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aInstituto de F́ısica Teórica UAM/CSIC and Departamento de F́ısica Teórica,
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Yukawa couplings are the source of flavour in the Standard Model and describe the large

heterogeneity of fermion masses and mixings. Understanding the origin of their structure

would be tantamount to solving the long-standing flavour puzzle.

The concept that quark masses and the Cabibbo angle could arise from extremizing

the possible chiral SU(3) ⊗ SU(3) invariant functions was first introduced by N. Cabibbo

in the sixties. Subsequently in refs. [1] and [2] (see pag. 50, appendix I), group theoretical

methods were developed in order to identify their natural extrema.

In 1979, Froggatt and Nielsen [3] first proposed that Yukawa couplings could corre-

spond to dynamical fields, i.e. fields that develop vacuum expectation values in flavour

space. Their attempt was based on a global U(1) symmetry acting horizontally on the dif-

ferent fermion families and was able to describe fermion masses and mixings in agreement

with present observations (see refs. [4, 5] for a recent discussion). However, flavour chang-

ing neutral currents (FCNCs) in general do appear, representing a dangerous drawback for

this model.

The Froggatt-Nielsen idea was followed by several proposals based on different type

of flavour symmetries (i.e continuous or discrete, Abelian or non-Abelian . . . ). Among

them, a particular role is played by the flavour symmetry of the kinetic terms: in the

limit of vanishing masses, the fermions of the same type are indistinguishable and an

U(3) symmetry emerges. Working on this setup, the Minimal Flavour Violation (MFV)

ansatz [6–17] has been formulated: it proposes that Yukawa couplings are the only vehicles

of flavour at low-energy. Consequently, the Yukawa couplings are the only source of flavour

and CP violation in the SM and beyond. A byproduct of this framework is that the

energy scale of any New Physics (NP) satisfying the MFV ansatz may be as low as few

TeV [8–10, 13, 15, 18–26], while in general it should be larger than hundreds of TeV [27].

A key aspect of the MFV context is that the Yukawa couplings are promoted to be

spurion fields transforming under the flavour symmetry, such that the full Lagrangian

is formally invariant under the symmetry of the kinetic terms. Only once the Yukawa
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spurions acquire specific background values, fermion masses and mixings can be suitably

described. It is to be noticed, however, that in the MFV context there is no explanation

of the origin of fermion masses and mixing, or equivalently there is no explanation for

the background values of the Yukawa spurions. This motivates the studies performed in

refs. [15, 17] (see refs. [28–31] for earlier attempts and refs. [32, 33] for alternative analyses),

where the Yukawa spurions are promoted to scalar dynamical fields, invariant under the

SM gauge symmetry but transforming under the flavour symmetry. The case with a one-

to-one correlation between Yukawa couplings Yi and dynamical scalar fields Yi in the bi-

fundamental of the flavour symmetry, Yi ≡ 〈Yi〉/Λf with Λf the cutoff of the theory, is

discussed at length in refs. [15, 17], but other possibilities, such as Yi ≡ 〈χ1
i 〉〈χ2

i 〉/Λ2
f with

χ1,2
i scalar fields in the fundamental, have been also considered [15]. The scalar potential

constructed out of these fields was studied at the renormalisable level (and adding non-

renormalisable terms in the quark context): these effective Lagrangian expansions are

possible under the assumption that the ratio of the flavon vevs and the cutoff scale of the

theory is smaller than 1, condition that is always satisfied but for the top Yukawa coupling.

In this case a non-linear description would be more suitable.

It turns out that the Majorana character of neutrinos can have a deep impact on the

nature of the scalar potential minima. In ref. [17], a particular Type I SeeSaw model

with two right-handed (RH) neutrinos was analysed: the corresponding flavour symmetry

contains anO(2)N factor in the RH neutrino sector. At the minimum of the scalar potential,

a large mixing angle and a maximal Majorana phase were found. This is in contrast to

the simplest quark case - which yields a vanishing mixing angle - and it leads to a strong

correlation between neutrino mass hierarchy and mixing pattern: a novelty in the field (see

refs. [34–38] for recent reviews on lepton flavour models).

The present letter focuses on the lepton sector. We extend the conclusions presented

in ref. [17] to generic type I SeeSaw models and explore realistic three-family spectra. The

notation is introduced in section 1 and then section 2 deals with the two-family scenario

for the cases: i) generic right-handed (RH) neutrino masses; ii) degenerate RH neutrino

masses; iii) finally, promoting the RH neutrino mass matrix to be as well a dynamical field.

Section 3 is devoted to the three-family case, identifying the most promising scenario for

describing lepton masses and mixing.

1 MFV in the lepton sector

The MFV ansatz in the lepton sector has been codified in refs. [9, 10, 12, 13, 16]. The

flavour symmetry of the leptonic kinetic terms, for the type I SeeSaw theory with three

RH neutrinos, is

Gf = U(3)ℓL ×U(3)ER
×U(3)N , (1.1)

and the corresponding transformation properties1 for leptons are

ℓL ∼ (3, 1, 1) , ER ∼ (1, 3, 1) , NR ∼ (1, 1, 3) . (1.2)

1Only the transformation properties under the non-Abelian part of Gf are explicitly shown.
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The Yukawa and Majorana mass terms,

− LY = ℓLYEHER + ℓLYνH̃NR +N
c

R

MN

2
NR + h.c. , (1.3)

explicitly break the flavour symmetry, unless the Yukawa couplings and the mass matrix

for the RH neutrinos MN are promoted to spurion fields transforming under Gf as

YE ∼ (3, 3̄, 1) , Yν ∼ (3, 1, 3̄) , MN ∼ (1, 1, 6̄) . (1.4)

Lepton masses and mixings are obtained once these spurions acquire background values.

The number of parameters described, however, is much larger than the low-energy observ-

ables, as expected in the type I SeeSaw context. This in general prevents a direct link

among neutrino parameters and flavour violating observables. To establish this connec-

tion the number of spurions has to be reduced from three to two: in ref. [9] MN ∝ 1; in

ref. [12], restricting to the two-family RH neutrino case, MN ∝ σ1; in ref. [16] Y †
ν Yν ∝ 1.

All these cases can be generically described by using the Casas-Ibarra parametrization [39].

In the basis of diagonal mass matrices for RH and left-handed (LH) neutrinos and charged

leptons, the neutrino Yukawa coupling is written as

Yν =
1

v
U
√

m̂νR

√

M̂N , (1.5)

where v is the electroweak vev, the hat stands for diagonal mass matrices, U refers to

the PMNS matrix and R is a complex orthogonal matrix, RTR = 1. A correct de-

scription of lepton masses and mixings is then achieved assuming that YE acquires the

background value:

YE = yE ≡ diag(ye, yµ, yτ ) , (1.6)

while the remaining spurion, MN or Yν -depending which case is considered- accounts for

the neutrino masses and the PMNS matrix (see refs. [9, 12, 16]).

To endow the Yukawa couplings with a dynamical context, the spurion fields YE , Yν
and MN can be promoted to dynamical fields YE , Yν and MN respectively. The flavour

symmetry is spontaneously broken2 once these fields develop a non-vanishing vev:

〈YE〉 = ΛfYE , 〈Yν〉 = ΛfYν , 〈MN 〉 = MN . (1.7)

The scale Λf could be distinct from the scale MN , as the flavour symmetry and the lepton

number could be broken at different energies. The analysis of the scalar potential con-

structed out of YE , Yν and MN will then establish whether realistic masses and mixings

correspond to a minimum. A useful earlier analysis of invariants in view of minimising

flavour potentials can be found in refs. [43, 44]. There are as many independent invariants

as independent physical quantities; in this respect see for instance the counting in ref. [45]

for the type I SeeSaw model including the case of heavy degenerate neutrinos.

2In order to avoid the presence of Goldstone bosons, corresponding to the spontaneous breaking of

the global flavour symmetry, Gf can be gauged. See refs. [20, 21, 40–42] for recent developments in this

direction.
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2 The two-family case

The reduced number of parameters of the two-family scenario allows for a simple analysis.

Also, since the tau mass maximally breaks the flavour symmetry, the two-family scenario

can be considered an instructive preliminary exercise. Generic RH neutrino masses will

be first discussed, while the case with degenerate RH neutrinos will follow, for which only

two flavons are needed, i.e. YE and Yν . Finally, the RH neutrino mass matrix will also be

promoted to a dynamical field.

Gf = U(2)ℓL × U(2)ER
. This is the flavour symmetry exhibited by the type I SeeSaw

Lagrangian in the limit of vanishing Yukawa couplings, with generic RH neutrino masses,

M1 6= M2. Five independent invariants form a basis3 at the renormalisable level:

Tr
[

YEY†
E

]

, Tr
[

YνAY†
ν

]

, Tr
[ (

YEY†
E

)2 ]

,

Tr
[ (

YνAY†
ν

)2 ]

, Tr
[

YEY†
EYνAY†

ν

]

,
(2.1)

where A is a generic 2 × 2 matrix, here taken to be hermitian in the convention in which

the coefficients of the potential are real. The insertion of the matrix A is a novelty with

respect to the quark case and it is due to the transformation properties of the neutrino

Yukawa flavon in this case, Yν ∼ (2, 1).

With the set of invariants above, one can construct the corresponding renormalisable

scalar potential and minimise it. The first four terms in eq. (2.1) turn out to be responsible

for fixing the lepton mass hierarchies, while the last term is the only one involving the

mixing angle:

Tr
[

YEY†
EYνAY†

ν

]

∝ Tr
[

y2
E U

√

m̂ν P
√

m̂ν U
†
]

, (2.2)

where the matrix P encodes the dependence on the high-energy parameters (see eq. (1.5)),

P ≡ R

√

M̂NA
√

M̂N R† . (2.3)

Defining the two-generation PMNS matrix as

U =

(

cos θ sin θ

− sin θ cos θ

)(

e−iα

eiα

)

, (2.4)

with θ ∈ [0, π/2] and α ∈ [0, π], and minimising the invariants in eq. (2.2), the following

two conditions result:

2(y2µ − y2e)
√
m1m2 sin 2θ |P12| sin(2α− argP12) = 0 , (2.5)

(y2µ − y2e)
[

sin 2θ (m1 P11 −m2 P22)− 2 cos 2θ
√
m1m2 |P12| cos (2α− argP12)

]

= 0 ,

3As Gf contains the U(2)ℓL factor, the operator det (YE) is not an invariant, at variance with ref. [17],

where the analysis of the flavour symmetry concentrated in the case SU(2)ℓL .
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where m1,2 are the eigenvalues of m̂ν . For non-trivial mixing (sin 2θ 6= 0) and neglecting

the trivial solutions (i.e. degenerate charged lepton masses, vanishing neutrino masses, or

vanishing |P12|), it follows that

2α− argP12 = nπ , with n ∈ Z

tan 2θ = 2 |P12|
√
m1m2

m1 P11 −m2 P22

cos(2α− argP12) .
(2.6)

The first expression connects the low-energy and the high-energy phases, while the second

one represents a link among the size of the mixing angle and the type of neutrino spectrum.

It is precisely the Majorana neutrino character that allows this novel connection, through

the solutions with non-trivial Majorana CP phases. However, the presence of the generic

matrix A in eq. (2.3) prevents clear predictions for the mixing angle.

Gf = U(2)ℓL×U(2)ER
×O(2)N . This case corresponds to the degenerate RH neutrino

masses, M1 = M2 ≡ M . This is the largest possible symmetry in the RH neutrino sector,

once non-vanishing masses for the heavy RH neutrinos are considered. The invariants that

form a basis at the renormalisable level are those in eq. (2.1), but since now Yν ∼ (2, 1, 2̄),

A can only take the values A = 1 and A = σ2. The latter leads to only one non-

trivial invariant,

Tr

[

(

Yνσ2Y†
ν

)2
]

, (2.7)

which can be rewritten as

Tr
[

YνYT
ν Y∗

νY†
ν

]

. (2.8)

In summary, the basis of invariants in this case is constituted by those in eq. (2.1) with

A = 1, plus the operator in eq. (2.8).

In the present case of degenerate heavy neutrinos, the R (and thus P ) matrix simpli-

fies to:

R =

(

coshω −i sinhω

i sinhω coshω

)

,

P = M

(

cosh 2ω −i sinh 2ω

i sinh 2ω cosh 2ω

)

.

(2.9)

The conditions which define the minima, eq. (2.6), become in turn

α = π/4 or α = 3π/4 ,

tan 2θ = 2 sin 2α

√
m1m2

m1 −m2

tanh 2ω .
(2.10)

A maximal relative Majorana phase is thus obtained; it does not imply experimental con-

sequences for CP-odd observables, though, as the relative Majorana phase among the two

neutrino eigenvalues is π/2. Eq. (2.10) defines a class of extrema of the scalar potential:

in particular, a large mixing angle is obtained for almost degenerate masses, while a small

angle follows in the hierarchical case. It is then necessary to discuss the full minimisation

of the scalar potential to identify the configuration of angles corresponding to the absolute
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minimum. Eq. (2.10) agrees with the results in ref. [17], for a particular choice of ω.4

As shown there, degenerate neutrino masses are a minimum of the scalar potential and

therefore the maximal angle solution is also a minimum.

Note that the results in eq. (2.10) stem from the last invariant in eq. (2.1) with A = 1,

and in particular are not affected by the introduction of the new invariant in eq. (2.8). The

latter has an impact only on the neutrino spectrum and fixes ω: for ω = 0 the mixing angle

vanishes, see eq. (2.10) (and refs. [17, 46] for more details); for ω 6= 0 it allows instead a

degenerate mass configuration at the minimum and therefore selects the configuration with

maximal angle.

It is interesting to recover the minima of the scalar potential using a different parametri-

sation than the Casas-Ibarra one: the bi-unitary parametrisation. The latter consists in

decomposing a matrix as a product of a unitary matrix, a diagonal matrix of eigenvalues

and a second unitary matrix. Without loss of generality, we will work in the basis in which

the RH neutrino and the charged lepton mass matrices are diagonal. The neutrino Yukawa

coupling (vev of the Yν field) can be written as

Yν ≡ ULŶνUR (2.11)

with UL,R being unitary matrices and Ŷν = diag(yν1 , yν2). The light neutrino mass matrix

reads then

mν = v2 Yν
1

MN

Y T
ν = v2 ULŶνUR

1

MN

UT
R ŶνU

T
L . (2.12)

Using Von Neumann’s trace inequality to identify the extremal configurations for UL,
5

and after employing the freedom to redefine the electron and muon fields, the analysis of

Tr
[

YEY†
EYνY†

ν

]

leads to

UL ∝
(

1 0

0 1

)

, (2.13)

where unphysical phases have been dropped for simplicity. On the other side, the invariant

in eq. (2.8) leads to the following structure for UR at the potential minimum:

URU
T
R ∝

(

0 1

1 0

)

, (2.14)

besides the trivial one. From eqs. (2.13) and (2.14), the light neutrino mass matrix takes

the form

m̂ν = UTmνU =
v2

M
ỹν1 ỹν2 U

T

(

0 1

1 0

)

U , (2.15)

where the unphysical phases eventually present in UL,R have been reabsorbed in ỹνi . As a

result, the PMNS matrix reads:

U =

( √
2/2

√
2/2

−
√
2/2

√
2/2

)(

i

1

)

. (2.16)

4In the notation of ref. [17], ω is defined as eω ≡
√

y/y′.
5Given two n × n matrices A and B with positive definite eigenvalues ai (a1 ≤ a2, · · · ≤ an) and bi

(b1 ≤ b2, · · · ≤ bn), the trace of their product is extremized for the ordered or inversely ordered pairing of

eigenvalues: Σiaibn+1−i ≤ Tr(AB) ≤ Σiaibi, see ref. [47] for details.

– 6 –



J
H
E
P
0
8
(
2
0
1
3
)
0
6
9

In conclusion, the general SeeSaw setup with heavy degenerate neutrinos provides a solution

with: i) a degenerate light neutrino spectrum; ii) a correlated maximal mixing angle θ =

π/4; iii) and a correlated maximal relative Majorana phase 2α = π/2. This spectrum is in

agreement with the analytical results in eq. (2.10) and subsequent discussion.

Gf = U(2)ℓL ×U(2)ER
×U(2)N . A pertinent question is whether other global flavour

symmetries may produce the same or similar results than those found above. In the case

in which the RH neutrino sector exhibits a U(2)N factor, the invariance of the complete

Lagrangian under Gf requires MN to be also promoted to a dynamical field, properly

transforming under U(2)N . The operators in eq. (2.1) are then invariants of Gf only for

A = 1, while eq. (2.8) is not an invariant. On the other side, another three additional

operators are allowed at the renormalisable level and enlarge the operator basis:

Tr [M∗
NMN ] , Tr

[

(M∗
NMN )2

]

, Tr
[

M∗
NMNY†

νYν

]

. (2.17)

The last invariant in this list leads to UR ∝ 1, or equivalent configurations, as it is straight-

forward to prove using the bi-unitary parametrisation in eq. (2.11) and Von Neumann’s

trace inequality. Together with eq. (2.13) for UL, the minimum would indicate a vanishing

mixing angle.6

Summarizing: in the two-family case, only when the flavour symmetry of the type I

SeeSaw encodes O(2)N a maximal mixing angle can be predicted at the minimum of the

scalar potential, together with a relative Majorana phase of π/2 and a degenerate light

neutrino spectrum.

Moreover, the previous discussion shows that, when Yukawas have a dynamical origin,

a connection between low-energy and high-energy parameters is possible. For instance,

the CP-asymmetry entering Leptogenesis for the case of Gf = U(2)ℓL × U(2)ER
× O(2)N

is a function of arg(P12) (see the phase relation in eq. (2.6)). Would that relation hold

exactly in nature, the maximal relative CP phase obtained would entail no leptogenesis;

nevertheless, departures from that precise relation are to be expected in a realistic scenario,

and they may suffice as seeds of the matter-antimatter asymmetry. This subject deserves

further future exploration.

3 The three-family case

For the realistic scenario with three lepton families, it is interesting to analyse both the

cases with three and with two heavy RH neutrinos (as experimentally one of the light

neutrino is allowed to be massless).

3.1 Two RH neutrinos

Generic RH neutrino masses or the consideration of MN as a flavon would not lead to

any improvement with respect to the two-family case. For the interesting scenario with

degenerate RH neutrino masses, i.e. Gf containing the factor O(2)N , as the large angle

6More precisely, sin θ = 0: the configurations with angle π/2 lead to no mixing after “reordering” the

mass states.
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corresponds always to the most degenerate sector, it suggests to identify it with the “solar”

angle θ12: an explicity analysis shows it to lie then in the wrong quadrant, while furthermore

no other angles arise (see ref. [17] for further details in a concrete example). Therefore,

this avenue does not lead to a realistic pattern, at least in its simplest formulation.

3.2 Three RH neutrinos

Most of the results in the previous section can be generalised to the case of three

RH neutrinos.

Gf = U(3)ℓL × U(3)ER
. This symmetry holds when neither is MN promoted to be a

dynamical field nor a degeneracy among its eigenvalues is present. The invariants defining

a basis at the renormalisable level are still those listed in eq. (2.1), with the obvious three-

dimensional generalisation of the matrices Yi and A. The minimisation procedure turns

out to be more complicated technically than that leading to eq. (2.6). In any case, the

presence of the generic matrix A prevents also in this case to make clear predictions for

the mixing angles.

Gf = U(3)ℓL × U(3)ER
× U(3)N . In this case, promoting MN to be a flavon field

transforming under the U(3)N subgroup of the flavour symmetry, the possible invariants

are the three-family equivalent to those in eqs. (2.1) with A = 1, plus those in eq. (2.17).

The bi-unitary parametrisation for Yν is a useful tool also in this case: it is straightforward

to verify that, at the minimum of the potential, both UL and UR are proportional to the

identity matrix (or equivalent configurations, after redefining the fermion fields), and in

consequence lead to no mixing.

The results presented in the previous sections are strictly valid considering the scalar

potential at the renormalisable level, as higher order operators may be neglected under the

assumption that the ratio of the flavon vevs and the cutoff of the theory is smaller than

one. Adding non-renormalisable terms to the lepton scalar potential is currently under

investigation. In the quark case, it has been shown that those terms may lead to new field

configurations at the minimum, resembling more closely the actual flavour pattern at the

cost of large fine-tunings [15]. In the lepton sector new configurations are also expected,

although not necessarily fine-tuned since the flavour symmetry and (or) field content differ

from the quark case; see ref. [48] for an analysis of a complete set of invariants including

non-renomalizable ones.

Moreover, it has been implicitly assumed above that only fields transforming in the

bi-fundamental representation of the flavour symmetry could be used when constructing

the invariant operators. An interesting possibility, already analysed for the quark case [15],

is to introduce in addition fields in the fundamental representation of Gf and analyse the

interplay of both type of fields. This can naturally happen when two, out of three, RH

neutrinos are degenerate in mass, as we are going to consider in the following.

Gf = U(3)ℓL × U(3)ER
× O(2)N . Let us consider this symmetry when two, out of

three, RH neutrinos are degenerate in mass. One could think that this setup is equivalent

to that with only two RH neutrinos, degenerate in mass, previously discussed in section 3.1,

– 8 –
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as the flavour symmetry is the same. Nevertheless, the presence of a third non-degenerate

state increases the number of invariants that can be built. We will show next that, due

to the interplay between the doublet and the singlet states, all three mixing angles can be

non-vanishing.

The leptonic flavour Lagrangian is given in this case by

−LY =ℓLYEHER + ℓLY
′
νH̃N ′

R + ℓLYνH̃NR +
M ′

2
N

′c

RN
′
R +

M

2
N

c

R1NR + h.c. , (3.1)

where NR (N ′
R) is a doublet (singlet) of O(2)N , and the flavons associated to the neutrino

Yukawa couplings are

Yν ∼ (3, 1, 2̄) , Y ′
ν ∼ (3, 1, 1) . (3.2)

Once the Yukawa flavons develop vevs, the light neutrino mass matrix is generated:

mν =
v2

M ′
Y ′
νY

′T
ν +

v2

M
YνY

T
ν . (3.3)

A total of nine independent invariants at the renormalisable level can be constructed

in this case, namely

Tr
[

YEY†
E

]

, Tr
[

YνY†
ν

]

, Y ′†
ν Y ′

ν ,

Tr
[ (

YEY†
E

)2 ]

, Tr
[ (

YνY†
ν

)2 ]

, Tr
[

YEY†
EYνY†

ν

]

,

Tr
[

YνYT
ν Y∗

νY†
ν

]

, Y ′†
ν YEY†

EY ′
ν , Y ′†

ν YνY†
νY ′

ν .

(3.4)

The corresponding renormalisable scalar potential can be written as a sum of three differ-

ent terms:

V = V∆ + VL + VR , (3.5)

with

V∆ = −(µ2
E , µ

2
ν , µ

′2)X 2 + X 2†λX 2 + λE Tr
[ (

YEY†
E

)2 ]

+ λν Tr
[ (

YνY†
ν

)2 ]

,

VL = gaTr
[

YEY†
EYνY†

ν

]

+ gbY ′†
ν YEY†

EY ′
ν + gcY ′†

ν YνY†
νY ′

ν ,

VR = h′Tr
[

YνYT
ν Y∗

νY†
ν

]

,

(3.6)

where X 2 ≡
(

Tr
[

YEY†
E

]

,Tr
[

YνY†
ν

]

,Y ′†
ν Y ′

ν

)T

, and λ is a 3 × 3 matrix of quartic cou-

plings. The minimisation of the scalar potential will be implemented using the bi-unitary

parametrisation for the vevs of the neutrino Yukawa flavons,

Yν ≡ UL







0 0

yν1 0

0 yν2






UR , Y ′

ν ≡ U ′
Ly

′
ν , (3.7)

where UL,R are 3× 3 and 2× 2 unitary matrices, respectively, and U ′
L a unitary vector in

the U(3)ℓL space.7

7Other two configurations for Yν are possible, permuting the rows in eq. (3.7); similar conclusions are

obtained with them.
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The dependence on the physical parameters of the three terms in the scalar potential is

as follows: i) V∆ depends only on the eigenvalues of YE , Yν and Y ′
ν ; ii) VL depends on those

eigenvalues and on UL and U ′
L; iii) finally, VR depends only on UR and the eigenvalues. As

a result, VR is minimized when UR takes the values

URU
T
R ∝ 1 , for h′ < 0 ,

URU
T
R ∝

(

0 1

1 0

)

, for h′ > 0 .
(3.8)

The minimisation of VL is cumbersome as three terms contribute and the absolute minimum

is determined by the relative signs of those three terms, which in turn depend on UL, U
′
L

and on the product U ′†
LUL, respectively. The possible configurations that minimise each of

the terms are then






























UL ∝ 1 ga < 0

UL ∝









0 0 1

0 1 0

1 0 0









ga > 0
(3.9)











U ′†
L ∝

(

0 0 1
)

gb < 0

U ′†
L ∝

(

1 0 0
)

gb > 0
(3.10)











U ′†
LUL ∝

(

0 0 1
)

gc < 0

U ′†
LUL ∝

(

1 0 0
)

gc > 0 .
(3.11)

In consequence, when considering the full minimisation of VL, there are four cases in which

all the three terms select the same vacuum and a precise prediction for the light neutrino

mass matrix can follow: when the product of ga, gb and gc is negative. Defining for

compactness z ≡ yν1yν2v
2/M and z′ ≡ y′2ν v

2/M ′, the four cases are

1. ga > 0, gb > 0, gc < 0:

mν =







z′ z 0

z 0 0

0 0 0






→















tan 2θ12 = z/z′

mν1 6= mν2

mν3 = 0

(3.12)

2. ga > 0, gb < 0, gc > 0:

mν =







0 z 0

z 0 0

0 0 z′






→
{

θ12 = π/4

mν1 = mν2 6= mν3

(3.13)
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3. ga < 0, gb > 0, gc > 0:

mν =







z′ 0 0

0 0 z

0 z 0






→
{

θ23 = π/4

mν1 6= mν2 = mν3

(3.14)

4. ga < 0, gb < 0, gc < 0:

mν =







0 0 0

0 0 z

0 z z′






→















tan 2θ23 = z/z′

mν2 6= mν3

mν1 = 0

(3.15)

Case 1 (4) describes an inverse (direct) hierarchical spectrum and only one sizable mixing

angle, the solar (atmospheric) one. In case 2, the light neutrinos ν1 and ν2 are degen-

erate and both mass orderings (hierarchical or degenerate) can be accommodated, while

a maximal solar angle is predicted. Finally, case 3 corresponds to degenerate ν2 and ν3:

a realistic scenario points to three almost degenerate neutrinos. Note that cases 2 and

3 encompass two degenerate neutrinos and the relative Majorana phase between the two

degenerate states is π/2.

Cases 1-4 only account for one sizable angle. Configurations with three non-trivial an-

gles, however, follow in a straightforward way when the product of ga, gb and gc in eq. (3.6)

is positive: the distinct terms in VL compete then and generic UL and U ′
L are selected at

the minimum. These realistic configurations can be thought of as interpolations between

the cases in eqs. (3.12)–(3.15); however, they do not admit a perturbative expansion in the

coefficients ga, gb and gc, and no simple analytical formulae follow. The setup appears very

promising, though, as all three angles can be naturally non-vanishing and moreover the

number of free parameters is smaller than the number of observables, leading to predictive

scenarios in which mixing angles and Majorana phases are linked to the spectrum. This

case is currently under exploration.

4 Conclusions

In this letter, the dynamical origin of the Yukawa structure in the lepton sector is investi-

gated in the context of type I SeeSaw. Yukawa couplings are promoted to be scalar fields,

transforming only under global flavour symmetries, and acquiring vevs that minimise the

corresponding scalar potential.

The flavour symmetries that have been considered are the maximal symmetries of

the Lagrangian in the limit of vanishing Yukawa couplings and i) generic RH neutrino

masses, ii) degenerate RH neutrino masses, iii) promoting to a field the RH neutrino mass

matrix itself.

The relatively large tau lepton mass represents a maximal breaking of the flavour

symmetry, and this suggests to consider first the two-family scenario. The flavour symmetry

for the three scenarios mentioned above is U(2)ℓL ×U(2)ER
, U(2)ℓL ×U(2)ER

×O(2)N and
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U(2)ℓL × U(2)ER
× U(2)N , respectively. Tantalizingly suggestive results follow when the

flavour group Gf contains O(2)N , corresponding to degenerate RH neutrino masses. A

specific model of this type has been previously studied in ref. [17], while in this letter we

have extended that analysis to generic type I Seesaw scenarios containing two degenerate

RH neutrinos. We have proven that the minimum of the potential allows a maximal

mixing angle and a maximal Majorana phase, correlated with a degenerate light neutrino

spectrum. It is the Majorana neutrino character -technically via the non-trivial Majorana

phases- that allows this novel connection.

For three light generations with only two RH neutrinos, no satisfactory or promising

scenario is obtained: even if a maximal mixing angle is allowed within the most degenerate

light sector -the solar one, it would lie in a quadrant which is experimentally excluded;

moreover no other angles appear at this level. On the other hand, when three RH neutrinos

are considered with two of them degenerate in mass, the flavour symmetry Gf = U(3)ℓL ×
U(3)ER

×O(2)N may lead to realistic patterns of lepton masses and mixings. Three sizable

mixing angles can arise and are determined in terms of lepton and neutrino masses, from

the interplay of two different types of Yukawa fields: a field transforming under the bi-

fundamental of Gf and an other one under the fundamental. In summary, our results

indicate that a realistic solution for the Flavour Puzzle in the lepton sector requires three

RH neutrinos, two of which must be degenerate. All three light neutrinos would therefore

acquire masses, and the precise values of the mixing angles and Majorana phases are related

to the specific light mass spectrum.

The analysis illustrated in this letter considered only renormalisable scalar po-

tentials, while the impact of non-renormalisable terms and perturbations is currently

under investigation.

5 Note added in proof

When all three RH neutrinos are degenerate, the flavour symmetry is

Gf = U(3)ℓL ×U(3)ER
×O(3)N , (5.1)

and the basis of invariants is composed of the operators in eq. (2.1) with A = 1, plus that

in eq. (2.8). The study of the extrema of these invariants has been recently presented in

ref. [48]. Minimising the corresponding scalar potential as illustrated above, the solutions

are consistent with those in ref. [48].

Using Von Neumann’s trace inequality and the freedom to redefine the charged lepton

fields, UL ∝ 1 at the minimum of the potential, while the product URU
T
R acquires two

possible structures:

URU
T
R ∝ 1 or URU

T
R ∝







0 0 1

0 1 0

1 0 0






. (5.2)

– 12 –



J
H
E
P
0
8
(
2
0
1
3
)
0
6
9

While the first solution leads to no mixing, the second one corresponds to a neutrino mass

matrix of the type

m̂ν =
v2

M
UT







0 0 ỹν1 ỹν3
0 ỹ2ν2 0

ỹν1 ỹν3 0 0






U , (5.3)

where ỹνi contain the three entries of Ŷν and unphysical phases. In the normal or inverse

hierarchical case, two of the light neutrinos are degenerate in mass and a maximal angle

and a maximal Majorana phase arise in their corresponding sector. On the other hand, if

the third light neutrino is almost degenerate with the other two, then the perturbations

split the spectrum and a second sizable angle arises [48].
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