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Abstract

A major computational issue in the Finite Element (FE) integration of coupled
consolidation equations is the repeated solution in time of the resulting discretized
indefinite system. Because of ill-conditioning, the iterative solution, which is rec-
ommended in large size 3D settings, requires the computation of a suitable precon-
ditioner to guarantee convergence. In this paper the coupled system is solved by
a Krylov subspace method preconditioned by a Relaxed Mixed Constraint Precon-
ditioner (RMCP) which is a generalization based on a parameter ω of the Mixed
Constraint Preconditioner (MCP) developed in [7]. Choice of optimal ω is driven
by the spectral distribution of suitable symmetric positive definite (SPD) matrices.
Numerical tests performed on realistic 3D problems reveal that RMCP accelerates
Krylov subspace solvers by a factor up to three with respect to MCP.

Key words: coupled consolidation, saddle point linear systems, constraint
preconditioners, iterative methods

1 Introduction

The time-dependent displacements and fluid pore pressure in porous media are
controlled by the consolidation theory. This was first mathematically described
by Biot [17], who coupled the elastic equilibrium equations with a continuity
or mass balance equation to be solved under appropriate boundary and initial
flow and loading conditions.
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The coupled consolidation equations are typically solved numerically using Fi-
nite Elements (FE) in space, thus giving rise to a system of first-order differ-
ential equations whose solution is addressed by an appropriate time marching
scheme. A major computational issue is the repeated solution in time of the
resulting discretized indefinite equations, which can be generally written as

Ax = b, where A =



K B⊤

B −C


 . (1)

Both the sub-matrices K and C are symmetric positive definite (SPD). Denot-
ing with m the number of FE nodes, C ∈ R

m×m, B ∈ R
m×n, and K ∈ R

n×n,
where n is equal to 2m or 3m according to the spatial dimension of the problem
if the same interpolation is used for displacement and pressure variables.

Similar problems can be encountered in many fields such as constrained op-
timization, least squares, coupled consolidation problems and Navier-Stokes
equations to mention a few (see [3] for a review of such applications). Itera-
tive solution is recommended against direct factorization methods due to the
extremely large size of these systems. However, well established iterative meth-
ods such as Krylov subspace methods are very slow or even fail to converge if
not conveniently preconditioned.

To accelerate Krylov solvers in the solution of saddle point problems the so-
called “Constraint Preconditioners” have been first introduced in constrained
optimization [21]. This terminology has been preserved in other fields as well,
including least squares and also Navier-Stokes equations [10,24,26,?,28]. For a
thorough review of the constraint preconditioning see also [3] and references
therein. Constraint preconditioners are written as the inverse of a matrix whose
non diagonal blocks are the same as those in A. It has been proved [21]
that the eigenvalues of the preconditioned matrix are all real and positive.
However, their application may be very costly since it requires the solution
of a linear system at each iteration with an appropriate Schur complement
S as the coefficient matrix. A computationally efficient variant of constraint
preconditioners is represented by “Inexact Constraint Preconditioners” (ICP)
which are based on an approximation to S (or to S−1) by means e.g. of an
incomplete Cholesky factorization (or of a sparse approximate inverse). The
application of ICP is cheaper with respect to the Constraint Preconditioner.
The price to be paid is that the eigenvalues of the preconditioned matrix are no
longer all real. An exhaustive analysis of spectral properties of ICP together
with development of eigenvalue bounds are performed in [5]. ICP has been
proved much more robust and performing than ILUT preconditioners with
variable fill-in, computed on the whole saddle point matrix, in [6], where a
number of realistic coupled consolidation problems have been solved by both
approaches.
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In this paper we propose a development of the Mixed Constraint Precondi-
tioners (MCP) introduced in [7] and successfully compared in [8] with other
block preconditioners. MCP is nothing but ICP where two approximations for
K (PK and P̃K) and an approximation (PS) of a suitable Schur complement

matrix S = BP̃K

−1
B⊤ + C are available. The MCP is defined as M−1 where

M =




I 0

BP−1
K I






PK 0

0 −PS






I P−1

K B⊤

0 I


 =



PK B⊤

B BP−1
K B⊤ − PS


 . (2)

We propose in this paper a family of relaxed MCP (RMCP) denoted by
M−1(ω), where ω is a real acceleration parameter and

M(ω) =




I 0

BP−1
K I






PK 0

0 −ωPS






I P−1

K B⊤

0 I


 =



PK B⊤

B BP−1
K B⊤ − ωPS


 .

(3)
The aim of this paper is to give a detailed spectral analysis of RMCP, showing
that the optimal values of ω is strictly related to extremal (real) eigenvalues
of P−1

S S and P−1
K K which can be estimated without affecting the overall ef-

ficiency of the iterative method. Numerical results obtained on realistic con-
solidation problems of very large size show that RMCP may improve MCP
performance up to a factor three.

To test the effectiveness of the proposed preconditioner, we also used the
RMCP in the acceleration of BiCGSTAB for the solution of saddle point
linear system arising from the Mixed Finite Element (MFE) discretization
of the Darcy’s law in porous media. Even though the spectral properties of
the block matrices are significantly different from those of the consolidation
problem, we obtained an important reduction of the overall CPU time by
properly setting the parameter ω.

The paper is organized as follows. In §2 we characterize the coupled consolida-
tion problem while in §3 we give bounds on extremal eigenvalues of M(ω)−1A.
In §4 the RMCP sequential and parallel implementations are described; in §5
we provide a description of the test cases. In §6 we report some numerical re-
sults that accounts for the effectiveness of the acceleration provided by RMCP.
§7 is devoted to the discussion of the results of the parallel implementation of
RMCP on a very large-size test case. The results of the RMCP acceleration
in solving a linear system arising from MFE discretization of the fluid flow
equation are presented in §8. The conclusions are drawn in §9.
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2 Finite Element coupled consolidation equations

The system of partial differential equations governing the 3D coupled consol-
idation process in fully saturated porous media is derived from the classical
Biot’s formulation [17] and successive modifications as:

(λ+ µ)
∂ǫ

∂i
+ µ~∇2ui = α

∂p

∂i
i = x, y, z (4)

1

γ
div · (K~∇p) = [φβ + cbr(α− φ)]

∂p

∂t
+ α

∂ǫ

∂t
(5)

where cbr and β are the volumetric compressibility of solid grains and water,
respectively, φ is the porosity, K the medium hydraulic conductivity, ǫ the
medium volumetric dilatation, α the Biot coefficient, λ and µ are the Lamé
constant and the shear modulus of the porous medium, respectively, γ is the
specific weight of water, div and ~∇ are the divergence and gradient operator,
respectively, x, y, z are the coordinate directions, t is time, and p and ui are
the incremental pore pressure and the components of incremental displacement
along the i−direction, respectively.

Use of FE in space yields a system of first order differential equations which can
be integrated by the Crank-Nicolson scheme [20]. The resulting linear system
has to be repeatedly solved to obtain the transient displacements and pore
pressures. The unsymmetric matrix controlling the solution scheme reads:

A =



K/2 −Q/2
Q⊤

∆t
H/2 +

P

∆t


 (6)

where K, H, P and Q are the elastic stiffness, flow stiffness, flow capacity
and flow-stress coupling matrices, respectively. Matrix A can be readily sym-
metrized by multiplying the upper set of equations by 2 and the lower set by
−∆t, thus obtaining the sparse 2 × 2 block symmetric indefinite matrix (1)
where B = −Q⊤ and C = ∆tH/2 + P .

A major difficulty in the repeated solution to system (1) is the likely ill-
conditioning of A caused by the large difference in magnitude between the
coefficients of blocks K, B and C. The generic (i, j) element of each ma-
trix is related to the hydro-mechanical properties of the porous medium as
follows [20]:

Kij ∝E

Bij ∝
√
V

Cij ∝∆t
k

γ
+ φβV
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where E is the Young modulus of the porous medium and V a characteristic
size of the FE grid. Being Cij related to the time integration step ∆t, the ill-
conditioning of A is basically dependent on the ∆t size. Ferronato et al. [20]
have shown that a critical time step ∆tcrit exists that can be defined as:

∆tcrit = χ(ψ)
V γ

kE
(7)

where ψ = φβE and χ is a generally unknown dimensionless factor depending
on ψ and the element distortion. For ∆t ≤ ∆tcrit the conditioning of A sud-
denly degrades with the solution to (1) difficult to get independently of the
solver choice. In long-term simulations a small ∆t is typically needed in the
early stage of the consolidation process, while larger values may be used as
the system approaches the steady state. Hence, the initial steps are the most
critical ones, with the convergence expected to improve as the simulation pro-
ceeds.

3 Spectral Analysis of M(ω)−1A

We first recall the eigenvalue bounds of M−1A.

3.1 Bounds on Eigenvalues of M−1A

Let PK and PS be SPD approximations of K and S = C + BP−1
K B⊤, re-

spectively. P−1
K and P−1

S can also be viewed as preconditioners for the corre-
sponding matrices, so that we can define the following SPD preconditioned
matrices:

KP = P
−1/2
K KP

−1/2
K and SP = P

−1/2
S SP

−1/2
S .

Let us assume that

0 < αK =λmin(KP ) < 1 < λmax(KP )= βK ,

0 < αS = λmin(SP ) < 1 < λmax(SP ) = βS,

0 ≤ αC = λmin(Ĉ) ≤ λmax(Ĉ) = βC , (8)

where Ĉ = P
−1/2
S CP

−1/2
S . The conditions 1 ∈ [αK , βK ] and 1 ∈ [αS, βS] are

very often fulfilled in practice since preconditioners PK and PS are expected
to cluster eigenvalues around 1.

In order to characterize the eigenvalues of the preconditioned matrices M−1A
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it is useful to define a matrix P as

P =



P

−1/2
K 0

0 P
−1/2
S


 . (9)

The problem of finding the eigenvalues of M−1A is therefore equivalent to
solving PAPv = λPMPv. Exploiting the blocks:

PAPv = λPMPv −→



PK R⊤

R −Ĉ






v1

v2


 = λ



I R⊤

R RR⊤ − I






v1

v2


 (10)

where R = P
−1/2
S BP

−1/2
K . The inverse of the right hand side matrix product

in (10), can be written as

(PMP)−1 =



I −R⊤

0 I






I 0

R −I


 = UL

so that the eigenvalues of (10) are the same as those of LPAPUw = λw
which reads:




KP (I −KP )R
⊤

−R(I −KP ) R(2I −KP )R
⊤ + Ĉ






w1

w2


 = λ



w1

w2


 . (11)

The (positive) eigenvalues of the projected matrix KR = (RRT )−1RKPR
T will

also be important in the spectral analysis that follows. It is easy to show that
[αR

K , β
R
K ] ⊂ [αK , βK ], where α

R
K = λmin(KR), and βR

K = λmax(KR).

The following theorem gives bounds on the eigenvalues of the preconditioned
matrix using MCP. We consider separately the cases C ≡ 0 and C 6= 0. We
denote any complex eigenvalue as λ = λR + iλI .

Theorem 1 C ≡ 0 .

If βR
K < 2 then the real eigenvalues of (11) satisfy:

min

{
αK ,

αS

βR
K

}
≤ λ ≤ max{(2− αR

K)βS, βK}.

If λI 6= 0 then

αK + αS(2− βR
K)

2
≤ λR ≤ βK + βS(2− αR

K)

2
|λI | ≤

√
βS max{1−αK , βK−1}.
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C 6= 0 .

Let βR
K < 2. The real eigenvalues of (11) satisfy:

min

{
αK ,

αS

βR
K

+
αC(β

R
K − 1)

βR
K

}
≤ λ ≤ max{βK , (2− αR

K)βS − αC(1− αR
K)}.
(12)

If λI 6= 0 then

αK + αS(2− βR
K) + αC(β

R
K − 1)

2
≤ λR ≤ βK + βS(2− αR

K) + αC(1− αR
K)

2

|λI | ≤
√
βS − αC max{1− αK , βK − 1}.

(13)

Proof.

See [5]. 2

The results contained in Theorem 1 point out that

(1) Eigenvalues of the preconditioned matrix are clustered around one if those
of the preconditioned K and the preconditioned Schur complement are
so.

(2) Matrix C plays an important role to bound eigenvalues of the precondi-
tioned matrix away from zero. The larger the eigenvalues of C (particu-
larly the smallest one), the larger the smallest eigenvalue of the precon-
ditioned matrix.

3.2 Convergence rate

Since the preconditioned matrix is no longer symmetric, it is not possible to
give estimates of the convergence rate simply in terms of eigenvalues. A well-
known upper bound for the residual norm of a minimum residual iteration
such as GMRES involves the condition number of the eigenvector matrix V .
Although we do not have theoretical estimates for the condition number of
V we experimentally noticed that its value was indeed modest. Thus, we can
relate the number of iteration on the ratio between the largest and the smallest
eigenvalue of M−1A for which Theorem 3.1 gives bounds.
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3.3 Bounds on Eigenvalues of RMCP

To develop eigenvalue bounds for RMCP we will use Theorem 3.1, and partic-
ularly the results regarding the real eigenvalues of M(ω)−1A. The following
theorem gives very simple estimates of the eigenvalues of the RMCP precon-
ditioned matrix in terms of ω.

Theorem 2 Let βK < 2 then any real eigenvalue λ of M(ω)−1A satisfies the
following bounds:

min
{
αK ,

ωαS

2

}
≤ λ ≤ max{2ωβS, βK}.

Moreover the complex eigenvalues satisfy

αK

2
≤ λR ≤ βK +

ωβS
2

|λI | ≤
√
ωβS max{1, βK − 1}.

Proof.

From (12) and observing that using RMCP all eigenvalues of SP are multiplied
by ω, we have:

min

{
αK , ω

αS

βR
K

+
αC(β

R
K − 1)

βR
K

}
≤ λ ≤ max{βK , ω(2− αR

K)βS − αC(1− αR
K)}.

These bounds can be simplified by using αC ≥ 0, βR
K ≤ βK and αR

K ≥ αK > 0
thus obtaining

min
{
αK ,

ωαS

2

}
≤ λ < max{βK , 2ωβS}.

Regarding complex eigenvalues, using (13) we obtain the bounds:

αK + ωαS(2− βR
K) + αC(β

R
K − 1)

2
≤ λR ≤ βK + ωβS(2− αR

K) + αC(1− αR
K)

2

|λI | ≤
√
ωβS − αC max{1− αK , βK − 1}.

Using again αC ≥ 0, βR
K ≤ βK and αR

K ≥ αK > 0 these bounds simplify to:

αK

2
≤ λR ≤ βK +

ωβS
2

|λI | ≤
√
ωβS max{1, βK − 1}. (14)
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2

Since convergence speed of our iterative methods preconditioned by RMCP
depends in part on ratio between the largest and the smallest real eigenvalues
of M(ω)−1A our aim is to find ω which minimizes this ratio:

κR =
Rmax

Rmin

≤ max{βK , 2ωβS}
min

{
αK ,

ωαS

2

} , (15)

where Rmax and Rmin denote the largest and the smallest real eigenvalue of
M(ω)−1A. The optimal ω-value depends on accurate knowledge of αK , βK , αS, βS.
It is well known that computing the smallest eigenvalue is a more time con-
suming procedure, whatever the algorithm employed, as compared to approx-
imating the largest one. The next theorem states that it is sufficient to know
βK , βS to provide a good approximate value of ωopt. Let us define cK = κ(KP )
and cS = κ(SP ).

Theorem 3 Let ω =
βK
βS

, then the ratio between extremal real eigenvalues of

the preconditioned matrix is bounded by

Rmax

Rmin

≤ max{2cK , 4cS}.

Moreover the complex eigenvalues satisfy

αK

2
≤ λR ≤ 3βK

2

|λI | ≤
√
βK max{1, βK − 1}.

Proof. e
Rmax ≤ max {βK , 2ωβS} = 2βK ;

Rmin ≥ min

{
αK ,

αS

2

βK
βS

}
= min

{
αK ,

βK
2cS

}
.

Hence
Rmax

Rmin

≤ max

{
2βK
αK

, 2βK
2cS
βK

}
= max{2cK , 4cS}.

The bounds for complex eigenvalues are directly derived from (14). 2

Remark 1 In real applications we always found that cS <
cK
4

and αS ≫ αK,

that is the preconditioned Schur complement SP is better conditioned than KP

and the eigenvalues of SP are shifted with respect to those of KP . In such
a situation, the bound of Theorem 3.3 would give κR ≤ 2cK which is only
twice the optimal value of κR obtainable at the price of costly iterations to
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approximate αK and αS. A further outcome of the above theorem is that the
complex eigenvalues are estimated in terms of extremal eigenvalue of KP only,
the imaginary part being bounded by |λI | <

√
βK max{1, βK − 1}.

4 Mixed Constraint Preconditioner

4.1 Sequential implementation

The Mixed Constraint Preconditioner (MCP) proposed in [7] is based on two
different approximations of the (1,1) block K. The first one, PK = LKL

⊤

K , is
obtained by means of an incomplete Cholesky (IC) factorization with fill-in
and drop tolerance. The second one provides an approximation of its inverse
(P̂−1

K = ZKZ
⊤

K), following the AINV approach [4,2], which is needed to ex-
plicitly construct the Schur complement matrix. S is then preconditioned by
a simple IC(0) preconditioner. In detail

Ŝ = BZKZ
⊤

KB
⊤ + C, PS = LSL

⊤

S .

Note that the preconditioned Schur complement

SP = P
−1/2
S

(
B(LKL

⊤

K)
−1B⊤ + C

)
P

−1/2
S

is the result of two approximation since LS is the Cholesky factor of an already
approximated Schur complement matrix Ŝ.

The MCP application requires first the explicit calculation of the Ŝ = BZKZ
⊤

KB
⊤+

C and then its incomplete triangular factor. Forming Ŝ may be time and
memory consuming being the result of two sparse matrix-matrix products
and one sparse sum of matrices. However, it may be noted that the evaluation
of S0 = BZKZ

⊤

KB
⊤, which involves the main computational burden of Ŝ, is

independent of the time step ∆t, and therefore can be done just once at the
beginning of the simulation. The Relaxed Mixed Constraint Preconditioner
takes on the form:

M−1 =



L−⊤

K −L−⊤

K L−1
K B⊤L̂S

−⊤

0 L̂S

−⊤







L−1
K 0

L̂S

−1
BL−⊤

K L−1
K −L̂S

−1


 , (16)

L̂S =
1√
ω
LS.
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4.2 Parallel FSAI-based MCP

The previously described MCP implementation relies on IC or AINV pre-
conditioners. The first one is, as well known, difficult to parallelize in both
the construction and application phase. The AINV preconditioner is suitable
to parallelization only in its application phase. We therefore choose to use
another sparse approximate inverse preconditioner (FSAI), which has been
initially proposed in [22] and [23], and it has been later developed and suc-
cessfully implemented in parallel by Bergamaschi et al. in [11]. Given any SPD
matrix K the FSAI preconditioner approximately factorizes its inverse as a
product of two sparse triangular matrices as K−1 ≈ W⊤W . The choice of
nonzeros in W are based on a sparsity pattern which in our work is the same
as K̃d where K̃ is the result of prefiltration [14] of K i.e. dropping of all ele-
ments below of a threshold parameter δ. The computed W is then sparsified
by dropping all the elements which are below a second tolerance parameter
(ε). The final FSAI preconditioner is therefore related to the following three
parameters: δ, prefiltration threshold; d = 1, 2, 4, power of K generating the
sparsity pattern; ε, postfiltration threshold.

Recalling equation (16), the FSAI-RMCP can be written directly as:

M(ω)−1 =



W T

1 −W T
1 W1B

⊤ŴS

T

0 ŴS

T







W1 0

ŴSBW
T
1 W1 −ŴS


 , (17)

ŴS =
1√
ω
WS;

where W1 is a FSAI factor of K (P−1
K = (W1W

⊤

1 ) and WS is the FSAI factor
of the approximate Schur complement matrix S̃, P−1

S = W⊤

S WS. The Schur
complement matrix S̃ is evaluated as S̃ = BW⊤

2 W2B
⊤ + C = S0 + C, W2

being the triangular factor of a sparser FSAI approximation of K−1, obtained
from W1 by a further postfiltration. More details on FSAI-MCP algorithms
and on its parallel performance can be found in [15,13,12].

The construction of the preconditioner is therefore based on the following
parameters:

(1) δ1, dK and ε1, for the 1st FSAI preconditioner (W1).
(2) ε2, postfiltration threshold for W2

(3) δS, dS and εS, for the FSAI preconditioner applied to the Schur comple-
ment matrix (WS).

Our parallel version of the RMCP code is written in FORTRAN 90 and ex-
ploits the MPI library for exchanging data among the processors. We used a

11



block row distribution of all matrices, that is, with complete rows assigned to
different processors. All matrices involved are stored in static data structures
in CSR format.

The FSAI-RMCP preconditioners will be used to accelerate the BiCGSTAB
Krylov subspace methods which is essentially based on matrix-vector products.
We made use of an optimized parallel matrix-vector product which has been
developed in [25] showing its effectiveness up to 1024 processors.

All tests are performed on the IBM SP6/5376 cluster at the CINECA Centre
for HPC, equipped with IBM Power6 processors at 4.7 GHz with 168 nodes,
5376 computing cores, and 21 Tbytes of internal network RAM. The code is
written in Fortran 90 and compiled with -O4 -q64 -qarch=pwr6 -qtune=pwr6

-qnoipa -qstrict -bmaxdata:0x70000000 options.

5 Test problems

A vertical cross-section of the cylindrical porous volume used as a test problem
is shown in Figure 1. The medium consists of a sequence of alternating sandy
and clayey layers, with the hydraulic conductivity ksand = 10−5 m/s and kclay =
10−8 m/s, the porosity φ = 0.20, the Poisson ratio ν = 0.25, and the Young
modulus E = 833.33 MPa, corresponding to a uniaxial vertical compressibility
cM = 10−3 MPa−1. Standard Dirichlet conditions are prescribed, with fixed
outer and bottom boundaries, and zero pore pressure variation on the top and
outer surfaces (see Figure 1). The upper boundary is a traction-free plane.

The sample problem is solved using fully 3-D grids made of linear tetrahe-
dral elements. The pressure and displacement components are discretized with
equal-order basis functions. In the first test case, denoted as M3Dsm, the grid
is generated by projecting a plane triangulation made of 209 nodes and 400
triangles onto 17 layers located at different depths. The grid M3Dsm totals
n = 3553 nodes with a global matrix size N equal to 14212.

In the second test case, denoted as M3D, a plane triangulation made of 1025
nodes and 2016 triangles is projected onto 31 layers. The M3D problem totals
n = 31775 nodes with N = 127100.

The third test case, PoRiver, considers the simulation of the consolidation of
a real gas reservoir of the Po Valley, Italy, used for underground gas storage
purposes. The reservoir is a complex multi-layer structure consisting of 5 min-
eralized pools about 1,200-m deep connected to regional active waterdrives
with several interbedded clay lenses. The discretized medium has an areal
extent of 50×50 km and goes down to 10,000 m depth. The petro-physical
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Fig. 1. Schematic representation of a vertical cross-section of the stratified porous
medium used as a test problem.

and geomechanical properties of the different layers have been provided by
Eni-E&P on the basis of the calibration of the production multi-phase model.
The problem is discretized with a 3D tetrahedral grid totaling 299 734 nodes
and 1 746 044 elements for 1 198 936 unknowns.

Finally, the Large3d test case simulates the compaction of a shallow confined
aquifer due to groundwater withdrawal in a representative 3D sedimentary
basin at a regional scale. The discretized medium has an areal extent of 20×20
km and consists of an alternating sequence of sand and clay layers down to 5500
m depth, with the hydraulic conductivity ksand = 10−4 m/s and kclay = 10−7

m/s, porosity 0.20 and Poisson ratio 0.30. The mechanical properties of the
porous medium vary with depth according to the hypo-plastic law developed in
[1] and are representative of the Northern Adriatic sediments, Italy. Dirichlet
conditions are prescribed on the bottom boundary and zero pore pressure
variation on the rest of the boundary. The problem is discretized with a 3D
tetrahedral grid obtained by projecting a 2D mesh made of 11 765 nodes and
23 128 triangles over 46 layers with variable thickness, totaling 541 190 nodes
and 3 122 280 elements.

All the test cases are solved using ∆t = 1 which yields the most ill-conditioned
linear system.

In Table 1 we summarize the size and nonzeros of the tests described above.
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Table 1
Size and nonzeros for the sample matrices.

N nnz(A)

M3dsm 12353 707504

M3d 127100 7 426480

PoRiver 1 198936 70 812224

Large3D 2 117700 124 408336

6 Numerical results. Sequential Computations

In this section we present the results of our RMCP preconditioner in combi-
nation with the BiCGSTAB Krylov subspace solver in the solution of the first
three test cases. In all the runs the BiCGSTAB iteration has been stopped
whenever the following exit test on the residual rk was satisfied:

‖rk‖
‖b‖ < tol,

where tol = 10−12 (M3dsm and M3D problems) or tol = 10−8 (PoRiver and
Large3D problems). This possibly very low tolerance is required to have in all
test cases a relative error of order 10−6. The initial solution has been set to
x0 = M−1

b.

For each test case we select some values of the parameters which drive the fill-
in of the preconditioners for matricesK and S. In detail, the IC preconditioner
for K depends on τK – the dropping threshold – and lfil – the maximum
allowed fill-in per row – while the AINV preconditioner is based on a single
threshold parameter τZ .

The CPU times (in seconds) refer to running a Fortran 90 code on an IBM
Power6 with 4.7 GHz RAM. We denote the relevant CPU times for the com-
parison as Tp the CPU time needed for computing the preconditioner for
the approximated Schur complement, Tsol the time for the iterative solver
and Ttot = Tp + Tsol. The other time-consuming tasks are: computation of
IC(τK , lfil) preconditioner for K, computation of AINV preconditioner for
K and the computation of Schur complement matrix. We note that these last
tasks can be carried out at the beginning of the simulation since they do
not depend on ∆t choice. With T (LK) we refer to the time to compute the
IC(τK , lfil) preconditioner for block K.

We also provide a measure ρ of the density of the preconditioner matrices as:

ρ = ρK + ρS =
2nnz(LK)− n

nnz(A)
+

2nnz(LS)−m

nnz(A)
.
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Parameter ρ gives an indication of the additional core memory needed for
computing and storing the preconditioner.

6.1 Eigenvalue approximation

The key of RMCP success is based on efficient and “cheap” approximation
of extreme eigenvalues of KP and SP . This is accomplished by the DACG
(Deflation-Accelerated Conjugate Gradient) procedure, developed in [9] which
has been shown superior to well-known procedures such as ARPACK or Jacobi-
Davidson methods in evaluating a few of the smallest eigenvalues of SPD pen-
cils [16]. The DACG procedure has been developed for computing the smallest
eigenpairs of Ax = λBx. It is used here also to compute the largest ones by
using B = KP or B = SP and A = I.

6.2 M3d- matrices

We start with the smaller problem M3Dsm in order to show how the eigen-
value distribution changes with ω. We choose the following MCP parame-
ters (see [5]): τK = τZ = 0.1 and lfil= 10. For this case we found that
αK = 0.027, βK = 2.022 while αS = 0.108, βS = 7.390. Since βS > βK and
αS > αK , ω must be less than one. We therefore run the MCP-BiCGSTAB
code for different values of ω ∈ [0.1, 1]. The results in terms of iteration number
and real condition number (κR) are displayed in Figure 2.
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Fig. 2. Number of iterations (stars) and real condition number κR (circles) vs ω.
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From the figure we can notice that

(1) There is an optimal value of ω which improves the iteration number
obtained with ω = 1. In particular we have 109 iteration with the naive
MCP and 71 iteration using ω = 0.31. Note that using Theorem 3 we
would obtain ω = 0.27.

(2) The qualitative plots of κR(ω) and iter(ω) are much similar. In other
words, minimizing the ratio between largest and smallest eigenvalue of
M−1A yield an ω-value very close to the optimal one.
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Fig. 3. Eigenvalue distribution of preconditioned matrix with ω = 1 (left) and
ω = 0.31 (right).

Figure 3 depicts the two eigenvalue distributions in the complex plane for
ω = 1 and ω = 0.31. From the figure we may appreciate the clustering of
eigenvalues, both real and complex, around one, using RMCP with ω = 0.31.

The results regarding the M3D matrix are reported in Table 2.

For each combination of the parameters for the (1,1) block and the Schur com-
plement matrix we compare the MCP with RMCP using ω given by Theorem
3.3. The improvement provided by RMCP is not very high, however it holds
for every (lfil, τK , τZ) combination. For this matrix we finally notice that the
best MCP combination of parameters produces 59 iterations and 18.5 seconds
CPU time whereas the best RMCP provides 50 iterations and 14.1 seconds.
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Table 2
Summary results for the M3D matrix.

ω lfil τK τZ ρK ρS iter Tp Tsol Ttot

1 20 0.1 0.1 0.28 1.14 115 4.9 20.3 25.2

1 20 0.1 0.3 0.28 0.45 164 0.7 26.5 27.2

1 30 10−2 0.3 0.64 0.27 109 0.7 19.4 20.1

1 50 10−4 0.05 1.28 1.42 61 18.3 18.4 36.7

1 50 10−4 0.1 1.28 0.45 59 4.5 14.0 18.5

1 50 10−4 0.3 1.28 0.27 88 0.7 20.7 21.4

0.5 20 0.1 0.1 0.28 1.14 106 4.9 18.9 23.9

0.2 20 0.1 0.3 0.28 0.45 114 0.7 18.0 18.7

0.25 30 10−2 0.3 0.64 0.27 65 0.7 11.5 12.2

0.25 50 10−4 0.05 1.28 1.42 30 18.3 8.9 27.2

0.25 50 10−4 0.1 1.28 0.45 50 4.5 9.6 14.1

0.1 50 10−4 0.3 1.28 0.27 71 0.7 16.8 17.5

6.3 Po878 matrix

The results regarding the Po878 matrix are summarized in Tables 3 to 5. We
selected three combinations of τK , lfil τZ parameters. In Table 3 we report the
density of preconditioners and extremal real eigenvalues of SP , KP and M−1A
using ω = 1, that is the original MCP.

Table 3
Po878 matrix. MCP with ω = 1. Parameters of the 3 test runs together with ex-
tremal eigenvalues of KP , SP and ratio κR between largest and smallest real eigen-
value of M−1A.

# run lfil τK τZ ρK ρS βK αK βS αS κR

1 50 10−4 1 1.21 0.14 1.876 0.0112 37.253 0.194 3105

2 30 10−4 1 0.75 0.14 1.875 0.0067 37.255 0.194 5190

3 20 10−4 1 0.51 0.14 1.885 0.0042 37.243 0.195 8195

The results of the MCP runs for the three cases are reported in Table 4. These
runs differ in the choice of the parameters for the preconditioner for K. We
experimentally found that the optimal threshold value for the AINV precon-
ditioner is τZ = 1 i.e. a diagonal approximation of K for the construction
of the Schur complement matrix. A more dense AINV preconditioner would
yield a highly dense S and an increasing cost for the Schur complement pre-
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conditioning without significantly reducing the iteration number. From Table
4 we see that cases #1 and #2 provide the smallest CPU time, indicating that
the an efficient IC preconditioner for matrix K must be devised to obtain fast
accuracy.

Table 4
CPU times and iteration numbers for MCP (ω = 1) in solving the three test cases
of Table 3.

# run T (LK) iter Tp Tsol Ttot

1 151.4 263 3.5 527.8 531.3

2 77.4 315 3.5 520.2 523.7

3 44.9 540 3.5 737.3 740.8

Table 5
CPU times and iteration numbers for RMCP with ω = 0.05 in solving the three
test cases of Table 3.

# run iter Tp Teig Tsol Ttot kR

1 71 3.5 12.8 145.9 162.2 212

2 102 3.5 11.2 165.5 180.2 259

3 142 3.5 9.4 192.4 205.7 409

To test the effectiveness of our RMCP acceleration we used ω = 0.05 ≈ βK
βS

as suggested by Theorem 3. We report in Table 5 the results of these RMCP
runs. We also show in this table the preprocessing CPU time to approximate
βK and βS (Teig) and the value of κR.

The RMCP(0.05) preconditioner provides a reduction of more than three times
the iteration number and the total CPU time with respect to MCP. This also
accounted by the reduction of the ratio between largest and smallest real eigen-
value of M−1A (κR). Note that the preprocessing time to compute extremal
eigenvalues is negligible if compared to the improvement in the number of
iterations and CPU time.

We conclude this Section by showing the convergence profile (in Figure 4) of
RMCP-BiCGSTAB with ω = 1 and ω = 0.05 for run # 2.

7 Parallel results and scalability

In this section we report the results of our parallel implementation of the
RMCP code on the largest Large3d problem. We will use a strong scaling
measure to see how the CPU times vary with the number of processors for
a fixed total problem size. We will denote with Tp the total CPU elapsed
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Fig. 4. Convergence profile of RMCP-BiCGSTAB for run # 2.

times expressed in seconds on p processors. As relative measures of the parallel
efficiency achieved by the code we denote as S(p̄)

p the pseudo speedup computed
with respect to the smallest number of processors (p̄) used to solve a given
problem and E(p̄)

p the corresponding efficiency:

S(p̄)
p =

Tp̄p̄

Tp
, E(p̄)

p =
S(p̄)
p

p
=
Tp̄p̄

Tpp
.

Table 6 summarizes the choice of the parameters which have been described
in Section 4.1. Their values have been selected in order to give the best perfor-
mance in terms of CPU time for both MCP and RMCP. As we did in Section
6 we also compute a measure of the density of the preconditioners ρ = ρK+ρS

where now ρK =
2nnz(W1)− n

nnz(A)
and ρS =

2nnz(WS)−m

nnz(A)
.

Table 6
Combinations of parameters for the Large3d problem

δ1 dK ǫ1 ρK ǫ2 δS dS ǫS ρS ρ

0.01 2 0.00 1.14 0.05 0.01 2 0.1 0.24 1.38

The resulting preconditioner is only a little bit more dense than the full saddle
point matrix, as accounted for by the value of ρ = 1.38.

We present the following timings, all given in seconds: TP1 is the preprocessing
time needed to construct W1, W2 and S0, TP2 refers to the construction of WS

and Tsol to the CPU time required by the iterative solver. Finally, Ttot =
TP2 + Tsol is the total CPU time.

The results regarding the Large3D matrix are summarized in Table 7. In-
spection of this table shows that using ω = 0.74, obtained once again from
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Table 7
Timings, iteration numbers and pseudo-efficiencies for the Large3D test case for
p= 4 to 512.

ω = 1 ω = 0.74

p TP1 TP2 iter Tsol Ttot E
(4)
p iter Tsol Ttot E

(4)
p

4 90.0 10.3 376 610.9 621.6 321 479.3 489.6

8 46.0 6.7 379 298.7 305.4 1.02 277 226.1 232.8 1.05

16 23.5 4.2 327 136.1 140.3 1.11 274 117.5 121.8 1.00

32 12.5 3.3 359 77.6 80.9 0.96 280 60.9 64.2 0.95

64 6.6 2.5 357 42.0 44.5 0.87 267 29.4 31.9 0.96

128 3.5 1.7 387 22.0 23.7 0.82 268 15.2 16.9 0.91

256 1.9 1.4 433 10.8 12.2 0.80 329 8.2 9.6 0.80

512 1.1 1.1 413 6.2 7.3 0.67 283 4.3 5.4 0.71
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Fig. 5. Pseudo-speedups regarding total CPU times of FSAI-RMCP code using
ω = 1 and ω = 0.74.

Theorem 3.3, provides a generalized reduction of the number of iterations and
CPU time for the iterative solution, irrespective of the number of processors
employed. Note that the preprocessing CPU time to approximate the extremal
eigenvalues of PK and PS has not been reported, being in all cases less than 5
percent of the total time.

We also notice that the scalability of the two codes are very satisfactory as
accounted by the pseudo efficiencies computed in Table 7 and, more evidently,
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by Figure 5 where the pseudo-speedups of FSAI-MCP and FSAI-RMCP are
shown to be very close to the optimal speedup.

8 Saddle point systems arising from Mixed Finite Elements dis-

cretizations

The proposed class of preconditioners can be applied also to other models that
give raise to saddle point linear systems. In theis Section we use the RMCP
in the acceleration of iterative methods for the solution of the saddle point
linear systems arising from the Mixed Finite Element (MFE) discretization of
fluid flow in porous media.

The fluid mass balance is prescribed by the continuity equation:

div · ~v + ∂

∂t
(φβp+ α) = − ∂

∂t
(div · ~u) + f (18)

where ~u the (known) medium displacements and p the pore pressure; φ is the
medium porosity, β the fluid compressibility, t time, f a flow source or sink
and ~v the Darcy flux. Equation (18) must be coupled with the Darcy law
defining ~v:

ρgK−1~v + ~∇p = 0 (19)

with K the hydraulic conductivity tensor and ρg the fluid specific weight.

Equations (18) and (19) form a coupled partial differential system defined on
a 3-D domain Ω bounded by the frontier Γ with ~v and p as unknowns. This
system can be solved when appropriate boundary and initial conditions apply.

The fluid pore pressure and Darcy flux are discretized in space with a piecewise
constant polynomial and with the lowest order Raviart-Thomas spaces (RT0),
respectively, satisfying the LBB condition [27] thus ensuring the well-posedness
of the discrete problem. After discretization, a linear system of the form (1)
has to be solved at each timestep. Here K is the matrix of the scalar product
between RT0 basis functions, B (B⊤) discretizes the gradient (divergence)
operator and C is a diagonal matrix depending on ∆t. If the steady state
problem has to be solved, (or if β = 0 i.e. the fluid is incompressible) then
C ≡ 0.

8.1 Solution of the steady state MFE problem

We solve the linear system arising from MFE discretization of the realistic test
case described in [18]. The 3D domain is subdivided into 9 zones, each of them
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characterized by a different value of the hydraulic conductivity tensor whose
norm varies by six order of magnitudes from 8.64×10−7 to 8.64×10−1 m ·s−1.
This results in a very ill-conditioned steady-state problem. The problem has
N = 253 216 and a number of nonzeros nnz = 1336 168.

Regarding the spectral properties of the matrices involved, the MFE discretiza-
tion provides a very different situation, as compared to that of the Consoli-
dation problem. Here (1,1) block K is well-conditioned, being a mass matrix
whose condition number does not grow with the mesh size h. On the con-
trary the Schur complement matrix S can be shown to be ill-conditioned with
its condition number growing as h−2. The effort of the Relaxed MCP should
therefore be put in properly preconditioning S. To solve our problem we chose
the following parameters:

(1) IC preconditioner for K: τK = 0.1, lfilK = 4;
(2) AINV preconditioner for K: τZ = 0.5;
(3) IC preconditioner for S: τS = 10−4, lfilS = 50.

Not that for this problem a simple IC(0) preconditioner for S is not sufficient
to guarantee convergence of the iterative method. These parameters yields the
following density values for the preconditioners: ρK = 0.45, ρS = 2.79.

Table 8
Iteration number and CPU times for MCP and RMCP with experimentally com-
puted optimal value of ω for previously defined values of the tolerance tol.

log10(tol) ω iter Teig Tprec Tsol Ttot

−12 1 746 – 3.91 80.84 84.75

−10 1 589 – 3.88 63.15 67.13

−12 0.025 443 1.14 3.91 50.19 55.24

−10 0.025 259 1.18 3.88 32.45 37.51

Table 8.1 summarizes the timing and iterations results of RMCP with ω = 1
using two different values of the tolerance tol = 10−12 and tol = 10−10.
Note that, due to the ill-conditioning of the saddle point matrix, the final
relative error was of the order of 10−8 and 10−6, respectively. In the same
table we report the results using RMCP with the experimentally computed

value of ω =
βK
βS

, where the leading eigenvalues were approximated using ten

iterations of the DACG method. From Table 8.1 we once again appreciate the
improvement in terms of iteration number an CPU time provided by RMCP
with optimal ω. The elapsed time is reduced by a factor 1.5 (tol = 10−12) or
1.8 (tol = 10−10) with respect to the MCP.

Finally, in Figure 6 we plot the number of iterations vs ω for the two values
of tol. It is shown that the experimental value of ω(= 0.025) is very close to
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Fig. 6. Number of iterations vs ω.

the minimum of both graphs. Moreover the improvement of RMCP regarding
iteration number seems to be not very sensitive to the value of ω, which
therefore does not need to be assessed with high accuracy.

9 Conclusion and Future Perspectives

We have presented a class of enhanced block preconditioners for saddle point
linear systems arising from coupled consolidation problems. These novel pre-
conditioners accelerate the Mixed Constraint Preconditioners on the basis of
a relaxation parameter ω which can be easily assessed by a few iterations of
iterative eigensolvers to approximate the largest eigenvalue of two suitable
SPD matrices. Results in the solution of small to very large coupled consoli-
dation problems reveal that the acceleration is always effective and it reduces
the number of iterations and total CPU time by a factor three in the most
ill-conditioned test case.

Our approach can be applied to a wide range of problems which give raise
to symmetric saddle point matrices. As a further example, we show that the
RMCP proves an efficient preconditioner in the solution of a difficult steady-
state problem arising from Mixed Finite Element discretization of the Darcy’s
law in porous media.

We expect that our approach can be efficiently employed also in the solution of
the steady state Stokes problem as well as the linearized system arising from
the interior point method applied to large quadratic constrained optimization
problem. Future work is aimed at verifying the effectiveness of the proposed
preconditioner also when addressing such problems.
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