: accretion, accretion disks – hydrodynamics – methods: numerical – planet–disk interactions – planets
and satellites: formation – protoplanetary disks
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1. INTRODUCTION

The architecture of the solar system bears some evidence that
Jupiter and Saturn may have been closer to each other in the past
(e.g., Malhotra 1993, 1995; Tsiganis et al. 2005; Morbidelli et al.
2005; Gomes et al. 2005). They later moved away from each
other because of gravitational interactions with the remnants of
the disk of planetesimals from which these planets had formed
(e.g., Fernandez & Ip 1984; Hahn & Malhotra 1999). The
planetesimal-driven migration of Jupiter and Saturn occurred
relatively late, after the gaseous component of the solar nebula
had dispersed, and the extent of their radial displacements was
probably less than ∼1 AU (e.g., Franklin et al. 2004; Minton &
Malhotra 2009).

Recently, Walsh et al. (2011) proposed a scenario in which
orbital migration of Jupiter and Saturn occurred much earlier
in the solar system history and was driven by tidal torques
in a gas-dominated nebula. The progenitors of Jupiter and
Saturn underwent rapid convergent migration toward the Sun,
until Saturn became trapped in the 2:3 mean motion resonance
with Jupiter. By that time and under the applied conditions,
Jupiter had reached ≈1.5 AU and Saturn ≈2.0 AU. Once the
resonant configuration was established, the planets reversed the
direction of motion and began migrating outward, preserving
the 2:3 commensurability. This scenario may help explain some
features of the inner solar system, including the Mars-to-Earth
mass ratio and the radial variation of composition in the asteroid
belt (see Walsh et al. 2011 for details).

4 Visiting Research Scientist, Los Alamos National Laboratory, Los Alamos,
NM 87545, USA.

The outward migration is a direct result of the “compact”
orbital configuration. Qualitatively, the negative torque balance
which would result for a single planet is tipped in favor of
the positive torque (from the inner disk) because the negative
torque (from the outer disk) is abated by a local reduction
of the surface density. This situation requires that the planets be
massive enough to significantly perturb, via tidal interaction, the
disk’s surface density and that their density gaps overlap. These
requirements are typically realized if the orbital separation is at
most several times the sum of the planets’ Hill radii. Therefore,
depending on the masses, a (near) 3:2 commensurability is
favorable to sustain outward migration of a Jupiter–Saturn pair,
whereas for more massive planets, by a factor of about three, a
(near) 2:1 commensurability may promote outward migration.

A study by Pierens & Raymond (2011) lends support,
under appropriate conditions, to the inward–outward migration
scenario of the Jupiter–Saturn system proposed by Walsh et al.
(2011). One scope of this paper is to revisit this idea in the
context of evolved models of a gas-dominated solar nebula. In
particular, we concentrate on the outward migration of a pair
of giant planets, whose masses correspond to those of Jupiter
and Saturn, after their orbits become locked in the 3:2 mean
motion resonance, compatibly with the formation timescales of
both Jupiter and Saturn, estimated from core-nucleated accretion
models.

We also wish to provide some constraints on the range
of radial migration of Jupiter (and Saturn), as a function of
the solar nebula properties, under the assumption that the 3:2
orbital resonance is maintained throughout the disk’s evolution.
Conditions that may break the resonance locking between the
two planets or that may inhibit or prevent outward migration are
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analyzed as well. In particular, we focus on the process of gas
accretion that, on one hand, may alter the planets’ mass ratio
and, on the other, may reduce the disk density inside the orbit
of the interior planet. Both effects act to change the balance
of the torques exerted on the planets. In addition, we examine
the disk conditions under which convergent migration leads to
the capture of the exterior planet in the 1:2 orbital resonance
with the interior planet, a configuration that does not promote
outward migration of a Jupiter–Saturn pair, and which may leave
the planets stranded in the inner disk region. The possibility that
Saturn forms within the 1:2 commensurability with Jupiter is
also analyzed.

The layout of the paper is as follows. In Section 2, we describe
dynamics and thermodynamics of disk models and report on
their evolution. In Section 3, the tidal interaction calculations
in two and three dimensions are presented, along with the
calculations of the migration rates of a 3:2 resonant-orbit pair.
Section 4 is dedicated to the long-term orbital evolution of
two planets locked in the 3:2 orbital resonance. Two possible
effects of gas accretion are analyzed in Sections 5 and 6, while
conditions for capture in the 2:1 mean motion resonance and
some related issues are examined in Section 7. Section 8 contains
the discussion and the summary of the results.

2. LONG-TERM DISK EVOLUTION MODELS

In this section, we describe the dynamics and thermodynam-
ics of solar nebula models. For tested parameters, we report on
the disk evolution until the gas is almost entirely dispersed, that
is until the disk mass, MD, is less than 10−5 times the mass of the
star. By assumption, successful sets of parameters representing
a solar nebula model are those that provide a disk lifetime, τD,
no greater than ∼2 × 107 years. Although the gas mass of disks
is notoriously difficult to ascertain, according to observations
(see, e.g., reviews by Roberge & Kamp 2010; Williams & Cieza
2011), the presence of gas in the inner regions of protoplanetary
disks appears to last �107 years (see also Haisch et al. 2001).

2.1. Disk Dynamics

Consider a gaseous disk orbiting a central star of mass Ms . In
the framework of one-dimensional (1D) modeling, we assume
azimuthal symmetry around the star and use vertically averaged
quantities as a function of the radial distance r. For the current
purposes, we assume that the evolution of the disk is driven
by viscous torques, Tν , and wind dispersal, Ṁw at the disk’s
surface. The torque exerted on a disk ring of radius r, by material
orbiting inside the ring, is Tν = −2πr3νΣ∂Ω/∂r (Lynden-
Bell & Pringle 1974), where ν is the kinematic viscosity of the
gas, Σ the surface density, and Ω the angular velocity. If Ω is
identified as the Keplerian velocity (i.e., if effects of gas and
magnetic pressure gradients are neglected), then Tν = 3πνΣH,
where H = r2Ω is the specific angular momentum of the gas.
Along with viscous diffusion, the disk is dispersed by a wind,
whose origin is gas photoevaporation from the disk surface
produced by photons emitted by the central star. Hence, we write
Ṁw = 2π

∫
Σ̇perdr , where Σ̇pe is the mass per unit surface area

and unit time removed from the disk.
The continuity equation for the disk requires that

∂

∂t
Σ +

1

r

∂

∂r
(rΣur ) = −Σ̇pe, (1)

where ur is radial velocity of the gas. On the left-hand side,
one can recognize the mass per unit time flowing through a

circumference of radius r, F = 2πrΣur . By using the relation
F = −∂Tν/∂H (see Lynden-Bell & Pringle 1974) and since
we assume Keplerian rotation (∂H/∂r = rΩ/2), Equation (1)
becomes

πr
∂

∂t
(Σ + Σpe) − ∂

∂r

(
1

rΩ
∂Tν

∂r

)
= 0. (2)

To seek for numerical solutions of Equation (2), it is convenient
to useH as an independent variable andS = H3Σ as a dependent
variable and then solve

∂

∂t
(S + Spe) − 3

4
(GMs)

2 ∂2

∂H2

(
νS
H2

)
= 0. (3)

In the above equation, G is the gravitational constant and
Ṡpe = H3Σ̇pe. Note that the quantity S/H2 is the angular
momentum per unit surface area. In writing Equation (1), we
neglected the effects of the star’s growth, which would introduce
a term on the right-hand side of the order of ΣṀs/Ms (see Ruden
& Pollack 1991). Given the initial values of Ṁs/Ms considered
here (see Section 2.3) and the decline of Ṁs with time, this term
would affect Σ only over a timescale of the order of 107 years,
or longer.

Photoevaporation involves contributions from far-ultraviolet
(FUV), extreme-ultraviolet (EUV), and X-ray radiation emitted
by the star (see Dullemond et al. 2007; Clarke 2011 and
references therein). FUV radiation may be especially important
in removing gas at large distances from the star, reducing the gas
supply to the inner parts of the disk. However, a self-consistent
calculation of FUV photoevaporation rates requires solving for
the detailed vertical structure of the disk (e.g., Gorti et al. 2009;
Gorti & Hollenbach 2009). Photoevaporation by EUV photons
is more tractable since they ionize hydrogen at the very upper
layers of the disk. Here we follow a simple approach and adopt
the formulation of the EUV photoevaporation rate proposed by
Dullemond et al. (2007):

Σ̇pe

Σ̇g
pe

=
⎧⎨
⎩

exp
[

1
2

(
1 − rg

r

)] ( rg

r

)2
for r � rg,( rg

r

)5/2
for r > rg.

(4)

The radius rg ≈ 10 (Ms/M�) AU is the gravitational radius,
beyond which gas at the disk surface is unbound (see, e.g.,
Armitage 2011 and references therein). The photoevaporation
rate at rg is

Σ̇g
pe = 1.16 × 10−11

√
f41

(
1 AU

rg

)3/2 (
M�

AU2 yr

)
, (5)

where f41 is the rate of EUV ionizing photons emitted by
the star in units of 1041 s−1. The total mass-loss rate due to
photoevaporation is found by integrating Equation (4) over
the entire disk according to the definition given above, hence
Ṁw = (0.55977

√
e + 4π ) r2

g Σ̇g
pe or

Ṁw = 1.56 × 10−10

√
f41

( rg

1 AU

)
M� yr−1. (6)

The maximum of Σ̇pe occurs at r = rg/4. Locally, gas is
removed via photoevaporation and supplied by viscous diffu-
sion, i.e., accretion through the disk, Ṁ = −F (note that F
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is positive for an outward transfer of mass). Recalling the rela-
tions reported above, we can write ∂Tν/∂H = 3π∂(νΣH)/∂H,
and thus

Ṁ = 3π

[
νΣ + 2r

∂

∂r
(νΣ)

]
. (7)

For νΣ nearly independent of r, i.e., in a stationary disk (Pringle
1981; see also Equation (1) with the right-hand side set to
zero), Ṁ = 3πνΣ is nearly constant throughout the disk.
Therefore, if Ms = 1 M�, we expect gas depletion induced
by photoevaporation to occur first around ∼3 AU.

2.2. Disk Thermodynamics

In order to determine the thermal energy budget of the
disk during its evolution, we assume that there is a balance
among three terms: viscous heating, irradiation heating by
the central star, and radiative cooling from the disk’s surface.
Viscous dissipation produces an energy flux equal to Qν =
νΣ (r∂Ω/∂r)2 (see, e.g., Mihalas & Weibel Mihalas 1999),
which in the case of Keplerian rotation becomes

Qν = 9

4
νΣΩ2. (8)

Since Qν ∝ 1/r3, for a disk with ∂(νΣ)/∂r ≈ 0, viscous
dissipation becomes an ever less important source of heating
as the distance from the star increases.

We follow the formulation of Hubeny (1990) for an irradiated
disk and write the energy flux escaping from both sides of the
disk surface as

Qcool = 2σSB T 4

(
3

8
τR +

1

2
+

1

4τP

)−1

, (9)

whereas the heating flux arising from stellar irradiation can be
written as

Qirr = 2σSB T 4
irr

(
3

8
τR +

1

2
+

1

4τP

)−1

. (10)

In the above equations, σSB is the Stefan–Boltzmann constant, T
the mid-plane temperature, and Tirr the irradiation temperature.
Note that, for an irradiated disk, the constant in parenthesis on
the right-hand side of Equation (9) is generally slightly different
from that of a non-irradiated disk (compare with Equation (14)
of D’Angelo et al. 2003). As in Menou & Goodman (2004),
we set

T 4
irr = (1 − ε) T 4

s

(
Rs

r

)2

WG, (11)

where ε is a measure of the disk’s albedo, for which we adopt the
value 1/2, and Ts and Rs are the effective temperature and radius
of the star, respectively. This interpretation of the irradiation
temperature, however, neglects the contribution of luminosity
released by stellar accretion (e.g., Hartmann et al. 2011). In
an actively accreting disk, quantity T 4

s should be replaced with
T 4

∗ = T 4
s + T 4

acc, where T 4
acc quantifies the luminosity due to

accretion Lacc = GMsṀs/(2Rs) (Pringle 1981) and thus

T 4
acc = 1

8π

(
GMsṀs

σSBR3
s

)
, (12)

where the accretion rate Ṁs , computed as −∂Tν/∂H (see
Section 2.1) at the disk’s inner radius, varies with time.

The quantity WG in Equation (11) is a geometrical factor that
accounts for the illumination of disk portions close to (first term)
and far from (second term) the star (see Chiang & Goldreich
1997):

WG = 0.4

(
Rs

r

)
+

H

r

(
d ln H

d ln r
− 1

)
. (13)

The adiabatic scale height of the disk, H = √
γ kBT/(μmH)/Ω,

is derived from the requirement of vertical hydrostatic equilib-
rium. The adiabatic index, γ , is 1.4, the mean molecular wight,
μ, is 2.39, kB is the Boltzmann constant, and mH the hydrogen
mass.

If the second term on the right-had side of Equation (13)
is negative, the disk is self-shadowed and that term should be
dropped. A self-consistent calculation of this term from 1D, ver-
tically averaged models may lead to numerical instabilities (see,
e.g., Hueso & Guillot 2005). In fact, meaningful determinations
of this term involve solving for the vertical thermal structure
of the disk. Therefore, the last term in parenthesis on the right-
hand side of Equation (13) is written as η and approximated to
2/7 (see, e.g., D’Alessio et al. 1998; Menou & Goodman 2004;
Hueso & Guillot 2005; Rafikov & De Colle 2006).

The optical depths τR = κRΣ/2 and τP = κPΣ/2 in
Equations (9) and (10) are based, respectively, on Rosseland
(κR) and Planck (κP) mean opacities. Both κR and κP depend on
T and the mass density ρ = Σ/(2H ). We adopt grain opacities
from Pollack et al. (1994), at temperatures below the vaporiza-
tion temperatures of silicates, and gas opacities from Ferguson
et al. (2005) for solar abundances, when all grain species have
evaporated.

The thermal energy budget is given by

Qν + Qirr − Qcool = 0. (14)

Note that if Qν 	 Qirr, a situation that may occur in an evolved
disk, Equation (14) results in a gas temperature T = Tirr,
that is,

T = T∗

√
Rs

r
[(1 − ε) WG]1/4 . (15)

The factor WG is typically a weakly dependent function of T.
If WG is a constant, then T ∝ r−1/2. If WG ∝ Rs/r (e.g., at
radii r ∼ Rs), then T ∝ r−3/4. If WG ∝ H/r (as we assume for
r 
 Rs), then W

1/4
G ∝ T 1/8, the temperature is T ∝ r−3/7 (see

also Chambers 2009), and the disk’s aspect ratio is

(
H

r

)7

= η (1 − ε)

(
γ kBT∗
μmH

)4(
Rs

GMs

)4(
r

Rs

)2

. (16)

The choice of the parameter η may have some impact on
the disk’s thermal budget, yet Equation (16) suggests that this
impact is low.

2.3. Numerical Procedures and Parameters

Equation (3) is evolved in time using an implicit numerical
scheme, which avoids the sometimes prohibitively short time
steps required by an explicit approach, especially when the inner
disk radius extends very close to the star (see Bath & Pringle
1981). We use either a second-order Crank–Nicolson method
(e.g., Press et al. 1992) or a fourth/fifth-order Dormand–Prince
method with an adaptive step-size control based on the global
accuracy of the solution (Hairer et al. 1993). In the latter case,
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Figure 1. Left: evolution of a viscous disk obtained by solving Equation (3), with Ṡpe = 0, by means of the Dormand–Prince method. The initial condition (open
circles) is the analytic solution of Lynden-Bell & Pringle (1974) for a disk with no central couple, MD = 0.1 M�, Ṁs = 10−7 M� yr−1, and ν = 8 × 10−6 r2

in Ωin. The
solid lines represent the numerical solution at different times and the filled circles are computed using the analytic solution. Right: evolution of temperature obtained
by solving Equation (14) for the disk in the left panel. Times in the legend are in years. For testing purposes, WG is set equal to 0.05. The temperature predicted by
Equation (15) is indicated by filled circles.

(A color version of this figure is available in the online journal.)

the evaluation of derivatives (in the Runge–Kutta sequence) is
performed by means of a backward Euler (implicit) method. A
zero-torque boundary condition, S = 0, is applied at the disk’s
inner edge. At the outer edge, the applied boundary condition is
such that ∂Ṁ/∂H = ∂2Tν/∂H2 is constant. Figure 1 (left) shows
a comparison between numerical (lines) and analytic (circles)
solutions of Equation (3) (see the figure caption for details).

Equation (14) is solved for the mid-plane temperature, T, at
each radius, using a root-finding algorithm based on the Brent’s
method (Brent 1973). Convergence of the root-finding process
is achieved within a tolerance of 10−3 K. An iterative procedure
is implemented for each determination of T, so that the applied
value of H and that corresponding to the converged temperature
do not differ by more than 1%. In Figure 1 (right), the evolution
of temperature is shown for the disk considered in the left panel.
In this test, we set WG = 0.05, so that the temperature evolves
toward that in Equation (15), indicated as filled circles. The
temperature profiles show major opacity transitions at T ≈ 160,
420, 680, and 1400 K, caused by vaporization of, respectively,
water ice, refractory organics, troilite, and silicate grains (see
Pollack et al. 1994). Note that heating via viscous dissipation is
basically confined within ∼10 AU (see Section 2.2).

The solar nebula extends from rin = 0.01 AU to rout =
1850 AU and is discretized over 10000 grid points. The large
outer radius is chosen to not interfere with viscous spreading
of the disk. The numerical resolution is variable and such that
Δr/r � 1.2 × 10−3. In this study, we assume that Ms = 1 M�,
Ts = 4280 K, and Rs = 2 R� (Siess et al. 2000). The
initial surface density distribution of the gas obeys the relation
Σ = Σ0

1(r1/r)β , where β = 1/2, 1, or 3/2, within at least
∼10 AU. Farther away from the star, Σ is exponentially tapered.
The extremes of the “slope” β bracket values derived for the
solar nebula by Davis (2005) and by Weidenschilling (1977)
and Hayashi (1981). The quantity Σ0

1, the surface density at r1 =
1 AU, is such that the initial disk mass is M0

D � 0.022, 0.044, or
0.088 Ms . (These will be regarded as nominal values. The total
initial disk mass differs somewhat for the different values of β
because of the tapering procedure.) The photoevaporation rate
(Equation (4)) is specified by imposing f41 in Equation (5). Here
we use f41 = 0.1, 1, 10, 100, and 1000 (Alexander et al. 2005).
The kinematic viscosity is ν = ν1(r/r1)β and ν1 = 4 × 10−6,
8 × 10−6, and 1.6 × 10−5 r2

1 Ω1, where Ω1 is the rotation rate
at r = r1. As a reference, in a disk with constant aspect ratio

H/r = 0.04, ν1 = 8 × 10−6 r2
1 Ω1 corresponds to a turbulence

parameter (Shakura & Syunyaev 1973) αt = 0.005. The initial
accretion rate onto the star ranges from a few times 10−8 to a
few times 10−7 M� yr−1. For comparison, the mass-loss rate in
Equation (6) is between ∼10−10 and ∼10−8 M� yr−1.

2.4. Model Results

The majority of disk models have an initial gas inventory
of at least ∼0.02 M� within a distance of 40 AU from the
Sun, as required by a canonical minimum mass solar nebula
(MMSN; e.g., Weidenschilling 1977; Hayashi 1981). This value
is also consistent with the more recent MMSN model adopted
by Chiang & Youdin (2010). Due to the steepness of the surface
density, disk models with the lowest initial mass and parameter
β = 3/2 have only 0.01 M� worth of gas within 40 AU of
the Sun.

Gas is removed via the combined action of accretion
onto the star, Ṁ (Equation (7)), and photoevaporation, Ṁw
(Equation (6)). In particular, Equation (6) sets an upper limit
to dispersal timescale, τD, ranging from ∼1.4 Myr for M0

D �
0.022 Ms (when f41 = 1000) to ∼560 Myr for M0

D � 0.088 Ms

(when f41 = 0.1). For computational purposes, τD is defined as
the time past which MD � 10−5 Ms .

The evolution of the disk mass for some selected cases is
illustrated in Figure 2 for each reference viscosity (see the
figure caption for details). A complete list of the disk lifetimes
is reported in Table 1. The behavior of the disk mass as a
function of time, for the different surface densities, can be
qualitatively understood in terms of viscous evolution by means
of the analytic solutions of Lynden-Bell & Pringle (1974, their
Section 3.3): for equally massive disks, the more compact the
disk is (i.e., the larger β), the more rapidly MD reduces initially.
By a somewhat conservative assumption, as discussed above,
disks that survive beyond 20 Myr are discarded and will not be
given any further consideration. This is the case, for example, for
all models with a photoionizing rate characterized by f41 � 1
and the flattest initial surface density (β = 1/2). Models of
disks surviving less than 1 Myr will also be discarded based on
considerations on planet formation timescales, as explained in
Section 4.

A quantity of primary importance for planetary migration is
the average surface density around the planet’s orbit. In Figure 3
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Figure 2. Mass evolution for disks with initial (nominal) masses M0
D � 0.022 Ms (left) and 0.088 Ms (right). The initial Σ has β = 1/2 (top), 1 (center), and 3/2

(bottom). Thin and thick lines represent models with viscosity ν1 = 4 × 10−6 and 1.6 × 10−5 r2
1 Ω1, respectively. Different line styles (line colors) correspond to

different rates of EUV ionizing photons emitted by the star in units of 1041 s−1, as reported in the legends.

(A color version of this figure is available in the online journal.)

(left panels), the evolution of Σ is shown for cases with different
values of parameters β and f41. As anticipated at the end of
Section 2.1, once the accretion rate drops below some threshold,
photoevaporation produces a gap in the surface density at a radial
distance of a few AU. Then the disk inside the gap is removed by
viscous diffusion on a timescale of the order of r2/(2πν) orbital
periods. We shall see in the Sections 3.2 and 3.3 that the disk’s
aspect ratio has also a large impact on the rates and direction
of migration. In the right panels of Figure 3, H/r is plotted
at reference times for the same models as in the left panels.
Once Σ becomes small enough and the viscous heating term Qν

in Equation (14) becomes unimportant, the disk temperature,
and hence H/r (see Section 2.2), is dictated only by the stellar
irradiation temperature (Equation (11)).

The surface density at 1 AU, Σ1, versus time is illustrated
in Figure 4 for selected models from Table 1. Thin and thick
lines refer to smallest and largest values of ν1, respectively. To

obtain a better statistical characterization of the disk density
and temperature, for each pair of parameters (M0

D, β) listed in
Table 1, ν1 and f41 are varied randomly in the corresponding
ranges indicated in the table, for a total of more than 2000
realizations. The histogram in Figure 5 (left) shows that after
∼1 Myr the value of Σ1 is 150 g cm−2, or less, in ∼80% of the
models that may represent the solar nebula. The right panel of
Figure 5 illustrates the occurrence frequency of the mid-plane
temperature at 1 AU. As a reference, the equilibrium temperature
established by stellar irradiation alone, i.e., Equation (15), is
T1 ≈ 100 K.

3. TIDAL INTERACTIONS OF JUPITER
AND SATURN WITH THE DISK

The evolution of the thermodynamical quantities (principally
Σ, T, and H/r) of solar nebula models, obtained in the previous

5
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Table 1
Lifetimes from Disk Models

τD
a

βb = 1/2 β = 1 β = 3/2

M0
D/Ms ν1

c f41
d = 10 100 1000 1 10 100 0.1 1 10

0.022 4 × 10−6 10.8 3.70 1.31 19.6 10.8 3.92 3.35 2.78 2.21
0.022 8 × 10−6 10.3 3.50 1.24 12.6 8.01 3.75 1.84 1.57 1.25
0.022 1.6 × 10−5 9.95 3.35 1.16 7.75 5.38 3.12 0.98 0.87 0.74

0.044 4 × 10−6 20.8 7.05 2.46 25.6 16.2 7.55 3.78 3.20 2.57
0.044 8 × 10−6 20.1 6.72 2.32 15.7 10.9 6.31 2.05 1.78 1.48
0.044 1.6 × 10−5 19.5 6.47 2.22 9.36 6.90 4.50 1.09 0.98 0.83

0.088 4 × 10−6 40.5 13.5 4.66 31.8 21.9 12.7 4.21 3.63 3.00
0.088 8 × 10−6 39.3 13.1 4.43 19.0 13.9 9.07 2.26 1.99 1.69
0.088 1.6 × 10−5 38.5 12.6 4.25 11.0 8.47 5.97 1.20 1.08 0.93

Notes.
a Time past which MD � 10−5 Ms , in units of Myr.
b Initial “slope” of the disk’s surface density.
c Kinematic viscosity at r1 = 1 AU in units of r2

1 Ω1 = (GMs r1)1/2.
d Rate of EUV ionizing photons emitted by the star in units of 1041 s−1 (see Equation (5)).

section, can be used to evaluate the range of orbital migration
of a pair of planets, over the disk lifetime, once appropriate
migration rates are supplied. In this section we derive such rates.

3.1. 2D and 3D Hydrodynamical Calculations

The migration of a Jupiter–Saturn pair in a gaseous disk is
evaluated by using a combination of two-dimensional (2D) and
three-dimensional (3D) hydrodynamical calculations of tidal
interactions between the planets and the disk. We adopt a
reference frame {O; r, θ, φ} with origin, O, fixed on the star,
radius ranging from 0.25 to 7 AU, and azimuth varying between
0 and 2π . In the 2D disk approximation, the co-latitude angle θ
is equal to π/2, whereas it varies from θmin to π/2 in a 3D disk.
In the latter case, the disk opening angle, θmin, is such that the
disk’s vertical extent locally comprises at least three pressure
scale heights, H. Mirror symmetry with respect to the θ = π/2
plane is imposed on account of the planets orbiting in this plane
of symmetry. The surface density Σ initially has a dimensionless
gradient d ln Σ/d ln r = −1/2. We work in the assumption that
the disk is locally isothermal, i.e., the temperature depends only
on r, and that H/r is a constant. The gas pressure is therefore
proportional either to Σ/r (2D) or to ρ/r (3D), where ρ is the
mass density. It is further assumed that the kinematic viscosity
of the disk, ν, is constant throughout the disk.

The coordinate system rotates about the axis perpendicular
to the planets’ orbital plane (θ = 0 axis) at a variable rotation
speed, �f = �f (t). Both �f and �̇f are imposed by the
requirement that the (relative) azimuthal position of the interior
planet, φ1, remains constant in time and the (relative) angular
velocity, φ̇1, is zero (for details about the procedure, see
D’Angelo et al. 2005).

Naming r1 and r2 the vector positions of the interior (Jupiter)
and exterior planet (Saturn), respectively, the gravitational
potential in the disk is

Φ = −GMs

r
− GM1√

|r − r1|2 + ε2
1

− GM2√
|r − r2|2 + ε2

2

+
GM1

r3
1

r · r1 +
GM2

r3
2

r · r2, (17)

which accounts for the contributions of non-inertial terms due
to the reference frame being centered on the star (see Nelson
et al. 2000). The potential softening lengths ε1 and ε2 are set
equal to 1/4 (or 1/7 in some calculations) times the Hill radius,
RH, of the corresponding planet. It is worth stressing that the
argument according to which ε should be a fraction of the disk’s
scale height, H, in the 2D geometry (e.g., Masset 2002; Müller
et al. 2012) applies to fully embedded planets, when RH < H . If
RH � H , as in all our 2D calculations, the local disk scale height
depends also on the gravity of the planet itself (e.g., D’Angelo
et al. 2003). In such cases, one physical constrain on ε is that it
should be smaller than the radius over which gas is effectively
bound to (i.e., it rotates about) the planet (∼RH/3; see, e.g.,
D’Angelo et al. 2003).

The Navier–Stokes equations that characterize the disk
evolution are solved by means of the finite-difference code
described in D’Angelo et al. (2005 and references therein)
with modifications detailed below. The disk is discretized in
678 × 16 × 700 grid zones, in r, θ , and φ, respectively (and
678 × 700 in 2D). Calculations were also performed at a higher
resolution of 1353 × 28 × 2096. Comparisons of the evolution
of the planets’ orbital elements at these two resolutions yield
good agreement. We apply the wave-damping boundary condi-
tions of de Val-Borro et al. (2006) within r = 0.3 and beyond
r = 6.65 AU, which are appropriate for planets far enough from
the boundaries.

We implemented an orbital advection algorithm along the
lines of the FARGO algorithm of Masset (2000; see also Kley
et al. 2009). These types of algorithms exploit periodicity
properties of the flow, as those naturally occurring in the
azimuthal direction of a disk. (Note that these algorithms
can also be applied to local disk simulations, if periodicity
is imposed at the patch boundaries; see Gammie 2001.) As
demonstrated by Masset (2000), when the highest velocity
component is along the periodic direction, in a 2D disk such
techniques can increase the time step limit required by the
Courant–Friedrichs–Lewy condition (see, e.g., Stone & Norman
1992), relative to a standard advection scheme, by factors ∼10
or larger. In a 3D disk, the gain may critically depend on
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Figure 3. Evolution of the disk’s surface density (left) and disk’s relative thickness (right) of disk models with ν1 = 8 × 10−6 r2
1 Ω1, M0

D � 0.022 Ms , f41 = 10, and
β = 1/2, (top), ν1 = 8 × 10−6 r2

1 Ω1, M0
D � 0.088 Ms , f41 = 100, and β = 1 (center), and ν1 = 4 × 10−6 r2

1 Ω1, M0
D � 0.044 Ms , f41 = 1, and β = 3/2 (bottom).

Times indicated in the legend are in Myr.

(A color version of this figure is available in the online journal.)

the numerical resolution in the vertical (θ ) direction.5 The
implementation requires care when handling the transport of
quantities defined on staggered meshes. Kley et al. (2009)
use split cells, apply the transport algorithm to each part,
and then recombine the partial information to reconstruct the
full transport. Unlike them, we define the auxiliary variables
required in the procedure (see Masset 2000 for details) on the
same staggered meshes as the transport quantities are defined,
wherever they are necessary. This approach requires more copies
of the standard auxiliary variables to be defined, and hence more
memory storage, but offers the advantage that the advection of
all hydrodynamical quantities can be performed in a single step.

5 Since a disk is typically thin, very high resolutions can be more easily
achieved in the vertical direction. In a viscous disk, the time step constraint
required by the diffusion part of Navier–Stokes equations scales as the square
of the gird spacing. This requirement, at high resolution and high viscosity, can
severely reduce (or even nullify) the benefits of orbital advection.

Contrary to the implementations of both Masset (2000) and Kley
et al. (2009), the algorithm used here avoids any directional bias,
maintaining the full symmetry of the advection scheme, by using
a sequence that alternates the transport among directions (see
Stone & Norman 1992).

The equations of motion of two planets orbiting in a disk
around a star, written in a reference frame rotating at variable
angular speed, are

r̈1 = −G(Ms + M1)

r3
1

r1 − GM2

r3
2

r2 − GM2

r3
12

r12 + A1 − As

− �f × (�f × r1) − 2 �f × ṙ1 − �̇f × r1 (18)

r̈2 = −G(Ms + M2)

r3
2

r2 − GM1

r3
1

r1 +
GM1

r3
12

r12 + A2 − As

− �f × (�f × r2) − 2 �f × ṙ2 − �̇f × r2, (19)
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Figure 4. Evolution of the disk’s surface density at 1 AU. Thin and thick lines represent models with viscosity ν1 = 4 × 10−6 and 1.6 × 10−5 r2
1 Ω1, respectively.

Different line styles (line colors) correspond to different disk’s initial masses. The value of the EUV ionizing photon rate, f41, and of the initial surface density gradient,
β, are given in each panel.

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)
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where r12 = r1 −r2. Note that since the origin of the coordinate
system is on the star, Equations (18) and (19) include the forces
per unit mass exerted on the star by the planets. The gravitational
acceleration terms imposed by the disk, A1, A2, and As , are
defined by Equations (8) and (9) of D’Angelo et al. (2005) and
updated every hydrodynamical time step, Δt . Equations (18)
and (19) are integrated numerically over Δt by means of a high-
order Gragg–Bulirsch–Stoer extrapolation algorithm with order
and step-size control (Hairer et al. 1993). The algorithm chooses
automatically a suitable order at each (internal) step, which
basically depends on the required tolerance of the solution error.
We set a relative tolerance of 10−9 and an absolute tolerance
of 10−14.

3.2. Torque Calculations and Outward Migration

The basic mechanism that may allow a pair of resonant-orbit
planets to experience a positive torque exerted by a gaseous disk
and migrate outward was first described by Masset & Snellgrove
(2001). Labeling with subscripts 1 and 2 the inner and outer
planet, respectively, in order for this mechanism to be active,
the following conditions must be fulfilled.

1. The planet-to-star mass ratios (qi = Mi/Ms) must be such
that q1 > q2.

2. The separation of the semimajor axes Δa = a2 − a1 must
be such that Δa = b(RH,1 + RH,2), where b � 4.5 (as we
shall discuss below).

3. q2 must be large enough to open a gap, or partial gap, in the
density distribution by tidal torques.

Condition (2) above implies that Δa/a1 = ( 3
√

q1 + 3
√

q2)/
( 3
√

3/b − 3
√

q2). However, Hill stability for close planets on
circular orbits also imposes that Δa/a1 � 2.40 3

√
q1 + q2 (this

inequality strictly applies in the limit of vanishing masses and
absence of gas; see Gladman 1993), whose right-hand side
is about equal to 0.26 for q1 = M1/Ms = 9.8 × 10−4 and
q2 = M2/Ms = 2.9 × 10−4, hence b � 2 (or 2.2, adopting
a more precise determination of the Hill stability criterion; see
Gladman 1993, for details; see also Figure 6). Conditions (1) and
(2) suggest that, for a Jupiter–Saturn pair, the first encountered
first-order mean motion resonance in which the mechanism may
be activated is the 3:2 (the second-order 5:3 commensurability
being another possibility), as indicated in Figure 6. In principle,
configurations external, but sufficiently near, to resonances may
also promote outward migration, as we shall see in Section 3.3.
It is worth stressing here that simple capture in a mean motion
resonance does not imply outward migration (see, e.g., Zhang
& Zhou 2010), as we shall see in Section 7.

Figure 7 (top and middle) illustrates the surface density
perturbed by resonant-orbit planets, derived from 3D calcu-
lations for disks of different thicknesses (see the figure caption).
The bottom panels of the figure show the mass density in a ver-
tical slice of the disk, while the planets are aligned with the star.
The exterior planet opens a partial gap in the case of a thinner
disk, but it does so to a lesser extent in the other case (see bottom
panels).

The occurrence of outward migration of resonant-orbit plan-
ets can be intuitively understood from Figure 8, which reports on
the results obtained from the same calculations as in Figure 7,
where Saturn is caught in a 2:3 mean motion resonance with
Jupiter. The azimuthally averaged surface density in normal-
ized units (long-dashed lines) indicates that Saturn has cleared
a partial gap, whose inner part overlaps with the outer part
of the gap opened by Jupiter. The short-dashed lines in the
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Figure 6. Fractional difference, Δa/a1 = a2/a1 − 1, between the semimajor
axes of the interior (a1) and exterior (a2) planets, as a function of the mean
motion of the interior planet Ω1 (in scaled units). Different symbol sizes refer
to different mean motions of the exterior planet, Ω2 (see the legend). The region
of the graph below the shaded area is unstable due to planet–planet interaction.
The Hill stability criterion adopted in this figure is given by Equation (23) of
Gladman (1993). The region above the shaded area does not fulfill condition (2)
for gap overlap (see also Figures 7 and 8). Resonant orbits falling in the shaded
area may activate outward migration.

(A color version of this figure is available in the online journal.)

figure represent torque density distributions (D’Angelo &
Lubow 2008, hereafter DL08) due to Jupiter, dT /dM . These
functions yield the total torque when integrated over the disk
mass. The torque exerted on the interior planet peaks at a1±RH,1
and is mostly comprised in a radial region of average width
∼3.5 RH,1 on either side of the orbit (note that RH,1 > H in the
case displayed in the left panel and RH,1 ≈ H in the other case).
But since gas depletion due to gap formation may extend some-
what beyond this distance (see long-dashed lines in Figure 8),
one may allow for a maximum value of the factor b in condition
(2) above between 4 and 5. It is also important to notice that the
orbital eccentricity of a planet acts to widen and smooth out gap
edges (see, e.g., Figure 2 of D’Angelo et al. 2006), which may
also affect somewhat the factor b.

The solid lines in Figure 8 represent the cumulative torque,
which is defined as

TCM(r) = 2π

∫ r

0

dT
dM

〈Σ〉r ′dr ′. (20)

Looking at TCM in the left panel of Figure 8, it appears to be clear
that the positive torque exerted by the disk interior of Jupiter’s
orbit is larger than that exerted by the disk exterior of the orbit,
principally because Saturn has lowered the density there. The
right panel illustrates the situation for a thicker disk, in which
gas depletion operated by the exterior planet is not sufficient to
reverse the sign of the torque. Figure 9 allows for a comparison
of the cumulative torque for three different values of the disk
thickness: H/r = 0.04 (top), 0.05 (center), and 0.07 (bottom)
(see the figure caption for further details). A closer inspection
of dT /dM and TCM in Figure 8 (left) and of the cumulative
torque in Figure 9 (top) indicates that the total (positive) torque
is basically driven by Lindblad resonances and that corotation
torques are unimportant (TCM does not vary significantly over
the radial width of the corotation region), as also argued by
Morbidelli & Crida (2007).

It thus appears from Figures 8 and 9 that the discriminant
factor for outward, stalled, or inward migration is the depth
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Figure 7. Surface density distribution obtained from 3D calculations of a disk with H/r = 0.04 (top) and 0.07 (middle). The angle φJ is the azimuth of the interior
planet, Jupiter. The turbulence parameter αt is 0.005 in both cases. A zoom of the region around the planets is shown in the right panels. The gray scale (color scale)
is logarithmic and given in units of Ms r−2

1 , where r1 indicates the radius r = 1 (i.e., the unit of length). The bottom panels show the vertical stratification of the mass
density, ρ, at the disk azimuth φJ = φS for H/r = 0.04 (left) and 0.07 (right). The angle ϑ = π/2 − θ is the disk’s latitude and the gray scale (color scale) is in units
of Ms r−3

1 .

(A color version of this figure is available in the online journal.)

Figure 8. Azimuthally averaged surface density (long-dashed line), torque per unit disk mass (short-dashed line) exerted on the inner planet, and cumulative torque
(Equation (20)) acting on the inner planet (solid line) for the same models as in Figure 7 (cases with H/r = 0.04 and 0.07 on the left and right, respectively). Quantity
dT /dM is normalized to 103GMs (M1/Ms )2/a1 (a1 is the semimajor axis of the interior planet). The surface density and cumulative torque are normalized by their
absolute values at r/a1 = 2. The peaks occurring at the planets’ orbital radii (due to mass accumulation within the Roche lobe) have been removed from the surface
density profile. Results displayed here were obtained from 3D calculations and averaged over a few orbital periods of the outer planet.
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Figure 9. Cumulative torque, Equation (20), exerted on the interior planet by a
3D disk for which the turbulence parameter is αt = 0.005 and the thickness is
H/r = 0.04 (top), 0.05 (center), and 0.07 (bottom). Quantity TCM is normalized
to 10−3GM2

s (M1/Ms )2/a1, where a1 is the semimajor axis of the interior planet.

(and width) of the outer planet’s gap. If the outer planet opened
a very deep and sufficiently wide gap, the inner planet would be
subjected only to a one-sided Lindblad (positive) torque exerted
by the interior disk that, to within a factor of order unity, can be
written as (see Lubow & Ida 2010 and references therein)

TOS ∼ a4 Ω2 Σ
(

Mp

Ms

)2 (
a

Δ̃

)3

, (21)

where Δ̃ = max (H,RH). The concept of one-sided torque is
very useful to evaluate the presence of a tidally induced gap,
i.e., condition (3) above. To first-order approximation, a density
depletion begins to form when the one-sided torque exceeds
the viscous torque (see Section 2.1), TOS � Tν , which yields a
simple order-of-magnitude condition q2 � 3παt(H/a)2(̃Δ/a)3

(see also Papaloizou & Lin 1984; Ward & Hahn 2000), or

g = q√
3παt

( a

H

)(
a

Δ̃

)3/2

� 1. (22)

This conditions should be regarded as a measure of how much
the density along the planet’s orbit is depleted, hence it can
be considered a condition for gas depletion. A condition for
tidal truncation (gap formation) is then g 
 1 (see also Lin
& Papaloizou 1986b). If predictions from the inequality (22)
are compared with results from direct 3D calculations (DL08,
Figures 6 and 8), one finds that g ≈ 1 corresponds to a ∼20%
density depletion (relative to the unperturbed state, i.e., with no
planet), and g ≈ 2.7 to ∼60% depletion. If applied to Saturn in
the disks of Figure 8, g ≈ 3.4 for a density depletion of roughly
75% (left panels) and again g ≈ 1 for a density drop of ∼20%
(right panels).
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(A color version of this figure is available in the online journal.)

3.3. Orbital Migration Rates

In order to derive migration rates, we shall assume that the
orbits of the interior and exterior planets, Jupiter and Saturn,
respectively, are in the 3:2 mean motion resonance and that
this resonance is maintained during migration. Results from a
calculation that support this assumption are plotted in Figure 10.
All calculations resulting in outward migration behave similarly,
but there are also instances in which the resonance is broken (see
below). Since the ratio a2/a1 is supposed to be a constant, we
concentrate on the migration rate of the interior planet, Jupiter.
We seek an expression for ȧ of the form

da

dt
= ȧref k1(Σ) k2(a) k3(g), (23)

where ȧref is a reference migration speed, and k1, k2, and k3 are
dimensionless functions. To derive such expression, we employ
results from both 2D and 3D calculations. In this section, the
planets are fully formed since the beginning of the calculations
and non-accreting.

In Figure 11 (top-left panel), the semimajor axis evolution of
the reference model is shown for both planets (see the figure
caption for details). The disk has an aspect ratio H/r = 0.04
and turbulence parameter αt = 0.005. At r = 1 AU, the surface
density is Σ1 = 50 g cm−2 at time t = 0. This value is chosen
from the disk evolution calculations discussed in Section 2.4,
which show that �50% of disks have Σ1 � 50 g cm−2 after
∼1 Myr. Following Pierens & Raymond (2011), we set a1 =
1.5 AU and a2 = 2 AU at t = 0 (see the caption of Figure 11 for
further details), slightly outside the 3:2 mean motion resonance
(see Figure 10). In the top-right panel of the figure, a comparison
between 2D and 3D calculation results is presented. The 3D
migration rate is about 25% smaller than the 2D one, which
correction we apply to all 2D results. Note that this comparison
is carried out at the same numerical resolution in the r – φ
plane (see Section 3.1). The parameter that may produce the
largest differences between 2D and 3D outcomes is the disk
thickness. In this case, however, we rely only on 3D calculations
to approximate Equation (23). Similar plots are shown in the
bottom panels of Figure 11, but for the orbital eccentricity. For
the duration of the evolution we consider, the eccentricity of

11



The Astrophysical Journal, 757:50 (23pp), 2012 September 20 D’Angelo & Marzari

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 0  5000  10000  15000  20000  25000  30000

a r
ef

 [A
U

]

Time [yr]

Saturn
Jupiter

 1.495

 1.5

 1.505

 1.51

 1.515

 1.52

 1.525

 0  1000  2000  3000  4000  5000  6000  7000

a r
ef

 [A
U

]

Time [yr]

2-D
3-D

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5000  10000  15000  20000  25000  30000

e r
ef

Time [yr]

Saturn
Jupiter

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  1000  2000  3000  4000  5000  6000  7000

e r
ef

Time [yr]

2-D
3-D
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(A color version of this figure is available in the online journal.)

Jupiter does not exceed ∼0.03 in any of the models discussed in
this section. The orbital eccentricity of the exterior planet grows
larger, to values e2 ∼ 0.1 (see also Pierens & Raymond 2011).

As mentioned above, Figures 10 and 11 indicate that outward
migration can be activated also if orbital configurations are
external, but somewhat near, the 3:2 commensurability. This
effect is related to the gap widths and the extent to which density
perturbations compound. In this context, orbital eccentricity
may play some important role, since it affects the shape of a
gap (D’Angelo et al. 2006).

In Section 3.2, we argued that the torque exerted on
Jupiter would tend to the one-sided Lindblad torque TOS
(Equation (21)), if Saturn (i.e., the exterior planet) carved a
very deep and wide gap in the disk. In the opposite limit of very
large disk thickness, H, and/or viscosity parameter, αt, neither
Jupiter nor Saturn would be capable of depleting the disk sig-
nificantly and therefore it is expected that the torque exercised
upon the interior planet will be of type I (Ward 1986; Lin &
Papaloizou 1986a)

TI ∼ −a4 Ω2 Σ
( a

H

)2
(

Mp

Ms

)2

, (24)

where, again, we neglect a factor (typically) of the order of unity
in front of the right-hand side. Since both TOS and TI are linear
in Σ, and since in the limit of zero orbital eccentricity

da

dt
= 2T

aΩMp

, (25)

one obvious guess is to approximate k1 as a linear function. In
the left panel of Figure 12, the migration velocity ȧ of the inner
planet from calculations (symbols), normalized to the velocity
from the reference model (Figure 11), is plotted against the
value of the normalized Σ. Here the value of the surface density
is that at a distance of 5.5 RH,1 from the (inner) planet’s orbit and
interior to it. A function proportional to Σ (solid line) appears
a reasonable approximation of k1 over the range of densities
shown in the figure. Hence, we will assume that k1(Σ) = Σ/Σref ,
where the density is sampled as stated above.

We note in passing that if the interior, and hence the exterior,
planet is subjected to a torque of the type given in Equation (24),
the resonance may be broken since the inner, more massive
planet may drift inward at larger speed than the outer, less
massive planet. This is indeed observed in some calculations
of relatively thick disks, as illustrated in Figure 13 (see the
figure caption for further details).

The form of function k2 can be guessed following a similar
line of argument. In their natural units of a2Ω2 (times a mass),
both torques TOS (Equation (21)) and TI (Equation (24)) scale
as a2Σ (the dependence on H/a is considered later), which can
be seen as a measure of the local disk mass. Therefore, if Σ
was constant, ȧ ∝ a2 in units of aΩ (see Equation (25)) and
thus ȧ would scale as a3/2. In the right panel of Figure 12,
the migration speed of the inner planet from calculations
(symbols), normalized to the reference migration speed, is
plotted as a function of a, normalized to the semimajor axis in
the reference model, aref . Also in this case, the approximation
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several tens of years and then a linear fit to the data is performed using a base time span of one to several thousand years.

(A color version of this figure is available in the online journal.)

 0.85

 0.9

 0.95

 1

 1.05

 0  5000  10000  15000  20000

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

a/
a(

t=
0)

a 2
/a

1

Time [yr]

Jupiter
Saturn

a2/a1

Figure 13. Semimajor axes vs. time of a Jupiter–Saturn type system evolving in
a 3D disk with H/r = 0.07, αt = 0.005, and an initial Σ at 1 AU of 50 g cm−2.
Each semimajor axis is normalized to its initial value. The planets are subjected
to disk torques after the first 1500 years. The planets undergo divergent inward
migration.

(A color version of this figure is available in the online journal.)

seems satisfactory (solid line) and so we shall assume that
k2(a) = (a/aref)3/2.

In Section 3.2, it was anticipated that the depth and width
of the density depletion produced by the exterior planet play
a fundamental role in determining magnitude and direction of
the interior planet’s migration, and hence of the pair as a whole.
Quantity g (Equation (22)) can be used as a proxy to discriminate
among the various situations, i.e., different combinations of H/r
and αt (and q) that may affect Σ. On account of the compact
orbital configuration, since q1 > q2 we have that g1 > g2
(unless H/r and/or αt are rapidly varying with disk radius). If
g2 
 1, then g1 
 1, and the interior planet is likely subjected
to a torque whose limit is the one-sided Lindblad torque in
Equation (21) and the two planets migrate outward. Otherwise,
if g1 	 1, then g2 	 1, and migration will be dictated by a type
I torque (Equation (24)) and be directed inward.

The migration velocity of the inner planet should depend
on both g1 and g2. However, in the present context g2 should
have the larger impact of the two and therefore, for the sake of
simplicity, we assume that function k3 depends only on g2. In
particular, referring to the value of g2 in the reference model
(Figure 11) as gref and indicating g2 simply as g, k3 will be
approximated as a function of g/gref . Since it is unclear how the
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Figure 14. Normalized migration speed ȧ/ȧref for various values of the ratio
g/gref , calculated for the exterior planet, according to Equation (27). All of the
models are run for an evolution time of between 6×103 and 1.2×104 years. The
thick horizontal line segment represents the type I migration (see Equation (24))
that the inner planet would be subjected to if the disk had a relative thickness
H/r = 0.1.

(A color version of this figure is available in the online journal.)

agreement between 2D and 3D calculations varies as a function
of the disk thickness (it should likely worsen as H increases), we
only use 3D calculations to find an approximation to function
k3. Figure 14 shows the ratio ȧ/ȧref obtained from calculations
for various values of the ratio g/gref . The thick horizontal line
in the plot indicates the type I migration speed that would
apply to the inner planet if H/r = 0.1, corresponding to the
value used for leftmost data point on the graph. For reference,
the normalized migration speed corresponding to the one-sided
torque in Equation (21) would be ∼90. The broken line is a linear
interpolation of the data, which will be used as a representation
of k3.

3.4. Approximation of the 3:2 Resonant-orbit
Migration Velocity

Summarizing the results of Section 3.3, we write the migra-
tion speed of the interior planet as

da

dt
= ȧref

(
Σ

Σref

) (
a

aref

)3/2

k3(g/gref), (26)

where the dimensionless function k3 is obtained via linear
interpolation of the numerical data in Figure 14, i.e., the thick
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solid line in the figure. The reference values in Equation (26)
are taken from the reference model, corrected for 3D effects,
as discussed in Section 3.3: ȧref = 2.7 × 10−6 AU yr−1 for
Σref = 42 g cm−2 and aref = 1.57 AU. Recall that both Σ and
Σref are evaluated at a distance of 5.5 RH,1 interior of the inner
planet’s orbit. The argument of function k3 is given by

g

gref
=

√
αt,ref

αt

(
Href

H

) (
RH

Δ̃

)3/2

, (27)

where αt,ref = 0.005
√

1 AU/aref , (H/a)ref = 0.04, and Δ̃ =
max (H,RH). Recall that here parameters g and gref are com-
puted from Equation (22) are applied to the exterior planet. For
a mass ratio q different from that of the reference model, the
right-hand side of Equation (27) should be multiplied by q/qref .
Equation (26), without the correction due to 3D effects, is also
in reasonable agreement with the results presented by Pierens &
Raymond (2011) in their Figure 21, for a disk of 0.4 MJ within
1.5 AU (Σ ∼ 500 g cm−2 at 1 AU). As explained above, the
exterior planet’s orbit may not always be resonant with that of
the interior planet, when migration is inward (see Figure 13).
Nonetheless, for the outer planet’s orbit we set a2 = (3/2)2/3a1.

Equation (26) predicts stalling points (where k3, and hence
ȧ, is ≈0) at g0 ≈ 0.8 gref , which will be regarded as a
nominal value. But, notice that since the approximation to
k3 is sampled at a limited number of points, its zero could
be located at a somewhat different abscissa, yet it is located
between 0.7 gref and gref . In principle, there could be multiple
stalling points in a disk (if disk properties are not monotonic),
which would represent locations of stable equilibrium since
they are convergent radii for the planets’ semimajor axes. The
argument, however, is based on the assumption that the 3:2
commensurability is preserved even for inward migration. This
is not true in general (as illustrated, for example, in Figure 13),
but it further requires that the inward migration of the exterior
planet be faster than that of the interior planet and that the
condition for gap overlap (see condition (2) in Section 3.2) be
satisfied. When these conditions are not met, the pair of planets
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(A color version of this figure is available in the online journal.)

can migrate past a stalling point, toward the star. This may
happens, for example, if disk temperature and viscosity are low
enough so that both planets open up a gap and drift according
to type II migration before capture into resonance occurs.

Some constraints on the range of outward migration predicted
by Equation (26) can be derived for the disk models discussed
in Section 2.4. The disk thickness, H, is affected by internal
(viscous) heating typically over the first few million years of
evolution (see Figure 3, left). If we neglect that source of
heating, H can be approximated by using Equation (16) and
then Equation (27) can provide a rough measure of a disk’s
radial range over which the planets can drift away from the
star, as shown in Figure 15. The addition of internal heating
would raise the value of H, hence reducing the ratio g/gref ,
which suggests that outward migration may not be activated
in the warm interiors of a young disk. The radial region over
which a curve extends above or, to some degree, inside the
shaded area is favorable to outward migration. The intersection
of a curve with the horizontal line in the shaded area gives
the nominal radius of the stalling point of each planet (see
above). According to the plot, outward migration of a Jupiter-
mass planet locked in the 3:2 mean motion resonance with a
Saturn-mass planet cannot proceed beyond ∼7 AU (top x-axis).
The numerical experiments discussed in Section 4 are broadly
consistent with this prediction.

The validity of Equation (26) for planet-to-star mass ratios
different from those adopted here (q1 = M1/Ms = 9.8 × 10−4

and q2 = M2/Ms = 2.9×10−4) was not investigated. Parameter
g (Equation (22)) is ∝q2 if RH < H and ∝√

q2 otherwise.
Therefore, a faster outward migration might be expected as q2
increases, provided that the ratio q1/q2 stays roughly constant.
Condition (2) of Section 3.2, along with the requirement of
Hill stability, suggests that, as q2 increases beyond ∼0.001, the
2:1, rather than the 3:2, commensurability may be available to
activate outward migration for a ratio q1/q2 ≈ 3, in accord
with the findings of Crida et al. (2009). This is schematically
illustrated in Figure 16 (see the figure caption for further details).
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As the ratio q1/q2 approaches 1, the shaded area in the graph
shifts upward.

4. LONG-TERM 3:2 RESONANT-ORBIT MIGRATION
OF JUPITER AND SATURN

The results from the disk models of Section 2.4 can be
combined with the results of Section 3.4 to study the migration
of a resonant-orbit pair of planets with masses corresponding
to those of Jupiter and Saturn. Here we shall assume that, by a
time τp, both planets have fully formed, i.e., they have reached
their final masses, and their orbits have become locked in the
3:2 mean motion resonance. Planet formation calculations of a
giant planet via core nucleated accretion (e.g., Hubickyj et al.
2005; Alibert et al. 2005; Lissauer et al. 2009; Movshovitz
et al. 2010; Mordasini et al. 2011) indicate that the formation
time of Jupiter is greater than ∼1 Myr, although this timescale
is affected by the formation of the solid core and thus by the
distance where the core forms. The formation of Saturn, the
exterior planet, seemingly takes somewhat longer (see, e.g.,
Pollack et al. 1996; Dodson-Robinson et al. 2008; Benvenuto
et al. 2009). In addition to the formation time, there is the time
required by convergent orbital migration to bring the planets
into mean motion resonance (which is also included in τp).
Assuming that τp is determined mainly by the formation time
and for lack of better constraints, we choose three reference
times τp of 1, 2, and 3 Myr (e.g., Kenyon & Bromley 2009;
Bromley & Kenyon 2011).

It is important to bear in mind that longer timescales are
possible, whereas it is unclear if shorter timescales are feasible.
In fact, there are also observational constraints suggesting that
Jupiter formed after several million years (see Scott 2006 and
references therein).

The disk evolution models presented in Section 2.4 are
recalculated, starting from time τp and using Equations (26)
and (27), to integrate the orbital radius of the interior planet. The
orbit of the exterior planet is constrained by the 2:3 resonant-
orbit requirement with the interior planet (see Section 3.4). In
particular, the disk models provide the quantities Σ, αt, and
H, used in Equations (26) and (27), as they evolve over time.
The effects of the torques exerted by the planets on the disk
are not taken into account in the 1D models because, for current
purposes, the feedback of the tidal field on the disk and its effects
on the migration rates are included in the 2D and 3D calculations
discussed above. The mass of both planets is constant, but we
will contemplate the impact of gas accretion in Section 5. Since
τp � 1 Myr, useful disk models are those for which τD > 1 Myr
(and �20 Myr).

The evolution of a1, the interior planet’s orbital radius, is
illustrated in Figure 17 for selected cases (see the figure caption
for details). The complete list of the asymptotic values of a1,
a∞, is reported in Table 2 for τp = 1 Myr. In some cases,
the orbital radius remains nearly unchanged. This happens as a
result of Σ (around r ∼ a1) being too low, at time t = 1 Myr, for
any significant amount of angular momentum to be transferred
to/from the disk. Obviously, this result holds for τp > 1 Myr.

The outcomes of Figure 17 and Table 2 can be interpreted
with the aid of Figure 15. For the highest viscosity regime,
outward migration is not activated, and both planets migrate
inward regardless of other disk parameters. At the intermediate
viscosity, ȧ1 may be positive, but the nominal stalling radius
is within 2 AU, hence the interior planets may not proceed
beyond this distance. The lowest viscosity regime offers the
widest range of outward migration, resulting in nominal stalling

radii of ≈6.5 AU (β = 1/2), ≈2.4 AU (β = 1), and ≈1.6 AU
(β = 3/2). Because of the variation of ν with radius, as the
density steepens, the nominal stalling radius moves inward.
At even smaller viscosity, migration of the resonant pair may
proceed to larger distances, but in this case there are at least
two possible issues that may arise. One is related to the disk
lifetime, which increases as ν decreases (see Table 1). The other
is related to the mode of migration of the exterior planet prior to
resonance capture, which may transition to type II at low enough
viscosity, hence convergent migration toward the interior planet
may be compromised (see Section 7).

Figure 15 can also assist in extending the results illustrated
in Figure 17, and reported Table 2, to different initial orbital
radii. Assuming that viscous heating does not represent a
major source term in the energy budget, Equation (14), a
pair of planets that become locked in the 3:2 mean motion
resonance inside the stalling radii (of each planet) will migrate
toward those locations. Whether or not the planets may reach
those radii depends on the gas density level in the disk. At
ν1 = 4 × 10−6 r2

1 Ω1, models for which a∞ ≈ 6.5 AU for
β = 1/2, or ≈2.4 AU for β = 1, or ≈1.6 AU for β = 3/2,
have reached their stalling radii. If the pair becomes locked into
resonance outside the stalling radii, the planets will converge
toward, or transit across, them depending on the disk conditions
(see discussion in Section 3.4).

Among the sets of parameters listed in Table 2, only five are
compatible with the outward migration of the interior planet
beyond ∼5 AU (when resonance locking occurs at ∼1 AU).
Only two sets of parameters remain compatible with this
requirement if the formation timescale is τp = 2 Myr, and only
one if τp = 3 Myr, as illustrated in the left panel of Figure 18
(see the figure caption for further details).

In order to derive a distribution of the asymptotic orbital
radii of the interior planet, a∞, for each pair of values (M0

D, β)
listed in Table 2, ν1 and f41 are varied randomly between the
corresponding minimum and maximum values reported in the
table, and τp is varied randomly between 1 and 3 Myr. A total
of over 1200 models were computed and the histogram of
the results is shown in the right panel of Figure 18. Overall,
there is a 97% probability that the interior planet will achieve
an asymptotic radius a∞ � 3 AU and a 98% probability that
a∞ � 4 AU.

5. GAS ACCRETION AND PLANET GROWTH

As mentioned in Section 3.2, the first condition necessary
to activate the outward migration mechanism of resonant-orbit
planets is that the interior planet’s mass must exceed that of the
exterior planet. In the limit of equal mass planets, one expects the
outer Lindblad torque exerted on the exterior planet to overcome
the inner Lindblad torque exerted on the interior planet (see, e.g.,
Morbidelli & Crida 2007). Several outcomes are then possible,
including breaking of the resonance, scattering, and inward
type II migration of both planets.

The neglect of gas accretion, especially on the exterior planet,
represents possibly the most serious limitation of this mecha-
nism. Hydrodynamical calculations can provide maximum, or
disk-limited, gas accretion rates for such planets. Although they
do not necessarily represent the actual accretion rates, formation
models of Jupiter (Lissauer et al. 2009) indicate that once run-
away accretion begins, a giant planet does grow at a disk-limited
accretion rate. In a disk with H/r � 0.05 and αt � 0.005, an
isolated Saturn-mass planet may accrete gas at a rate a few times
as large as that of a Jupiter-mass planet at the same location in
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Figure 17. Evolution of the orbital radius (a1) of the interior planet computed by integrating Equation (26) along with the disk models of Section 2.4 and assuming a
formation timescale τp = 1 Myr (see the text). The initial disk mass, in units of Ms , is indicated in the top-right corner of the left panels. The initial “slope” parameter
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(A color version of this figure is available in the online journal.)
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planet obtained by randomly varying the parameters ν1, f41, and τp . See the text for further details.

(A color version of this figure is available in the online journal.)

the disk (see Lissauer et al. 2009 and references therein). In a
disk with H/r 
 0.05 or αt 
 0.005, these rates would be
comparable (DL08). Even assuming the same accretion rate for
both planets, Ṁp, the initial growth time, Mp/Ṁp, of Saturn is

shorter than that of Jupiter, hence Saturn may approach the mass
of Jupiter more or less quickly, depending on the local values of
Σ and H/r . Furthermore, there is no obvious reason as to why
Jupiter and Saturn should accrete gas at a disk-limited rate and
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Table 2
Asymptotic Orbital Radii for τp = 1 Myr

a∞a

βb = 1/2 β = 1 β = 3/2

M0
D/Ms ν1

c f41
d = 10 100 1000 1 10 100 0.1 1 10

0.022 4 × 10−6 6.49 3.82 1.50 2.38 2.35 1.81 1.63 1.63 1.60
0.022 8 × 10−6 1.70 1.52 1.50 1.21 1.30 1.50 1.35 1.41 1.50
0.022 1.6 × 10−5 1.23 1.50 1.50 0.95 1.31 1.50 · · · · · · · · ·
0.044 4 × 10−6 6.51 6.50 2.37 · · · 2.38 2.37 1.63 1.63 1.63
0.044 8 × 10−6 1.84 1.71 1.50 1.19 1.20 1.30 1.20 1.27 1.41
0.044 1.6 × 10−5 0.79 1.28 1.50 0.64 0.83 1.41 1.50 · · · · · ·
0.088 4 × 10−6 · · · 6.51 6.50 · · · · · · 2.38 1.63 1.63 1.63
0.088 8 × 10−6 · · · 1.86 1.66 1.19 1.19 1.19 1.07 1.10 1.19
0.088 1.6 × 10−5 · · · 0.70 1.45 0.60 0.60 0.79 1.49 1.50 · · ·

Notes.
a Asymptotic value of the semimajor axis, in AU, of the interior planet’s orbit.
b Initial “slope” of the disk’s surface density.
c Kinematic viscosity at r1 = 1 AU in units of r2

1 Ω1 = (GMs r1)1/2.
d Rate of EUV ionizing photons emitted by the star in units of 1041 s−1 (see Equation (5)).

Figure 19. Disk-limited gas accretion rates, in units of Ms yr−1, of the interior
(thin curve) and exterior (thick curve) planets. The pair is locked in the 3:2 mean
motion resonance and the year count starts after about 6700 years of evolution.
The plot shows only a small time interval to highlight the accretion modulation.
The numerical resolution is such that there are ∼273 and ∼203 grid cells in the
Hill sphere of the interior and exterior planets, respectively.

(A color version of this figure is available in the online journal.)

then suddenly stop accreting despite the continuing supply of
gas from the disk.

The evolution of one high-resolution 3D calculation was
continued by allowing the two planets to accrete gas following
the procedure outlined in DL08, modified to account for
the different local dynamical times6 (i.e., the timescale for
mass removal depends on the planet’s orbital frequency). Disk
conditions are similar to those applied to the reference model of
Section 3.3. The disk-limited accretion rates of the two planets
are shown in Figure 19, where the thicker curve refers to the
exterior planet. Both accretion rates are modulated (notice the
logarithmic scale) over the orbital period due to the eccentric
orbits (D’Angelo et al. 2006), although additional modulations
may be present due to the resonant forcing. For conditions

6 If accretion proceeds through a disk around the planet, as suggested by the
bottom-left panel of Figure 7, Ṁp is equal to the rate at which the nebula
supplies this disk, hence the connection with the orbital frequency.

simulated in Figure 19, the integrated values of Ṁp are very
similar, differing by less than 10%. These rates would yield a
growth time for the exterior planet of a few times 104 years,
typically much shorter than the migration time (see Figure 17).
For comparison, the growth time of the interior planet would be
∼105 years. The net effect of gas accretion could produce a mass
ratio M2/M1 close to 1, or possibly larger (since gas starvation
would likely occur for the interior planet first; see Figure 3).

The orbital evolution of the accreting planets, monitored over
∼1000 years, does not show any significant deviation from the
evolution of the non-accreting planets (the planet masses are
fixed in this case, on account of the little variations expected
over that timescale). However, as explained in Section 6, one or
more accreting planets may change the steady-state structure of
the inner disk, affecting the migration behavior of the planets.

6. GAS ACCRETION AND EFFECTS ON THE DISK

Resolving the problem of the rapid growth of the exterior
planet, in a still relatively massive disk, would remove only one
issue posed by gas accretion. In fact, even if Saturn suddenly
stopped accreting, gas accretion onto Jupiter would continue to
pose a problem. The issue here is not related to the growth of
the interior planet’s mass, but rather to the modification of the
mass flux through the disk, across the planet’s orbit.

As explained in Section 2.1, in a stationary disk the accretion
rate is Ṁ = 3πνΣ and nearly independent of the radius r.
Accretion on the interior (or exterior) planet would change Ṁ .
This phenomenon was analyzed in detail by Lubow & D’Angelo
(2006, hereafter LD06) for the case of a single planet. The
generalization to two planets can be performed by introducing
an average accretion efficiency that quantifies the amount of
gas accretion onto both planets, relative to an average local
accretion rate through the disk.7 However, here we wish to
consider the situation in which the interior planet accretes gas,
but the exterior planet does not. Therefore, the formalism of
LD06 can be applied in a straightforward manner. Let us indicate
with Ṁe = Ṁ = 3πνΣ the accretion rate sufficiently far from

7 As pointed out by LD06, for a given disk, there is a planet mass (M1 + M2,
in this case) beyond which the couple exerted by the planet(s) will make the
accretion disk evolve toward a decretion disk (Pringle 1991).
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Figure 20. Left: azimuthally averaged surface density (solid line), in units of Ms a−2
1 , of a disk with a pair of planets, initially placed in the 3:2 commensurability. The

exterior planet is non-accreting. The interior planet accretes gas with an efficiency parameter E ∼ 6 (see the text). The dashed line indicates the steady-state solution
of LD06 (with a single planet) for E = 6 and an inner disk radius of 0.15 a1. Right: migration track of the interior planet. Data are averaged over ∼50 orbital periods.
The planet begins migrating after 1000 (initial) orbits. The depletion of the inner disk (compare with Figure 8, long-dashed line) is sufficient to deactivate the outward
migration mechanism (compare with Figure 11, top, which has different units on the time axis).

the exterior planet’s orbit (so that it is basically unperturbed) and
with Ṁi the accretion rate inside the orbit of the interior planet.
If there was no sink in the disk, then Ṁi = Ṁe. Yet, since
some material is removed by the planet, in general Ṁi � Ṁe,
which implies a reduction of Σ in the inner disk with respect
to the same disk without the planet. This reduction depends on
the planet’s accretion efficiency E , defined as the ratio of Ṁp

to the accretion rate interpolated at the planet’s orbital radius.
Since Ṁi = Ṁe − Ṁp, one finds that Ṁi = Ṁe/(E + 1). This
result formally applies if the disk’s inner boundary, rmin, is much
smaller than a1. In general, one finds that (see LD06)

Ṁi = Ṁe

1 + (1 − √
rmin/a1)E

. (28)

According to the Equation (28), the surface density in the inner
disk is then expected to be reduced by a factor of the order
of E + 1 (assuming that ν remains unchanged), relative to the
situation in which Ṁp = 0. Accordingly, the (positive) Lindblad
torque (∝ Σ, see Equation (21)) exerted by the inner disk on the
(inner) planet is also expected to decrease. Such effect may slow
down outward migration and may even tip the torque balance in
favor of the negative torque acting on the interior planet.

We estimate the efficiency of accretion, E , allowing for
accretion on the interior planet only by applying the steady-state
solution given by Equation (19) of LD06 as initial condition
and using the iteration procedure outlined in LD06. The disk
configuration is as that of the reference model in Section 3.3,
except for a somewhat smaller disk’s inner radius of 0.15 a1 and
for the initial location of the exterior planet (a2/a1 = 1.315;
see Figure 10). We find that E ∼ 6. There are fluctuations
over time of both Ṁp and Ṁ (see Figure 19) and therefore the
accretion efficiency is taken as the ratio of averaged quantities.
The estimated variation is ΔE ∼ 1. The accretion rate ratio is
Ṁi/Ṁe ∼ 0.2, whereas the corrected value, that is the ratio
estimated for rmin/a1 	 1, is ∼0.14 (see Equation (28)).

In Figure 20 (left panel), the surface density after 1000
orbits of the interior planet (solid line) is compared with the
steady-state solution (Equation (19)) of LD06 for a disk with a
single planet (dashed line). The reduced mass accretion past the
planets, Ṁi, results in a lower surface density (compare with the
long-dashed line in the left panel of Figure 8). The migration of
the resonant-orbit pair (initially placed in the 3:2 mean motion

resonance) in the stationary surface density of Figure 20 (left
panel) is shown in the right panel. The reduced positive Lindblad
torque by the inner disk cannot overcome the negative torque
by the disk outside the planet’s orbit, resulting in a migration
speed ȧ1 � 0 (note that the units of time in Figure 20 are initial
orbits of the inner planet, not years).

7. THE 2:1 MEAN MOTION RESONANCE

A pair of planets undergoing convergent migration will
first cross the 2:1 commensurability, before approaching the
3:2 mean motion resonance. While the latter resonant-orbit
configuration may activate the outward migration mechanism
discussed here (if M1/M2 ≈ 3), the former may not (see
Figures 6 and 16). But a pair of giant planets interacting with a
gaseous disk can indeed be caught in this resonance, as shown
by several studies (see, e.g., Kley 2003; Kley et al. 2004;
Pierens & Nelson 2008; Zhang & Zhou 2010). We therefore
seek conditions such that the outer planet may or may not
overcome the barrier represented by capture in the 1:2 mean
motion resonance, while migrating toward the inner planet.

In the case of convergent migration, the condition for capture
of the exterior planet in a resonant orbit with the interior planet
requires that the relative migration speed be such that∣∣∣∣darel

dt

∣∣∣∣ <
Δares

Tl

, (29)

where ȧrel = ȧ2 − ȧ1, Δares is the resonance amplitude in
semimajor axis, and Tl is the resonant libration period, i.e.,
the period of the critical angle (e.g., Michtchenko et al. 2008)
ψ1 = 2(M2 + �2) − (M1 + �1) − �1, where M indicates the
mean anomaly and � the argument of periapsis. Recall that in
the case of a more massive interior planet, ψ1 is a real resonant
angle as it displays dynamical libration. For low-eccentricity
orbits (e � 0.1), Mustill & Wyatt (2011; see also Quillen 2006)
approximate the critical relative velocity for capture of the outer
planet in the 1:2 mean motion resonance as∣∣∣∣darel

dt

∣∣∣∣ � 1.2

(
M1

Ms

)4/3

a2Ω2, (30)

where it is assumed that Ω1/Ω2 = 2. Capture appears to be
probabilistic at higher eccentricities, with a critical relative
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velocity that becomes somewhat larger for larger eccentricities.
Here we should stress, however, that the estimate of the critical
velocity in Equation (30) assumes captures of “particles,” i.e.,
M1 
 M2. If the planet transits the 1:2 orbital resonance with
the interior planet, capture in the next first-order resonance, the
2:3, requires that |ȧrel| � 14(M1/Ms)4/3a2Ω2.

We shall assume that the inward migration speed of the
interior planet is negligible compared to that of the exterior
planet, thus ȧrel ≈ ȧ2. The exterior planet may, in principle,
undergo a mode of rapid migration dominated by corotation
torques (type III). D’Angelo & Lubow (2008) separated this
mode of migration from type I mode by analyzing the torque
density distributions and the fluid trajectories in the corotation
region of the planet. They found that two conditions must be
satisfied for the activation of type III migration. The first is that
the migration timescale across the coorbital region is shorter
than the timescale required to clear a gap over that same region.
The second is that the unperturbed surface density at the planet
location is such that (

a2Σ
Ms

)
�

(
H

a

)2

, (31)

where disk quantities are sampled at a = a2.8 If the first
condition is fulfilled, the second condition requires that Σ �
10−3 Ms a−2 for H/a � 0.03, which corresponds to a density
in excess of 103 g cm−2 in the disk region within 3 AU of the
star. According to Figures 4 and 5, this requirement is not met,
thus we can assume that the outer planet migrates at a rate in
between type I and type II migration rates. Assuming a speed
of the order of type I and using Equation (24), one finds∣∣∣∣darel

dt

∣∣∣∣ ∼
( a

H

)2
(

M2

Ms

)(
a2Σ
Ms

)
a2Ω2, (32)

all disk quantities being evaluated at a = a2. In the equation
above, a numerical factor of the order of unity multiplying
the right-hand side is neglected. This is done to account for
the fact that the density is partly depleted and the actual
migration rate deviates somewhat from the type I rate (see
DL08). Moreover, we find that Equation (32) gives a reasonable
order-of-magnitude approximation to numerical results.

Therefore, capture of the exterior planet in the 1:2 mean
motion resonance with the interior planet may occur if the
unperturbed surface density is lower than a critical value,
so that (

a2Σ
Ms

)
�

(
M1

Ms

)4/3 (
H

a

)2 (
Ms

M2

)
. (33)

If H/a � 0.03, then a surface density Σ � 3 × 10−4 Ms a−2,
or about 650 g cm−2 at ≈2 AU, may be sufficient to allow for
capture in this resonance. If the exterior planet crossed the 1:2
commensurability while it had a much lower mass, say ∼20
Earth masses, this critical density would not decrease, even
accounting for a numerical factor of 4–5 in Equation (32) and
restoring a full type I migration.

The inequality in Equation (33) suggests that if a2
2Σ/Ms �

5 × 10−4 in a disk with H/r ∼ 0.04, the exterior planet may

8 The condition represented by Equation (31) is also consistent with the case
reported by Masset & Snellgrove (2001), which show an exterior planet
migration dominated by corotation torques. In that case, a2

1Σ/Ms = 6 × 10−4,
H/r = 0.04, and a2 = 2 (in their units). Hence, evaluating at the initial
position of the exterior planet, one has a2

2Σ/Ms = 2.4 × 10−3 > (H/a2)2.

transit the 1:2 mean motion resonance with the interior planet.
These conditions are realized, for example, in the model of
Masset & Snellgrove (2001, see their Figure 1) and in the models
of Pierens & Nelson (2008, see their Figure 5), considering that
the density must be rescaled at the radius of the resonance
crossing, where a2 ≈ 1.5 (in the units of Masset & Snellgrove
2001) and a2 ≈ 1.3 (in the units of Pierens & Nelson 2008). The
solar nebula models considered here, however, suggest that if
the orbits approach the 1:2 commensurability in the inner disk,
after ∼1 Myr, then capture is likely in a statistical sense (see
Figure 5).

Equation (33) represents only an approximate condition for
resonance locking because orbital eccentricity may play some
role and because Equation (30) was not derived for the capture
of similar mass bodies. In order to provide a further test on
conditions that may lead to locking of the exterior planet in
the 1:2 commensurability, calculations along the lines of those
presented in Section 3.3 are performed for varying initial surface
density at 1 AU, Σ1. The disk conditions are those used for the
reference model in Figure 11, except that the exterior planet
is placed initially on a circular orbit at a distance of 2.8 AU
from the star, outside the resonance location with the interior
planet, and both begin migrating after 500 years. Results from
these calculations are illustrated in Figure 21, which shows the
ratio of the mean motions. The top panel refers to values of
Σ1 compatible with those found in the disk evolution models at
the time of planet formation (see Figure 5, left). In these cases,
the exterior planet becomes locked in the 1:2 orbital resonance.
Since Ω̇ = −(3/2)Ωȧ/a, assuming that Ω1 is nearly constant,
then

d

dt

(
Ω1

Ω2

)
∼ −3

2

(
Ω1

Ω2

)( a

H

)2
(

M2

Ms

)(
a2Σ
Ms

)
Ω2, (34)

where quantities depending on a are evaluated at a = a2.
Predictions from Equation (34) are superimposed (circles) to
Ω1/Ω2 curves in Figure 21, indicating that the exterior planet
does approach the interior planet, at least initially, with a radial
speed on the order of the relative velocity given by Equation (32).

The bottom panel of Figure 21 shows cases with higher initial
densities in which capture of the exterior planet is in the 1:2
or the 2:3 orbital resonance. There is overall agreement with
Equation (33), and transit across the 1:2 orbital resonance is
obtained for r2

1 Σ1/Ms = 6 × 10−4. We did not investigate the
exact density value at which locking transitions from one to the
other resonant configuration, but it is likely that there exists an
interval of values for which the result is stochastic.

The inset in the top panel of Figure 21 illustrates the migration
of the interior planet after resonance locking. In the bottom
panel, migration is outward for the case that shows locking of
the exterior planet in the 2:3 mean motion resonance with the
interior planet, inward in the other cases. These results confirm
what was argued above and suggested by Figures 6 and 16:
the 2:3 orbital resonance leads to outward migration, the 1:2
resonance does not.

A small disk aspect ratio may help preventing capture of
the exterior planet in the 1:2 commensurability with the interior
planet. However, the condition for gap formation (Equation (22))
suggests that the migration of the exterior planet may transition
to type II, and ȧ1 cannot be neglected. In this case, since ν ∝ aβ

and ȧ ∼ ν/a ∝ aβ−1, convergent migration requires that β > 1.
By applying Equation (30), one finds that if the kinematic
viscosity at 1 AU is ν1 � (M1/Ms)4/3(1 AU/a2)(β−1/2) then
convergent type II migration may still lead to orbital locking
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Figure 21. Ratio of the mean motions vs. time for a pair of planets undergoing
convergent migration. The value of the disk’s surface density at 1 AU is indicated
at the bottom of each panel, in units of g cm−2, for the curves of different
thickness. The top panel illustrates evolutions for typical densities obtained
from the disk models of Section 2.4. Circles are predictions from Equation (34).
The inset shows the migration tracks of the interior planet after resonance
locking occurs. At higher densities, capture of the exterior planet transitions
from the 1:2 to the 2:3 commensurability, as illustrated in the bottom panel.

(A color version of this figure is available in the online journal.)

in the 1:2 mean motion resonance. However, this estimate is
complicated by the fact that if the planet mass becomes larger
than the local disk mass, a likely situation at late evolutionary
times, ȧ is also proportional to a2Σ/Mp due to intervening inertia
effects (see, e.g., Syer & Clarke 1995; Ivanov et al. 1999).
Hence, the interior planet would likely slow down before the
exterior planet would.

7.1. Saturn Formation within the 1:2 Orbital
Resonance with Jupiter

We shall consider here the possibility that Saturn forms within
the 1:2, but outside the 2:3, commensurability with Jupiter, while
both planets are beyond several AU from the Sun. If during
the course of its evolution Saturn remains inside the 1:2 mean
motion resonance with Jupiter, then capture in the 2:3 orbital
resonance is still possible.

In order to maintain such a compact orbital configuration
throughout the evolution of the two planets, the migration
rates must be very similar over time. In fact, if the constraint
1.31 < a2/a1 < 1.59 has to be preserved, a change of this
ratio of at most 20% over the formation timescales essentially
implies that a2/a1 is roughly constant. Therefore, by taking the

time derivative, one has

ȧ2

a2
∼ ȧ1

a1
. (35)

But since the interior planet has to grow faster than the exterior
planet does, their migration rates are bound to differ, at some
point in time at least. Thus, the condition in Equation (35) is
unlikely to be (always) satisfied and the difference a2 − a1 will
either increase or decrease.

If Saturn forms within the 1:2 orbital resonance and Jupiter
has still to acquire most of its mass, there will be a phase when
the migration rate of Jupiter significantly exceeds that of Saturn
(presumably, around the time of runaway gas accretion; see
DL08). Hence, it is most likely that Saturn is left behind and
probably becomes trapped in the 1:2 commensurability. Instead,
if Jupiter has already acquired the bulk of its mass, the opposite
is likely to occur and most probably Saturn becomes locked in
the 2:3 orbital resonance while it is still growing.

We consider this last situation in some detail by performing
3D calculations similar to those of the reference model of
Section 3.3, but applying a lower mass to the exterior planet:
q = M2/Ms = 10−4 and 2×10−4. Equation (27), appropriately
modified for mass ratios q �= qref (see the discussion after
Equation (27)), suggests that if q ≈ 10−4 migration of the
pair is inward, but if q ≈ 2 × 10−4 then migration is outward.
Direct calculations agree with these predictions, as indicated by
the cumulative torques shown in the top-left panel of Figure 22
for three different values of M2 (see the caption for details).
The density depletion due to the tidal torques of the exterior
planet amounts to ∼35% for M2 = 10−4 Ms and to ∼60%
for M2 = 2 × 10−4 Ms (top-right panel), in accord with the
expectations of Equation (22). The bottom panels of Figure 22
show vertical distributions of the mass density (see the figure
caption).

Therefore, if Saturn grows while locked in the 2:3 orbital
resonance with Jupiter, there is a mass smaller than Saturn’s final
mass for which migration stalls and then reverses, as suggested
by TCM as function of M2 in Figure 22 (top-left panel). This
situation would prevent Jupiter from reaching the inner disk
regions, unless Saturn achieved the mass for migration reversal
when Jupiter is already there. For H/r ≈ 0.04, such mass is
between 10−4 Ms and 2 × 10−4 Ms (and presumably closer to
10−4 Ms for H/r ≈ 0.03), which implies that a substantial
fraction of Saturn’s envelope is acquired in the inner regions of
the solar nebula.

This circumstance, however, would likely be at odds with
the elemental abundances of some species measured in Saturn’s
atmosphere (see Hersant et al. 2008). The abundances relative
to hydrogen of elements such as C, N, S, As, and P are a few
to several times as high as the solar abundances (see Lodders
2003; Asplund et al. 2009 and references therein). In fact, the
presence in large amount of these elements is believed to have
arisen from accretion of gas (e.g., Guillot & Hueso 2006) and/or
solids (e.g., Hersant et al. 2008) in a cold disk environment.

8. SUMMARY AND DISCUSSION

This paper presents results of thermodynamical models of
protoplanetary disks that are constructed by applying ranges of
parameters that may have characterized the early solar nebula
(see Section 2). Disk evolution is driven by viscous torques
and photoevaporation originating from the central star (see
Section 2.1). Thermal balance in the disk is achieved by equating
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Figure 22. Top: cumulative torques (left) exerted on the interior planet and averaged surface density (right), obtained from 3D calculations whose parameters are as
in the reference model of Section 3.3. Different lines types indicate different masses of the exterior planet (M2/Ms ): 2.9 × 10−4 (solid), 2 × 10−4 (long-dashed),
and 10−4 (short-dashed). The torque is normalized to 10−3GM2

s (M1/Ms )2/a1 and Σ is in units of Ms r−2
1 . Bottom: vertical stratification of the mass density at disk

azimuth φJ = φS, in units of Ms r−3
1 , for M2 = 10−4 Ms (left) and 2 × 10−4 Ms (right).

(A color version of this figure is available in the online journal.)

viscous and stellar irradiation heating with radiative cooling
in the vertical direction (see Section 2.2). Only models that
predict disk lifetimes between 1 and 20 Myr are considered
viable representations of the solar nebula (see Table 1), in line
with observations and core-nucleated accretion calculations of
gas giants. Such models provide the physical conditions (see,
e.g., Figure 3) at the time and after the planets acquired most of
their mass (see Section 2.4) and can be used to simulate their
long-term orbital migration.

2D and 3D hydrodynamical calculations are used to quantify
the migration rates of a pair of planets with mass ratios
corresponding to Jupiter’s and Saturn’s, M1/Ms ≈ 10−3 and
M2/Ms ≈ 3×10−4 (see Section 3). The orbits of the planets are
initially placed in proximity of the 3:2 mean motion resonance
(see, e.g., Figure 7). As described by Masset & Snellgrove
(2001), a necessary condition to activate outward migration
is the overlap of the tidal gap carved in the disk by a less
massive, exterior planet with the gap of the more massive,
interior planet (see Figure 8). The relative depth and width of
the gaps provide the sufficient condition (see Section 3.2). High
temperatures and kinematic viscosities inhibit gap formation,
either promoting inward migration (see Section 3.3) or stopping
outward migration (see Section 3.4).

If a near 3:2 commensurability is preserved, there are stalling
radii in the disk, toward which the pair will converge (see
Figure 14). In general, to first approximation, these radii depend
on a combination of the turbulence viscosity parameter, disk
thickness, and mass of the outer planet (see Figures 15 and 22).

For planets moving outward from the inner disk region
(r � 2 AU) at a time between 1 and 3 Myr, the interior planet
may reach beyond ∼5 AU only if viscosity is low enough, the
surface density is not too steep, and the disk not too warm (see
Section 4). However, the probability for this to happen appears
to be low (see Table 2). Experiments performed on random
samples of the parameter space suggest that in 98% of the cases
the interior planet stops within 4 AU (see Figure 18).

At least three requirements must be satisfied to establish
and maintain the 3:2 commensurability and hence promote

outward migration: (1) the exterior planet must stop growing
(see Section 5), (2) the interior planet must do the same (see
Section 6), and (3) the relative migration speed prior to capture
must be large, so that the exterior planet can transit the 1:2 orbital
resonance (see Section 7). If requirement (1) is violated, the
mass ratio M2/M1 may approach 1 on a timescale shorter than
the migration timescale (see Figure 19), and the outward motion
is interrupted. If requirement (2) is violated, the accretion rate
through the disk, past the interior planet, is reduced. The surface
density inside the orbit of the inner planet drops and so does
the positive Lindblad torque exerted on the planet, inhibiting
outward migration (see Figure 20). If requirement (3) is violated,
migration is not reversed and both planets continue moving
toward the star (see Figure 21). The 1:2 orbital resonance may
still induce outward migration, but at masses larger than Jupiter’s
and Saturn’s (see Figure 16).

The outward migration mechanism is operable, as also argued
in previous studies, but the limitations can be severe. In
particular, it is difficult to reconcile the absence of accretion
on both giant planets with the presence of gas around the
planets (see, e.g., Lissauer et al. 2009 and references therein).
Two processes capable of shutting down the accretion of gas
must be invoked although, in principle, they need not be
different. Additionally, since envelope collapse begins once
the envelope mass exceeds the core mass, it is reasonable to
assume that before growth stops both planets were undergoing
runaway gas accretion, i.e., digesting all the gas the nebula could
provide. Presumably, the sought processes are not “internal,”
i.e., related to the structure of the envelopes, because otherwise
they would likely occur around similar envelope masses,9 which
is obviously not the case. But if the processes are of an “external”
nature, i.e., related to the supply of gas, then the interior planet
would probably undergo through said process before the exterior
planet would, since disk gas removal within several AU proceeds

9 The fast contraction phase that initiates runaway gas accretion is not much
influenced by boundary conditions, i.e., by the thermodynamical state of the
disk. Furthermore, given the compact orbital configuration of the planets, it is
unlikely that disk conditions would be very different at the two locations.
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from the inside out. Therefore, it seems as though the problem
of stopping gas accretion on both planets does not admit a trivial
solution.

The transit of the exterior planet across the 1:2 commensu-
rability with the interior planet, within a few AU of the star,
requires surface densities far in excess of those predicted by the
disk evolution models constructed here. The 1:2 resonant-orbit
configuration is then favored, in a statistical sense, over the 2:3
one. It is worth mentioning that core-nucleated accretion models
necessitate high enough surface densities of solid material, but
in the form of planetesimals not of dust. Since it takes time to
turn dust into planetesimals and the gaseous disk evolves during
that time, dust-to-gas mass ratios do not provide useful informa-
tion about gas densities at the time giant planets acquired most
of their gaseous contents. Disk-limited accretion rates depend
linearly on the gas surface density, but tend to be rather large.
At ∼5 AU, if Σ was of the order of 10 g cm−2 around the time
of the runaway gas accretion phase, it would take ∼105 years
to deliver over one-half of the current mass of Jupiter (see, e.g.,
Lissauer et al. 2009 and references therein). At ∼9 AU, a few
g cm−2 would be sufficient to deliver about a Saturn mass worth
of gas in ∼105 years. Hence, it is reasonable to assume that low
gas densities in the solar nebula do not prevent the giant planets
from reaching their final masses.

Even though it appears unlikely that Saturn can transit the 1:2
commensurability with Jupiter in an evolved nebula, there is the
possibility that it forms within this orbital resonance. In such
case, however, we argue (see Section 7.1) that it may be difficult
for the pair to reach the 1–2 AU disk region. In fact, capture
in the 2:3 mean motion resonance with Jupiter and ensuing
migration reversal can occur before Saturn attains its full mass
(see Figure 22), probably when it has between about 1/3 and
2/3 of the final mass.
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