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Abstract

How we compute time is not fully understood. Questions include whether an automatic brain mechanism is engaged in
temporally regular environmental structure in order to anticipate events, and whether this can be dissociated from task-
related processes, including response preparation, selection and execution. To investigate these issues, a passive temporal
oddball task requiring neither time-based motor response nor explicit decision was specifically designed and delivered to
participants during high-density, event-related potentials recording. Participants were presented with pairs of audiovisual
stimuli (S1 and S2) interspersed with an Inter-Stimulus Interval (ISI) that was manipulated according to an oddball
probabilistic distribution. In the standard condition (70% of trials), the ISI lasted 1,500 ms, while in the two alternative,
deviant conditions (15% each), it lasted 2,500 and 3,000 ms. The passive over-exposition to the standard ISI drove
participants to automatically and progressively create an implicit temporal expectation of S2 onset, reflected by the time
course of the Contingent Negative Variation response, which always peaked in correspondence to the point of S2 maximum
expectation and afterwards inverted in polarity towards the baseline. Brain source analysis of S1- and ISI-related ERP activity
revealed activation of sensorial cortical areas and the supplementary motor area (SMA), respectively. In particular, since the
SMA time course synchronised with standard ISI, we suggest that this area is the major cortical generator of the temporal
CNV reflecting an automatic, action-independent mechanism underlying temporal expectancy.

Citation: Mento G, Tarantino V, Sarlo M, Bisiacchi PS (2013) Automatic Temporal Expectancy: A High-Density Event-Related Potential Study. PLoS ONE 8(5):
e62896. doi:10.1371/journal.pone.0062896

Editor: Warren H. Meck, Duke University, United States of America

Received October 3, 2012; Accepted March 29, 2013; Published May 1, 2013

Copyright: � 2013 Mento et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by a grant the Bial Foundation (146/2008 to P.S.B.). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: giovanni.mento@unipd.it

Introduction

Time processing is one of the most pervasive aspects of our

mental functioning since it is involved in all motor, perceptual, and

cognitive activities. Recently, there has been growing interest in

understanding the cognitive mechanisms and the neural bases

underlying timing [1–5]. A functional taxonomy of timing

processes has been proposed by Coull and Nobre [6], which

identifies distinct explicit and implicit mechanisms. According to

the authors, explicit timing is engaged by tasks requiring either

motor production (motor timing) or perceptual discrimination

(perceptual timing). Conversely, implicit timing is indirectly

engaged as an epiphenomenon of the temporal regularity of

either a motor output (emergent timing) or a perceptual input

(temporal expectation). Remarkably, temporal expectation may

arise incidentally from a regular stimulus structure (exogenous

temporal expectation) or may be consciously driven by informative

pre-cues (endogenous temporal expectation).

Several functionally integrated brain structures have been found

to be involved in time processing, including the cerebellum, the

basal ganglia (BG), the insula, the dorsolateral prefrontal cortex

(DLPFC), the inferior parietal cortices (IPC), the premotor cortex

and the supplementary motor area (SMA) [5–10]. Remarkably,

some of the above structures like the cerebellum, the BG, the SMA

and the premotor cortex have traditionally been associated with

motor processing, including action planning, response setting,

preparation and selection [11–13]. This suggests that specific

action-related processing may to some extent underlie, or at least

share, brain circuits with perceptual timing mechanisms [14–17].

This hypothesis makes sense by virtue of the fact that accurate

timing is of crucial importance for motor preparation and for limb-

movement execution, even in the case in which a given action does

not require an overt estimation of the passage of time. This is what

the daily experience suggests when we implicitly calculate the

appropriate time to cross the road immediately before the passage

of a car. A wrong temporal control of the motor pattern would be

really dangerous for our survival in the world. As such, it is

reasonable to think that complex and dedicated sensorimotor

circuits representing temporal dynamics with a high level of

precision may be ubiquitously involved in activities requiring

timing. Obviously, this would hold true either for complex goal-

directed actions based upon high-level motor processing in time

(e.g., playing a challenging Paganini’s solo on the violin) but also

when motor demand is very low, as in the case of simple reaction

to stimuli (e.g., pressing a button to signal onset).

Given its documented implication in motor processing, the

SMA represents an ideal candidate for processing temporal aspects

of movements. In fact, experimental evidence confirming the

ubiquitous involvement of the SMA in both motor and perceptual

timing has been brought by functional imaging studies [18–23], as

recently reviewed in a wide voxel-wise meta-analysis by Wiener

et al. [24]. What the exact role of this structure is in timing,

however, is not fully understood yet. In an elegant explicit timing
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study, Coull et al. [18] found that even when motor task demand

is kept very low, for example by using a time discrimination rather

than reproduction task, a brain network including the SMA

together with the DLPFC, the putamen and the right superior

temporal gyrus (r-STG) was recruited. Importantly, the SMA was

the only cortical region activated in the encoding and comparison

phases of intervals. This led the authors to argue that this area

plays a central role in the interval-tracking process underlying

explicit perceptual timing rather than in time-based motor

processing. Although to a lesser extent, the SMA has been

proposed to play a key role also in implicit timing. In this regard,

using an endogenous temporal expectation paradigm in which

a central cue pre-oriented attention on time, Coull et al. [25]

found that short and long SOAs between the cue and the target

differentially engaged structures traditionally associated with

motor preparation, with the SMA and the basal ganglia being

significantly activated during long SOAs. In the authors’ view, the

involvement of the SMA in the implicit orienting of attention on

time raised the possibility of this area being associated with self-

generated timing in addition to motor processes.

There is nonetheless no total agreement on the exclusive

‘perceptual’ role of the SMA in timing mechanisms. Indeed, the

SMA has been shown to be activated only in temporal tasks with

a strong motor component, such as time reproduction, but not in

temporal perceptual tasks, arguing that different brain circuits

serve motor and perceptual timing [26]. As well, in one

experiment [27], the SMA has been selectively implicated with

appropriate response selection rather than with the appropriate

timing of the response under an uncertainty task condition.

As a critical consideration, it should be noted that most of the

studies that investigated the neural bases of timing adopted motor

tasks, such as interval production or reproduction, making it

difficult to carve the neural bases of timing per se from additional

task-related processes. The use of discrimination paradigms

partially allows a by-pass of this problem by asking participants

to delay the motor response after the comparison of an interval to

a standard one, instead of reproducing it. However, even when

motor preparation processes are minimized, discrimination

paradigms may fail to unravel the contribution of further task

requirements other than pure timing and motor preparation/

execution, including response selection between alternatives,

a process found to mainly involve the SMA [11]. As a consequence,

it is difficult to disentangle between the neural activity more

directly associated with timing by itself and that related to

additional task-related processes. Hence, to what extent the SMA

engagement in timing tasks reflects the contribution of non-

perceptual, motor processes is still unknown.

The Contingent Negative Variation as an
Electrophysiological Index of Timing
Event-Related Potentials (ERPs) studies have also tried to shed

light on the temporal dynamics of the brain activity underpinning

timing [28]. Most of these studies investigated the Contingent

Negative Variation (CNV). The CNV is a slow cortical ERP

response of negative polarity reflecting both expectancy and motor

preparatory processes that precede warned and to-be-responded

imperative events [29]. Interestingly, CNV has also been

consistently demonstrated to be a reliable electrophysiological

hallmark of timing, since its morphological features, including

peak and slope inversion latency, mirror the duration of a pre-

viously encoded target interval when it has to be processed in

temporal reproduction, discrimination or bisection tasks [28,30–

37]. In line with the well-known Scalar Expectancy Theory (SET)

proposed by Gibbon et al. [38], one main interpretation of the

temporal CNV is that it reflects a time-unit ‘accumulator’

mechanism [30–32]. This hypothesis has arisen from the

observation that the longer the estimated duration, the larger

the CNV over the SMAs. However, the CNV ‘cumulative’

account has been recently challenged by Kononowicz et al. [39]

who failed to replicate CNV amplitude modulation in relation to

performance-based variations in a temporal reproduction task as

originally reported [30–32]. Thus, there is evidence that the CNV

may reflect a more indirect mechanism in timing than a pure

direct reflection of the accumulation of pulses.

In addition to its functional role, it is noteworthy that the CNV

has been reliably elicited both in explicit [30–34] as well as in

implicit timing tasks [40] supporting the hypothesis that timing

properties of slow brain potentials are transversal in temporal

processing. It should be noted, however, that although similar in

morphology, the implicit and explicit temporal CNV show

different scalp distributions, presumably due to distinct cortical

sources of activation. In explicit timing, the SMA would be the

most probable candidate as the CNV generator [30–34]. The

SMA recruitment in explicit tasks may reflect the cortical level of

a wider dopaminergic striato-frontal pathway connecting the basal

ganglia to the prefrontal areas via the thalamus, a network known

to have a major role in temporal processing [5,41–46]. In contrast,

the implicit CNV seems to predominantly originate from

activation of the bilateral premotor cortex [39]. One main

explanation linking the temporal CNV with premotor area

activation consists of the fact that event predictability may trigger

anticipatory, action-directed neural activity resulting in optimiza-

tion of behaviour, like for example, faster reaction times. Taken

together, however, available fMRI and EEG data do not allow the

complete exclusion of the possibility that the temporal CNV may,

to some extent, be contaminated by task-related ERP activity not

directly associated with timing mechanisms. This ultimately raises

the possibility that the CNV can emerge from the overlapping of

the activity of different neural structures associated with motor

and/or perceptual processes, depending on the task requirements.

The aim of the present study was to unravel the contribution of

task-related processes, including response preparation, selection

and execution, from that more directly linked with timing

mechanisms in a temporal expectancy task. To this purpose, we

created a ‘passive temporal oddball task’, which was specifically

designed to elicit temporal, expectancy-related CNV in the

absence of task requirements. Participants were presented with

pairs of stimuli (S1-S2), interspersed by a variable Inter-Stimulus

Interval (ISI), which was manipulated according to an oddball

probabilistic distribution. In 70% of trials, the ISI lasted 1,500 ms

(1500-Standard ISI); in 15% of trials the ISI lasted 2,500 ms

(2500-Deviant ISI); and in the remaining 15% of trials, the ISI

lasted 3,000 ms (3000-Deviant ISI). Participants were told only to

fixate on the centre of the screen; they did not receive any further

instruction. As the main hypothesis, we speculated that if temporal

expectancy were automatically arisen, then participants would

have shown to be sensitive to the temporal regularities of sensory

events even in the absence of any instruction or response

associated to them. More specifically, the high probability that

S2 would occur 1,500 ms after S1 offset would create an implicit

temporal rule consisting of the maximum expectation that S2

would occur at that specific time-point. Consequently, we

hypothesised that participant brain activity would become attuned

to standard ISI, this being reflected in the elicitation of ERP

responses correlated to the standard ISI duration. According to

previous findings [30–37], we expected to find a shift in S1-locked

CNV towards positivity (i.e., a CNV polarity inversion) during any

intervals longer than the standard, at a point in time at which the
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comparison with the standard interval takes place. This should

correspond in the present study to the time-point at which S2 had

the highest probability of appearing, that is at the end of the

standard ISI that we defined here as S2 Maximum Expectation Time

Point or S2 METP. Moreover, in order to better understand the

role of the SMA in automatic temporal expectancy as being

dissociable from motor processes, we estimated the neural

generators of both S1- and ISI-related ERP activity by using

a 128-sensor, high-density array EEG system allowing a more

reliable brain source analysis as compared to conventional EEG

systems.

Method

Participants
Eighteen subjects (16 females; mean age = 24.664.5 years),

recruited from the School of Psychology at the University of

Padua, took part in the study. They received course credits for

their participation in the study. All but three participants were

right-handed according to the Edinburg Handedness inventory

[47]. They had no history of neurologic, neuropsychiatric

disorders, or drug consumption, and had normal or corrected-

to-normal visual acuity. After being informed of the conditions of

the study, all participants signed a voluntary consent form, and

they were told that they could stop participating in the current

experiment at any time. The study was approved by the ethical

committee of Psychology of the University of Padua (protocol

No. 1179) and was conducted according to the principles

expressed in the Declaration of Helsinki.

Experimental Procedure and Stimuli
The experiment was run in a dimly illuminated and electrically

shielded room. Stimuli were presented on a 19-inch monitor at

a resolution of 128061024 pixels. Participants were seated

comfortably in a chair at a viewing distance 100 cm from the

monitor. Stimuli consisted of two pictures consecutively presented

in the centre of the screen (Fig. 1). The first stimulus (S1) consisted

of a red cross (66666 pixel, 72 dpi, 1.39u61.29u of visual angle)

presented for 500 ms, and the second stimulus (S2) was a picture of

a yellow ‘smile’ surrounded by a black line (3396339 pixel, 72 dpi;

6.82u66.63u of visual angle). Simultaneously to the presentation of

S1, a 500 Hz simple sinusoidal tone was delivered, while the

presentation of S2 was associated with a 1,000 Hz simple

sinusoidal tone. Both acoustic stimuli lasted the same amount of

time as the pictures (500 ms), and they were strictly synchronised

in order to signal the beginning and end of each trial. The S1–S2

ISI was manipulated in order to create three different interval

conditions, with different percentages of occurrence. In the first

case, the 1500-Standard ISI, there was a 1,500 ms interval from

S1 offset to S2 onset, whereas in the remaining two alternative

conditions, i.e., the 2500- and 3000-Deviant ISI, it was lengthened

to 2,500 and 3,000 ms, respectively. The percentage of occurrence

was 70% for 1500-Standard ISI (210 trials), 15% for 2500-Deviant

ISI (45 trials), and 15% for 3000-Deviant ISI (45 trials). The Inter-

Trial-Interval (ITI) was randomly manipulated between 1,500 and

2,000 ms by using small 16-ms steps. The three conditions were

randomly mixed and delivered in three separate 100-trial-blocks

for a total of 300 trials, the only constraints were that two deviant

trials could not be consecutively delivered and that at least two

standard trials had to occur before a deviant one was presented. E-

prime 2 software (Psychology Software Tools) was used to create

and administer the stimuli. Participants were told only to fixate on

the centre of the screen; they did not receive any further

instruction.

EEG Recordings
During the entire passive task, the EEG was continuously

recorded using a Geodesic high-density EEG System (EGI GES-

300), through a pre-cabled 128-channel HydroCel Geodesic

Sensor Net (HCGSN-128) and referenced to the vertex. Scalp

voltages were recorded and amplified during the entire experi-

ment. The sampling rate was 500 Hz. The impedance was kept

below 30 kV for each sensor. In order to reduce the presence of

EOG artefacts, subjects were instructed to limit both eye-blinks

and eye-movements as much as possible.

ERP Analysis
ERP analyses were performed using Net Station 4.1 software

(EGIH). To analyse the effect of ISI manipulation on CNV

response, the EEG was segmented off-line into epochs starting

200 ms before S1 onset and ending 4,200 ms after it to allow

coverage of the whole S1–S2 interval. Epochs were 20 Hz digitally

low-pass filtered, and automatically processed to mark bad

channels, which were identified as those containing EEG activity

exceeding a threshold of 80 mV (min to max). Trials contaminated

by eye-blink with a 120-mV threshold (min to max) or by eye-

movements with a 55-mV threshold (min to max) were also marked

by means of an automatic procedure implemented in the analysis

software. In addition, all trials with more than 20% bad channels

were automatically identified. Bad channels with more than 20%

of rejected trials were interpolated with the surrounding electro-

des. All the trials marked as bad were then manually inspected and

rejected. The remaining EEG epochs contaminated by eye-blinks

were corrected using Gratton’s algorithm [48] and re-referenced

to the average of all electrodes. The artefact-free trials were then

averaged for each participant, separately for each of the three

conditions. The signal was aligned to the baseline by subtracting

the mean signal amplitude in the pre-stimulus interval, i.e., from

2200 to 0 ms relative to S1 onset. Two-dimensional reconstruc-

tions of scalp voltage were computed using a high-density,

spherical spline interpolation map for each condition. Event-

related potential amplitudes were analysed by pooling the values of

six neighbouring electrodes within five regions of interest at a scalp-

level (scalp-ROIs) identified on the basis of the 2D spline voltage

maps. Five scalp-ROIs were calculated by averaging together six

Figure 1. Passive temporal oddball task. S1 and S2 never changed
across conditions. The only manipulated variable was the ISI length,
which was 1,500, 2,500 and 3,000 ms long in the 1500-Standard ISI
(70%), 2500-Deviant ISI (15%) and 3000-Deviant ISI (15%) conditions
respectively. Participants were given neither instruction nor motor task.
The vertical dotted red line represents the S2 maximum expectation
time-point (S2 METP) corresponding to the end of the standard ISI.
doi:10.1371/journal.pone.0062896.g001
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neighbour electrodes at the left-anterior (electrodes 12, 18, 19, 20,

22, 23, 24); right-anterior (electrodes 3, 4 5, 9, 10, 118, 124);

central (62, 67, 71, 72, 76, 77); left-posterior (electrodes 50, 51, 52,

55, 58, 64) and right-posterior (electrodes 90, 91, 92, 95, 96, 97,

101). Two participants were excluded from ERP analysis due to

their low number of artefact-free epochs.

Statistical Analyses
According to the experimental hypothesis, S2 METP corre-

sponds to the point at which the CNV should reach the highest

value in all conditions before inverting towards baseline. To test

this hypothesis, three regression equations (one for each condition)

were fitted on the CNV signal for a time window (TW) of 800 ms

immediately preceding S2 METP, called ‘TW-1’ (700 to 1,500 ms

after S1 offset). We also extracted an additional 800-ms-long

interval from 1,500 to 2,300 ms from S1 offset, which we called

‘TW-2’. Both the mean voltage amplitude and the slope of the

CNV signal fitting TW-1 and TW-2 were extracted and compared

by separated repeated measure ANOVA with ISI (1500-Standard

vs. 2500-Deviant vs. 3000-Deviant ISI) and TW (TW-1 vs. TW-2)

as within-subjects factors. Given that the conditions were

associated with different numbers of trials, according to the

literature [49–52] we ran all statistical analyses considering both

the whole dataset (mean number of accepted trials for each ISI

condition = 128.7636.2, 34.1165.4 and 36.966.2 for 1500-

Standard, 2500-Deviant, and 3000-Deviant ISI, respectively) as

well as a randomly extracted subset of data with an equal number

of trials for each condition and participant (36.264.2, 34.1165.4

and 36.966.2 for 1500-Standard, 2500-Deviant, and 3000-

Deviant ISI, respectively).

Furthermore, since habituation effects on temporal-CNV have

been previously reported [39], we run additional analyses to

explore the presence of time-on-task effects on CNV amplitude

and slope across the experimental session. To this purpose, we

grouped the whole dataset trials in three consecutive blocks. This

was done only for standard ISIs, since the number of trials for

deviant ISIs was too low for a block-based clustering. Mean CNV

amplitudes and slopes for TW-1 for each consecutive block and

participant were entered in a repeated measure ANOVA with

time-on-task (first vs. second vs. third experimental-block) as the

main factor. For all ANOVAs the Bonferroni correction for

multiple post hoc comparisons was applied when required. The

gp2s are provided for the qualitative comparison of effect sizes. All

statistics were calculated with the software SPSS 18.0. The statistic

results for both the whole dataset and the random data subset are

reported. Single subject data for CNV amplitude and slope

analyses are provided in Tab. S1.

Brain Source Analysis
The cortical generators of S1-locked ERP activity were

estimated. To do this, the conductive head volume was modelled

according to the 3-spheres BERG method [53], as implemented in

the Brainstorm software package [54], which is documented and

freely available online for download under the GNU general

public license (http://neuroimage.usc.edu/brainstorm). This

method uses a spherical approximation of the head based on the

creation of three concentric spheres with different homogeneous

conductivity, representing the best-fitting spheres of the inner skull,

outer skull, and scalp compartments extracted from the Montreal

Neurological Institute (MNI) atlas. The solution space was

constrained to the cerebral cortex, which was modelled as

a three-dimensional grid of 15,028 fixed dipoles oriented normally

to the cortical surface. The inverse transformation was then

applied to the MNI canonical mesh of the cortex to approximate

real anatomy. The EEG sensor positions were co-registered with

the default anatomical mesh by employing rigid rotations and

translations of digitized landmarks (anterior and posterior

commissure, inter-hemispheric scissure, nasion, left and right

tragus). The inverse problem was solved by applying the

sLORETA [55–56] method implemented as a routine of the

Brainstorm platform, which allows an estimation of the distribu-

tion of electrical sources in the brain. The covariance matrix was

assumed to be independent across EEG sensors, with fixed

variance computed from pre-stimulus recordings. For each

participant, the sources were projected to a standard anatomical

template (MNI) and their activity transformed in absolute Z scores

relative to the baseline. The absolute values of the Z scores were

then averaged across subjects. To examine which cortical regions

were significantly activated, we entered the S1-locked source

activation values into paired t-tests against the baseline. Thresh-

olding on the size of the effects was applied: only clusters of at least

10 cortical vertices in the distributed sources model were

considered. Then, the source map vertices where the t statistics

exceeded a critical value (P,0.001; Bonferroni-corrected for

multiple comparisons) were clustered into cortical regions of

interest (cortical-ROI) based on their adjacency across the two-

dimensional cortical sheet. Only the cortical-ROIs significantly

activated were reported and identified according to the MNI

coordinate system. Brodmann areas (BA) associated with the

stereotaxic coordinates were also reported. Cortical map activa-

tions and statistics have been reported separately for two time

windows, namely covering S1- (0 to 500 ms from S1 onset) and

ISI-related (500 to 3,000 ms from S1 onset) activity. In order to

more accurately depict the time course of the activation of the

main cortical-ROIs identified, we used the scout analysis tool in

Brainstorm. This procedure allows one to cluster subsets of

neighbouring vertices and to plot their activation values for the

temporal dimension.

Results

Figure 2 displays the ERP grand average at central scalp-ROI,

which showed the clearest CNV pattern. On the first morpholog-

ical inspection, there were no differences among ISI conditions for

the S1-related ERP activity. This time-window was characterised

by the presence of a sensory-evoked ERP pattern showing a first

negative peak at around 110 ms, a second positive peak at around

170 ms, and a third negative peak at around 250 ms followed by

a large positive response covering the S1 duration and culminating

in a sharp negative peak at around 1,000 ms from S1 onset. We

then observed a sustained mounting negative signal corresponding

to a CNV. Such a wave showed the same morphology and

amplitude in all conditions and peaked at around 1,500 ms from

S1 offset. This latency corresponded to the time-point at which the

S2 onset was maximally expected (S2 METP) according to the

standard ISI. After this point, in the standard ISI condition S2

appeared eliciting a large sensory-evoked activity. In contrast, in

both the deviant ISI conditions the CNV showed a slope inversion

turning toward the baseline, although S2 actually occurred here

after several hundreds of milliseconds from S2 METP.

CNV Amplitude
The ANOVA performed on the CNV mean voltage amplitude

on the randomly extracted subset of data yielded a significant main

effect of ISI (F(2,30) = 14.10; p,0.001; gp2 = 0.48) and TW

(F(1,15) = 6.21; p,0.05; gp2= 0.29). As can be seen in Figure 3a,

both the ISI and the TW effects were due to the fact that, only in

TW-2, the ERP activity elicited by standard ISIs showed more

Automatic Temporal Expectancy
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positive amplitudes than when elicited by deviant conditions. This

interpretation was confirmed by the ISI6TW interaction

(F(2,30) = 22.73; p,0.001; gp2 = 0.6). Post-hoc comparisons re-

vealed that in TW-1 the mean voltage amplitude did not differ

among ISI conditions (p.0.9). Conversely, TW-2 standard ISI-

related activity showed a larger, positive amplitude as compared to

the two deviant conditions (p,0.01), although the latter two did

not differ from each other (p.0.7). This effect was clearly due to

the fact that, as previously mentioned, only for standard ISI the S2

METP was actually followed by S2 onset, resulting in a large

predominantly positive ERP activity in TW-2. The ANOVA

performed on the whole dataset including all the artefact-free trials

for the 1500-Standard ISI condition yielded a main effect of ISI

(F(2,30) = 15.04; p,0.001; gp2 = 0.5) and TW (F(1,15) = 10.39;

p,0.01; gp2 = 0.40) as well as an ISI6TW interaction

(F(2,30) = 34.48; p,0.001; gp2= 0.69), confirming that the CNV

amplitude across ISI conditions and time windows was not

affected by the number of trials averaged.

CNV Slope
The ANOVA performed on the beta values of the regression

equations fitting the CNV signal in TW-1 and TW-2 for all ISI

conditions on the randomly extracted subset of data yielded a main

effect of ISI (F(2,30) = 3.38; p,0.05; gp2 = 0.18) and TW

(F(1,15) = 138.6; p,0.001; gp2 = 0.9) as well as a ISI6TW in-

teraction (F(2,30) = 6.23; p,0.01; gp2= 0.29). As can be seen in

Fig. 3b, post-hoc tests confirmed that, while in TW-1 the CNV

slope displayed an equal, negative beta for all conditions (p = 1), by

contrast in TW-2 the slope became positive for all conditions,

although showing bigger values for the 1500-Standard ISI than for

the 2500- and 3000-Deviant ISI (p,0.02), with the latter two not

differing each other (p = 1). As for CNV amplitudes, this finding

can be easily explained by the large ERP activity elicited by S2 for

standard trials, which caused the slope to shift toward more

positive values than for deviant trials. When considering the whole

dataset instead of the randomly extracted data subset, the

ANOVA highlighted again a main effect of ISI ISI (F(2,30 = 4.01;

p,0.05; gp2 = 0.21) and TW (F(1,15) = 67.55; p,0.001; gp2= 0.81)

as well as a ISI6TW interaction (F(2,30) = 6.12; p,0.01;

Figure 2. Grand Average of S1-locked ERP activity for Central scalp-ROI. The CNV showed a maximum amplitude value peaking at S2 METP,
corresponding to around 2,000 ms from stimulus onset, that is, S1 (500 ms)+Standard ISI (1,500 ms).
doi:10.1371/journal.pone.0062896.g002

Figure 3. TW-1 vs. TW-2 CNV comparison for amplitude (3a)
and slope (3b). The three ISI conditions showed the same pattern in
TW-1 (i.e., before S2 METP) characterised by identical amplitudes and
negative slopes. By contrast, in TW-2 (i.e., after S2 METP) the two
deviant ISI conditions had equal amplitudes but positive slopes, while
only the 1500-Standard ISI condition displayed larger amplitude due to
S2 presentation. Bars represent standard errors.
doi:10.1371/journal.pone.0062896.g003
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gp2 = 0.29), meaning that, as for CNV amplitude analyses, the

CNV slope was not affected by the number of trials averaged.

Time-on-Task Effects
As shown in Fig. 4, the CNV became steeper and larger block-

by-block while the S1-locked ERP activity did not differ as time

passed. This phenomenon was confirmed by the ANOVA run on

the mean CNV voltage, that showed a significant time-on-task

effect consisting in the increasing of the amplitude of the CNV

through the experimental session (F(2,30) = 19.21; p,0.001;

gp2 = 0.56) Post-hoc test revealed that in the third experimental-

block the CNV presented larger amplitude than for the second

experimental-block (p,0.02). As well, the second experimental-

block was characterized by larger CNV amplitude as compared to

the first experimental-block (p,0.01) The time-on-task effect for

CNV slope is shown in Fig. 5a. Analogously, a separate ANOVA

yielded a significant time-on-task effect for CNV slope

(F(2,30) = 5.39; p,0.02; gp2= 0.26). Post-hoc tests revealed that

the CNV was steeper in the third than in the second experimental-

block (p,0.05) and in the second than in the first experimental-

block (p,0.01). The time-on-task effect for CNV slope is shown in

Fig. 5b.

Brain Source Analysis Results
The sLORETA solution applied within the Brainstorm

platform to S1-locked electrophysiological activity allowed us to

identify the cortical generators of two time windows, that is, the

S1-related ERP activity, including the sensory-evoked potentials

occurring within the first hundreds of ms and the late, sustained

ISI-related ERP activity, corresponding to the CNV. Since the

comparison of the CNV amplitude and slope between the 2500-

and 3000 deviant ISIs did not yield significant differences for the

two time-windows considered, these two conditions were collapsed

by calculating the average of their absolute cortical source values.

S1-related Activity
As shown in Figure 6, sLORETA yielded a bilateral occipital

source for both standard and deviant conditions between 100 and

500 ms from S1 onset, corresponding to the negative-positive-

negative-positive ERP complex observed in response to S1 onset.

This activity was localised in the occipital areas corresponding to

the left (BA 17; number of clustered vertices = 30; peak maximum

x=24.98, y =2110.81, z = 0.51; t.5) and right visual primary

cortex (BA 17; number of clustered vertices = 31; x = 10.32,

y =2104.03, z =22.17; t.4). As expected because of the cross-

modal visual-auditory stimulation, the bilateral activation of V1

was accompanied by a bilateral activation of the perisylvian area

corresponding to the auditory primary cortex, and more

specifically to the left (BA 41; number of clustered vertices = 20;

peak maximum x=246.84, y =237.81, z = 16.29; t.5) and right

Heschl’s Gyrus (BA 41; number of clustered vertices = 19;

x = 51.07, y =236.95, z = 19 t.5).

ISI-related Activity
The sLORETA also individuated a bilateral activation of

a restricted frontal cortical region starting by around 1,000 ms

from S1 offset and reaching a maximum value at 1,506 ms from

S1 offset. More specifically, this area corresponded to the left (BA

6; number of clustered vertices = 40; peak maximum x=9.9,

y = 19.2, z = 59; t.8) and right SMA (BA 6; number of clustered

vertices = 34; x =26.9, y = 19.1, z = 60.1; t.9). The scalp-pro-

jection of the vertices showing the maximum peak of activation for

the whole SMA corresponded around to the FCz electrode in the

10–20 international system. The SMA showed a time course

characterised by a clear inverted, U-shaped pattern, with

a maximum at S2 METP. After this point, it decreased slowly

until the end of the period for deviant ISI.Figure 4. Time-on-task effect. The ERP activity plotted separately for
the first, second and third block for the 1500-Standard condition
revealed a time-on-task effect with the CNV showing more negative
amplitude and slope as time passed by.
doi:10.1371/journal.pone.0062896.g004

Figure 5. Block comparison for CNV amplitude and slope. Mean
CNV amplitude (5a) and slope (5b) values for the first, second and third
experimental block. Bars represent standard errors.
doi:10.1371/journal.pone.0062896.g005
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Discussion

The present study aimed at unravelling the contribution of task-

related processes, including response preparation, selection and

execution, from that more directly linked with timing mechanisms

in a temporal expectancy task. To this purpose, a ‘passive

temporal oddball task’ was created in which participants were not

given any task at all. This task was characterised by a passive over-

exposition to a 1,500 ms standard S1-S2 ISI, delivered 70% of the

total number of trials. Such probabilistic distribution was used in

order to implicitly generate a temporal rule. According to such

a rule, the maximum probability of occurrence of a specific event

(i.e., the S2 onset) was at a precise time point, here defined as S2

Maximum Expectation Time-Point or S2 METP. We hypothe-

sised that a temporal expectancy-related CNV would occur even

in the total absence of any motor request. This component might

here directly mirror an automatic and action-independent

mechanism consisting in the use of the temporal information to

create an expectancy of a given event. We also speculated that if

the SMA plays a crucial role in perceptual timing, then this area

should stay activated while expecting S2, showing typical time

course activation characterised by the peak maximum at S2

METP..

As expected, either for the standard and the two deviant ISI

conditions, a clear CNV at central scalp-ROI was elicited with

a pattern characterised by a progressive, negative increase starting

after the end of a S1-locked complex and peaking at the end of the

standard ISI corresponding to S2 METP. Then, in the standard

ISI trials a sensory-evoked complex elicited by S2 presentation

followed the CNV peak, while in the two deviant ISI trial types it

showed a shift towards baseline. The fact that CNV slope

inversion for deviant ISIs occurred at S2 METP suggests that

participants implicitly learned the temporal rule, and that S2 onset

was maximally expected at the same time point, regardless of the

actual duration of the ongoing ISI. This hypothesis was further

confirmed by the presence of a significant time-on-task effect on

the CNV morphological pattern, as it became more negative and

steeper block-by-block. This effect might be explained by assuming

that participants discovered the temporal structure of the trial

across the whole experimental session. Notably, this result seems to

be apparently at odd with previous studied demonstrating time-on-

task habituation on CNV [39]. However, it is likely that the fact

that, since in our paradigm there was uncertainty on the exact

moment of S2 onset (given that in 30% of the case it occurred later

than expected), this did not let the CNV to habituate trial-by-trial

Figure 6. S1- and ISI-related brain-source analysis. a) Leftward: Cortical sources activation presented in Z scores according to the baseline and
projected on a smoothed standard brain. The maps represent a 100–300 ms time-window from S1 presentation. Both visual (V1) and auditory (HG)
primary areas showed significant activity (p,0.001; Bonferroni corrected); Rightward: time course activation of V1 and HG. The y-axis represents the
mean standardised activation of adjacent vertices clustered within each significant cortical-ROI. The x-axis represents the entire temporal window
considered for statistical analysis (0 to 500 ms from S1 onset); b) Leftward: ISI-related cortical sources activation at 1,500 ms from S1 offset,
corresponding to S2 METP. Only the SMA showed a significant activity (p,0.001; Bonferroni corrected) starting at about 1,000 from S1 offset until S2
presentation. Rightward: time course activation of the SMA. The y-axis represents the mean standardised activation of adjacent vertices clustered
within significant cortical-ROIs. The x-axis represents the entire temporal window considered for statistical analysis (0 to 2500 ms from S1 offset).
doi:10.1371/journal.pone.0062896.g006
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but rather to emerge becoming steeper and larger as the temporal

structure was progressively and automatically discovered.

The statistical analyses confirmed that the CNV amplitude did

not differ between ISI conditions in the interval preceding S2

METP (TW-1). By contrast, after S2 METP ms (TW-2) only for

the 1500-Standard ISI condition, the CNV showed a positive

voltage while it was still negative for the two deviant ISIs. This last

finding was clearly due to the S2-evoked activity. The slope

analysis confirmed that the CNV pattern was characterised by

a negative trend until S2 METP for all ISI conditions that shifted

toward positivity soon after this point. The fact that the CNV

showed the same slope and amplitude for all ISIs in TW-1 was an

expected finding, easily accounted by considering that until S2

METP participants could not know which trial condition they

were looking at, then how long they had to wait before seeing S2.

By contrast, the fact that the CNV presented no differences in

amplitude but an inverted positive slope in TW-2 (except for the

standard ISI condition, see above) was a confirmation that, no

matter how long the actual S1–S2 ISI was, once the participants

became automatically attuned to the standard ISI S2 was

maximally attended at the end of such duration. Therefore, what

we finally observed was that even if participants did not overtly

estimate time passage and although they were given any task, they

nevertheless showed an automatic expectancy based on the

capacity to process time by exploiting some internal timer

mechanism.

A similar CNV time-course pattern has already been reported

in studies using explicit discrimination tasks [30–35] and showing

a typical shifting in slope at a point in time in which the

comparison with the stored reference duration has ended.

However, all these studies required response selection between

alternatives, leaving unanswered whether the CNV could reflect

additional cognitive mechanisms other than perceptual timing.

Concerning implicit timing tasks, it is important to mention earlier

studies using oddball-like stimulation protocols to investigate

timing or time-related processing [40,57–60]. As far as we know,

however, no studies used a passive task to elicit temporal CNV by

simply manipulating the probabilistic distribution of the ISI

between pairs of stimuli. Furthermore, to our knowledge this is the

first study that investigated the slow ERP activity during the ISI

itself, while most of the studies using passive paradigm focused on

stimulus-locked ERP responses, such as the duration-change

Mismatch Negativity (MMN) response [59–63].

As an important consideration about the protocol we used,

however, it should be recognised that although based on

a temporal manipulation, the S2 onset expectancy-related brain

activity could to some extent be affected by the probability-

manipulation per se rather than by timing. This issue assumes

importance in relation to previous literature that has shown the

CNV to be sensitive to both the duration of ISI and to the

probability of occurrence of a target stimulus [64–66]. This is

a concern intrinsic to all experimental procedures based on passive

habituation to a given frequent event (i.e., in the present case the

standard ISI). Nevertheless, our CNV results are essentially in line

with a temporal explicative account, since: 1) although based on

a oddball probabilistic distribution with a condition being highly

more frequent that the others, the only variable that was here

manipulated was the temporal distance between S1 and S2 (ISI),

while these last two never changed; 2) the timing of the shift in

polarity of the CNV clearly suggests that the expectation of

stimulus appearance was based on a memorized standard

duration, therefore, we talk about a ‘temporal’ expectation; 3)

the CNV pattern mirrors previously observed findings on timing

[28,30–35]. This evidence is in line with the hypothesis that

regular target presentation leads to a memory formation of the

target-to-target interval, and that such memory trace might

contribute to the generation of a time-based expectancy that in

turn elicits a CNV developing before target presentation [14]. Our

findings further show that this mechanism is automatically

engaged whenever a sensory environment is statistically structured

so that an exogenous expectation of a given event may be built-up

according to a given temporal rule.

Moreover, our data also provides more insight in the role of

CNV in timing. In this regard, one of the main theoretical

accounts links this slow potential to a temporal ‘cumulative’

mechanism, consisting of the capacity to receive and store time-

unit pulses coming from a pacemaker [30–32]. This would make

the CNV an ERP marker directly implicated in the automatic

representation of the unfolding of time per se rather than to other

computational stages. Traditionally, the fact that the CNV

amplitude correlates with the length of the interval to be timed

has been interpreted in favour of this view [31]. It must be noticed,

however, that a recent study by Kononowicz et al. [39] did not

support this view by failing to find amplitude differences in relation

to the reproduction of a 2.5 s duration. Moreover, as above

mentioned, the authors found a clear time-on-task decreasing

effect in the CNV amplitude, probably due to a habituation effect

not compatible with the cumulative interpretation.

The fact that we found a slope difference between TW-1 and

TW-2 (from negative to positive) despite no differences in

amplitudes supports the interpretation that the temporal CNV

does not simply reflect the time values currently stored in the

accumulator just as a function of time elapsing. According to the

conclusions of Kononowicz et al. [37,39], an alternative explana-

tion could be that the CNV reflects the unfolding of time in a more

indirect way, for example, being sensitive to the difference between

the current time and an earlier memorized standard duration or,

as in the present case, between the current time and a standard

duration. In this case, the CNV would reflect not just a simple

time-units accumulator but also a temporal mnestic comparison

mechanism. However, our data do not completely allow us to

distinguish between these two processes, and further research is

needed to more directly address this issue.

From a theoretical perspective, the results of this study can be

interpreted in the light of the Scalar Expectancy Theory [38,67],

which proposes the existence of a common cognitive mechanism

that intervenes in all discrete timing operations. Specifically, the

SET theory postulates the existence of an ‘internal clock’ marking

out time through the combined activity of a pacemaker that emits

pulses and an accumulator that collates and integrates such pulses.

This mechanism is also known as a pacemaker-accumulator

system or PAS [46]. This model also assumes that the clock is the

first step in a three-stage process. In the second step (the ‘memory

stage’), the pulses accumulated during the currently perceived or

produced interval are counted and briefly stored in working

memory so that they can be compared with an interval previously

stored in the reference memory. In the third and final stage (the

‘decision stage’), a decision is made on the basis of a comparison

between the duration stored in the form of discrete temporal units

in the reference memory and the currently perceived duration.

In line with the SET model [38], our data suggest that the

pacemaker and comparison stages are dissociable from explicitly-

driven decision, such as selecting between alternatives, challenging

the idea that CNV peak may necessarily correlate with a time-

based overt decisional process [32]. Our results suggest that the

brain could actually and automatically compare a deviant ISI to

a standard one, even without the involvement of an explicit

decision process. Indeed, whether some sort of unconscious
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internal decisional or ‘categorisation’ mechanism [36] may have

taken place after S2 METP in deviant conditions still remains an

open question. As a matter of fact, given the absence of task

instructions and behavioural data in our paradigm, there is no way

to verify this hypothesis, therefore there is also no way to verify the

inverse hypothesis.

The Neural bases of Automatic Temporal Expectancy
The brain source analysis performed on the S1-related ERP

activity identified bilateral and simultaneous activation of both

primary visual and auditory cortical areas starting at around

100 ms from S1. This double occipital-temporal activation was

due to the fact that S1 was always presented together with

a synchronised 1,000-Hz sinusoidal tone, and this was reflected in

the activation of a restricted temporal area corresponding to the

auditory primary cortex and in particular to the HG. After S1

offset, both visual and auditory cortices did not show any

significant activation until S2 onset, whereas a bilateral neural

activity started in a restricted cortical area of the frontal lobe,

corresponding to the SMA. Importantly, this locus showed

increasing time course activation throughout the S1-S2 ISI

duration (although reaching statistically significant values after

around 1,000 ms from S1 offset) and peaked at S2 METP.

Importantly, the ISI-related time course activation of the SMA

further suggests that this area may be the main candidate as

temporal-CNV generator in automatic temporal expectancy. This

finding confirms previous data identifying in the SMA a pivotal

neural generator of the temporal CNV and recognising a crucial

role of this area for timing in general [24]. After S2 METP, SMA

displayed a decrease in activation and a return toward the

baseline. The ISI-related time course of SMA activation suggests

that such a structure plays a crucial role in implicit perceptual

timing processes, and in particular to the automatic use of the

temporal information to anticipate specific event occurrence even

when this does not involve actions or explicit decision. According

to the SET theory, it has been suggested that SMA may be part of

a network underpinning the PAS as a part of a cerebral circuit that

emits oscillatory pulses from the basal ganglia to the superior

cortical layers of the frontal lobe [1,5,6–9,21,42–46,68]. In this

sense, the CNV has been suggested to be the projection on the

scalp in the form of ‘climbing neuronal activity’ [69–71] of the

basal ganglia-SMA circuit activation during the encoding of

discrete time intervals. An alternative and physiologically more

plausible hypothesis about the interaction between the basal

ganglia and superior cortical areas known as the Striatal Beat

Frequency model or SBF [1,44–46] posits that timing arises as

a result of the coincidence in the oscillatory activity of the basal

ganglia, prefrontal cortex and cerebellum due to the capacity of

spiny neurons to detect patterns of activity in the cortical input

vector. In this case, a bi-directional, dynamic and large-scale brain

network is assumed to underlie timing rather than a simpler

unidirectional firing projection from the basal ganglia to superior

cortical layers. Even if definitive evidence for a specific model of

brain functioning in interval timing is still lacking, there is a general

agreement that both the basal ganglia and prefrontal regions,

notably the SMA, play a crucial role in time processing. Indirect

confirmation of this can be seen by the fact that patients with

Parkinson’s disease, a pathology known to involve striatal

dopaminergic neuron depletion, as well as frontal cortical

alteration, have been shown to display a different CNV

morphological pattern compared to healthy controls in tasks

requiring implicit time discrimination [72]. Concerning the role of

deeper neural generators, several studies demonstrated the in-

volvement of the basal ganglia and cerebellum in both automatic

and controlled timing, and a unified model [8,73–75] of time

perception has been recently proposed based on coordinated

activity in the core striatal, olivocerebellar and cortical networks

[76]. As a matter of fact, however, we can here only suggest the

involvement of the subcortical and cerebellar structures in

automatic temporal expectancy since the ERP brain-source

analysis provides reliable results only for cortical areas.

In addition, our data suggest that, as for the CNV, the function

of this area in time processing may be more complex than just

accumulating time-units per se from a pacemaker. In fact, the SMA

pattern we found was not only characterised by a raise in activity

due to an increase of the neural firing, but also it displayed

a precise time-course pattern mirroring the standard ISI rather

than the actual duration of the current interval. Whether SMA

may be considered as a ‘core’ structure in temporal processing in

general, however, is still far from being demonstrated, since

additional studies have to be done to better address this issue. The

most plausible hypothesis is that this area is part of a wider,

anatomically and functionally integrated neural network including

subcortical and thalamic structures, and identified in the

dopaminergic striato-frontal pathway, playing a central role for

time computational activity in the brain [44–46]. Finally, an

alternative but not opposite explanation of the CNV and the time-

course of SMA activity we reported might rely on a working

memory maintenance process automatically engaged by the

comparison between the current ISI and the standard one stored

in memory [77].

Conclusions
In this study, we reported an ISI-related electrophysiological

marker reflecting automatic temporal expectancy. In particular, as

far as we know, this is the first data showing a temporal CNV on

the only basis of a passive over-exposition to a specific ISI. Indeed,

the use of a passive temporal oddball paradigm, requiring neither

time-based motor response nor explicit decision-making, allowed

participants to access an automatic cognitive mechanism engaged

in the environmental temporal structure decoding. From a theo-

retical viewpoint, the demonstration of a passive temporal CNV

suggests that time comparison can be dissociated from other task-

related processes like explicit decision and motor processing. This

data ultimately confirms that our cognitive system computes the

event temporal structure even when this operation is not finalised

to a determinate action or overt decision. This mechanism implies

the ability to automatically track the temporal statistical regular-

ities in order to anticipate the onset of events and is associated with

the involvement of the SMA as a part of a wider network probably

entailing the basal ganglia and cerebellum. From a methodological

perspective, this study also demonstrates that it is possible to

investigate neural mechanisms underlying temporal expectancy

using an experimental paradigm requiring neither behavioural

responses nor explicit attention to the task from participants, so it

is a reliable method that can be applied in non-collaborative

subjects, such as infants or patients with consciousness disorders.
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