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2 Linnè Flow Centre, KTH Royal Institute of Technology, Stockholm, Sweden

E-mail: francesco.picano@uniroma1.it

Abstract. DNS data of particle-laden jets are discussed both in the one- and two-way coupling
regimes. Dynamics of inertial particles in turbulent jets is characterized by an anomalous
transport that leads to the formation of particle concentration peaks along the jet axis. Larger
is the particle inertia farther the peak location occurs. The controlling parameter is found to be
the local large-scale Stokes number which decreases quadratically with the axial distance and
is order one in coincidence of the peaks. The centerline mean particle velocity is characterized
by two scaling laws. The former occurs upstream the location where the Stokes number is
order one, and is linear in the axial distance with negative coefficient. The latter, occurring
downstream where the local Stokes number is small, coincides with that of the centerline mean
fluid velocity. This behavior affects the development of the particle-laden jet when the mass
load of the particulate phase increases and two-way coupling effects become relevant. Two
distinct behaviors for the jet development are found behind and beyond the location of unity
local Stokes number leading to different scaling laws for the mean centerline fluid velocity.

1. Introduction

Particulate turbulent jets are frequently found in earth science (e.g. volcano eruption Kaminski
et al., 2005), physics (e.g. cloud dynamics Govindarajan, 2002) and engineering (e.g. sprays
Sirignano, 1983). Two main phenomenologies affect the dynamics of turbulent jets: the
entrainment process and the slight inhomogeneity in the streamwise direction. The former
crucially determines the condition for the collapse of the two-phase jet-column that is at the
origin of pyroclastic flows in volcano eruptions (Kaminski et al., 2005). The gentle inhomogeneity
in the axial direction associated to the mean centerline velocity decay influences the properties of
the jet/spray penetration which is essential for combustion chambers of direct injection internal
combustion engines (Sirignano, 1983; Siebers, 1999)

The inertial particle dynamics has been addressed in several turbulent flow configurations, e.g.
homogeneous flows, pipe and channel flows, see Toschi & Bodenschatz (2009); Balachandar &
Eaton (2010) for recent reviews. Peculiar transport properties are found to occur, e.g. small-scale
clustering (Balkovsky et al., 2001; Bec et al., 2007; Gualtieri et al., 2009; Coleman & Vassilicos,
2009) which consists of an intermittent particle spatial distribution composed of void regions and
particle clusters. In wall bounded flows, a mean drift of the particles towards the wall is found,
the so-called turbophoresis (Reeks, 1983; Rouson & Eaton, 2001; Marchioli et al., 2008; Picano
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et al., 2009). Several papers investigate the transport of inertial particles (e.g. Fan et al., 2004;
Longmire & Eaton, 1992)) or evaporating droplets (e.g. Almeida & Jaberi, 2006; Selle & Bellan,
2007)) in the near field region of jets. In this non-universal region, inertial particles are found
to concentrate in the shear-layer outside the large coherent vortical structures which populate
the near field, consistently with the general trend observed in other flows. Concerning the far
field behavior, peak of mean particle concentration are observed on the axis. These humps are
found to occur when the large-scale axial-dependent Stokes number is order one, (e.g. Picano
et al., 2010; Casciola et al., 2010). A number of experimental works (e.g. Hardalupas et al., 1989;
Longmire & Eaton, 1992; Prevost et al., 1996) investigate the back-reaction of the particles on
the carrier fluid in the far field, where the jet is observed to decay at slower rate. Recently,
semi-empirical fits on the scaling of the jet mean velocity are proposed in Foreman & Nathan
(2009) as a function of the particle inertia and the overall mass load.

Purpose of the present contribution is to examine the dynamics of inertial particles in the
one-way coupling regime and the effect of the particle back-reaction on the fluid stream in the
two-way coupling regime using data from Direct Numerical Simulations of free particle-laden
turbulent jets. As it will be shown, the one-way coupled dynamics of inertial particles in the
jet far field is characterized by centerline concentration peaks and two different particle velocity
scaling laws. This behavior crucially affects the flow dynamics when the mass load increases and
two-way coupling effects become relevant. Actually the far field appears divided in two regions
with different scaling laws for the mean centerline fluid velocity.

2. Numerical algorithm

The fluid phase algorithm is based on an explicit second-order staggered finite-difference scheme
in conservative formulation. The cylindrical formulation of the incompressible Navier-Stokes
equations are evolved in time by a low-storage third order Runge-Kutta scheme, (see Picano &
Casciola, 2007; Picano et al., 2009, 2011, for details on numerics and tests).

The jet is generated by a turbulent inflow that uses data from a companion DNS of a fully
developed pipe flow with bulk Reynolds number ReR = U0R/ν = 2000, where R is the pipe
radius, U0 the bulk velocity and ν the kinematic viscosity. A typical run involves 784×145×128
grid points in axial z, radial r, and azimuthal θ directions, respectively. Traction-free conditions
are enforced on the side boundary at r = 28R, while convective outflow conditions are placed
at z = 83R. The particles are assumed to be rigid and spherical with a diameter dp much
smaller than Kolmogorov scale and with density much larger than the fluid one. As anticipated,
we confine our analysis to the one-way and two-way coupling regimes considering sufficiently
diluted suspensions to neglect inter-particle interactions (four-way coupling). In such conditions
the only significant force acting on the particles is the viscous Stokes drag, and each particle
evolves according to the simplified equations

v̇ = (u|p − v)/τp ẋ = v, (1)

where v and u|p denote the particle velocity and the fluid velocity at particle position, while
τp = ρp d

2
p/(ρν18) is the particle response time (Stokes time). A mixed linear-quadratic formula

based on Lagrange polynomials is used to interpolate the fluid velocity at particle positions,
see Picano et al. (2009, 2010). The back-reaction of the particles on the fluid is calculated by
using the same formulas.

For a given jet, two parameters control the dynamics, the nominal Stokes number St0 =
τpU0/R and the mass load ratio Φ = Ṁp/Ṁf , defined as ratio of particle to fluid mass fluxes at
the inflow. Concerning the very dilute limit (one-way coupling regime, Φ = 0), six particle
populations are considered differing for the Stokes number St0, ranging from St0 = 4 to
St0 = 128. The effect of the particle back-reaction is analyzed for two mass load ratios Φ = 0.38
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and Φ = 0.8 and two different Stokes numbers St0 = 8 and St0 = 16. The injection rate is fixed
at 1800 particles per eddy turnover time T0 = R/U0 for each simulation (the mass load ratio is
changed by varying ρp/ρ).

3. Results and Discussions

3.1. One-way coupling regime, Φ = 0
A visual impression of the overall behavior of the turbulent jet with no particle back-reaction
can be gained by observing the instantaneous iso-levels of the concentration of a passive scalar
transported by the turbulent flow, figure 1. The instantaneous configurations of three particle
populations (one-way coupling regime, Φ = 0), namely St0 = 4, St0 = 16 and St0 = 128,
are superimposed on the passive scalar field in panels (a), (b) and (c) of figure 1, respectively.
The smallest particles here considered exhibit an apparent small-scale clustering, e.g. Bec et al.
(2007). On the contrary, the heaviest particles, St0 = 128, show an almost even distribution in
the whole field. Peculiarly, particles with St0 = 16 presents both behaviors exhibiting an even
arrangement up to the location denoted by the arrow and small-scale clustering beyond this
point. This phenomenology may be explained considering that all the typical time-scales of the
jet increase with the distance from the origin z. To properly describe the particle dynamics a
local Stokes number should be based on the local time scale of the jet defined in terms of the
characteristic velocity and length scale of the flow. Considering the large-scale behavior, the
typical velocity of the jet is the mean centerline velocity:

Uc = A

√
Q̇

z − z0
(2)

where Q̇ is the momentum flux of the jet that is a conserved quantity with A a constant, (see
Hussein et al., 1994; Picano & Casciola, 2007, for more details). Equation (2) is usually expressed

Figure 1. Instantaneous configuration of a thin axial-radial slice of the turbulent jet with
Φ = 0. Contours represent axial velocity intensities, dots represent the particle positions: (a)
particles with St0 = 4; (b) particles with St0 = 16; (c) particles with St0 = 128.
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Figure 2. One-way coupling regime. Left panel, mean centerline concentration of particles
and of a passive scalar (Smidth number Sc = 0.7) vs z/R; in the inset, the mean particle
concentration normalized by the passive scalar concentration is plotted vs StL(z). Right panel,
mean centerline velocity of particles and fluid vs z/R; in the inset the mean centerline particle
velocity normalized by the mean centerline fluid velocity is plotted vs StL(z).

in terms of inlet bulk velocity U0 and jet nozzle radius R:

Uc = B
2RU0

z − z0
(3)

with

B = A

√
Q̇

2RU0
(4)

the decay constant of the jet. The typical large-scale length is the jet half-width (the radial
distance where the mean velocity is half its centerline value) r1/2 = S (z − z0). The decay
constant B and the spreading rate S are two almost universal constants which display a scatter
of the order of 10% among different experiments and numerics (in this case S = 0.089, B = 6.77
z0 = −0.8R, see George (1989); Hussein et al. (1994); Picano & Casciola (2007) for related
discussions). The typical timescale of the flow is promptly defined as TL = r1/2/Uc ∝ z2 and
the local large-scale Stokes number is,

StL = τp/TL =
τpUc

r1/2
=

2B

S

(
R

z − z0

)2

St0. (5)

As a consequence, the local Stokes number decreases quadratically with the distance from the
origin: StL ∝ (z − z0)−2. Hence particles with different inertia assume the same values of StL
at appropriate different distances from the origin. Actually the small-scale particle dynamics
is controlled by the Kolmogorov based Stokes number that follows the same axial dependence
being proportional to StL, (Casciola et al., 2010). In fact, particles with St0 = 16 close to the jet
inlet behave as very massive particles to become progressively lighter with increasing distance.

The left panel of figure 2 provides the axial behavior of the centerline mean particle
concentration and of the passive scalar field for the jet in the one-way coupling regime. Particle
populations show concentration peaks that move downstream increasing the inertia, namely St0.
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The location of these peaks is controlled by the local Stokes number StL, as can be appreciated
in the inset of the same figure where the normalized concentration is plotted as a function of
StL. Peaks occur at locations where StL = O(1). Beyond this point particles tend to behave
like tracers, StL � 1, showing a centerline concentration close to that of a passive scalar.

The right panel of figure 2 provides the axial behavior of the centerline mean particle and
fluid velocity for the one-way coupled jet. As for the particle concentration, the particle mean
velocity is again controlled by StL. The mean particle velocity collapses on the fluid one at
growing distance for increasing St0. In particular, as can be appreciated by the inset where
the normalized particle velocity Vc/Uc is plotted against StL, when StL(z) < 0.7 all the
particles start to behave as tracers with Vc/Uc ' 1. Hence downstream the axial location
where StL(z) = 0.7 the mean particle centerline velocity assumes the scaling of the fluid mean
centerline velocity Vc ' Uc = U0B 2R/(z − z0). Before behaving as tracers, particles exhibit a
mean centerline velocity that appears proportional to z with a negative proportionality constant
K < 0: Vc ∝ K z, a feature particularly evident for particles with large St0, figure 2. Actually,
this behavior is common for all particle populations in a range of axial distances z characterized
by a local Stokes number in the interval: StL(z) ' 2 ÷ 5. An explanation of this peculiar law
can be derived considering the averaged Eulerian form of the particle dynamical equation (1)
restricted to the jet axis (see Young & Leeming, 1997; Picano et al., 2010, for more details):

Vc
dVc
dz

+ v′ · ∇v′z =
Uc − Vc
τp

. (6)

Roughly neglecting the second order terms v′ · ∇v′z, see Picano et al. (2010), and normalizing
equation (6) by Vc U0/R we obtain:

dVc
dz

R

U0
=
Uc/Vc − 1

St0
. (7)

As can be observed in the inset of the right panel of figure 2, when StL ' 3 the ratio Vc/Uc

assumes its maximum value greater than 1. Because in the range StL = 2÷ 5 Vc/Uc displays a
small variation around its maximum, its value can be well approximated by the maximum itself
(Vc/Uc)|max leading to a constant derivative for the mean particle centerline velocity:

dVc
dz

R

U0
=

(Uc/Vc)|max − 1

St0
= K < 0 (8)

with K negative. Figure 3 reports the values of K vs St0 estimated by fitting the data for
each particle population in the range of axial distances where StL(z) = 2 ÷ 5 (red symbols
+); the range of axial distances considered for the fitting is reported by straight lines in the
right panel of figure 2. These data are compared with the estimate given by equation (8),
Ke = [(Uc/Vc)|max − 1]/St0 (green symbols ×). The agreement between estimated Ke and the
measured K is excellent indirectly confirming the validity of the assumptions used to derive
equation (8). As discussed in Picano et al. (2010) the value of the maximum (Uc/Vc)|max

depends on St0 in a non trivial way via a memory of the non-universal near field dynamics.
This implies that K does not scale with St−10 as apparent at first sight from equation (8), see
the blue dotted line in figure 3. Nonetheless, the scaling law K ∝ St−0.660 appears to well capture
the dependence of K on the nominal Stokes number St0. Only particles with St0 = 8 present
a small displacement from the proposed scaling law, however it should be considered that for
these particles the axial range where StL = 2 ÷ 5 lies between 15 < z/R < 23 a region where
the far-field behavior of the fluid phase is still not fully established.

The two scaling laws found for the particle mean centerline velocity may reflect in different
behaviors for the fluid mean velocity in case the mass load ratio increases and two-way coupling
regime sets in.
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Figure 3. Opposite value of the constant K vs St0. The red symbols + represent K obtained
by fitting the data in the range of axial distances where StL(z) = 2 ÷ 5. The green symbols
× display Ke estimated by the equation (8), Ke = [(Uc/Vc)|max − 1]/St0. The blue dotted line
represents the scaling K ∝ St−10 , the purple dashed line the scaling K ∝ St−0.660 .

3.2. Two-way coupling regime, Φ > 0
The behavior of the two-way coupling particle-laden jet at very large distance from the origin can
be argued considering some results of the one-way coupling regime, at least for moderate mass
loads. As discussed in the previous paragraph, at sufficient distance from the origin, z/R � 1,
and despite their initial inertia, all inertial particles behave as tracers where the local Stokes
number becomes negligible StL(z) � 1. Data from the one-way coupling regime shows that
equilibrium between the two phases is reached downstream the location where StL(z) = 0.7
with the mean particle velocity matching the fluid one (see also Prevost et al., 1996; Picano
et al., 2010). In this extreme far field the particulate flow can be considered as a single-
phase flow with density variations related to the particle concentration. In this regime, the
scaling of the mean centerline velocity should be similar to that of variable-density jets (e.g.
Richards & Pitts, 1993). In particular, in equation (2) the momentum flux should take into
account both phases: Q̇ = Q̇f + Q̇p, with Q̇f and Q̇p the momentum flux of the fluid and
particulate phases, respectively. Since in present simulations the particles are injected at the
inlet with the same local fluid velocity, the mass load ratio coincides with the momentum flux
ratio Φ = Ṁp/Ṁf = Q̇p/Q̇f leading to

Q = Qf +Qp = (1 + Φ)Qf . (9)

Table 1. Decay constants obtained fitting the data in the intermediate far field (2 < StL < 5)
B1 and in the very far field (StL < 0.7) B2

Case B1 B2 B
√

1 + Φ

St0 = 8, Φ = 0.38 10.8 8.5 8.0
St0 = 16, Φ = 0.38 10.1 8.5 8.0
St0 = 8, Φ = 0.8 17.8 9.5 9.1
St0 = 16, Φ = 0.8 13.5 8.9 9.1
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Figure 4. Mean centerline velocity of the fluid phase in the two-way coupling regimes for two
different St0 and Φ. Black circles represent the unladen case (1-way), blue squares the 2-way
coupling data. The straight lines denote linear fits of the data and extend only in the region
where data are fitted. Top-left panel: St0 = 8, Φ = 0.38; top-right panel: St0 = 8, Φ = 0.8;
bottom-left panel St0 = 16, Φ = 0.38; bottom-right panel: St0 = 16, Φ = 0.8.

Combining equations (2), (9), (4) it results:

Uc = B
√

1 + Φ
2RU0

z − z0
. (10)

Hence the actual decay constant at sufficient distance from the origin, StL(z) < 0.7, should
increase from the original value B to B

√
1 + Φ.

Before this ultimate regime is reached, the momentum exchange between the two phases
determines a different scaling law for the centerline mean fluid velocity. Recalling that, in
the one-way coupling regime, a scaling law for the mean particle velocity is found when
2 < StL(z) < 5, we expect that a corresponding scaling law for the mean centerline fluid
velocity should exist also for the two-way particle-laden jet, at least for moderately large Φ.
However, given the remarkable memory effect of the particle dynamics (Picano et al., 2010), a
non trivial dependence on both St0 and near field details could emerge.

Figure 4 shows the inverse of the mean centerline fluid velocity Uc vs z/R for four different
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DNS of 2-way particle-laden jets with two mass load ratios, Φ = 0.38 and Φ = 0.8, and two
nominal Stokes numbers, St0 = 8 and St0 = 16. As expected, the fluid centerline velocity decays
at slower rate due to the forcing from the particulate phase. The decay constants B2 of the mean
centerline velocity in the extreme far field (StL < 0.7) are extracted by fitting the data from the
location where StL(z) = 0.7 (the straight lines in the figure represent the corresponding fitting
intervals) and reported in table 1. The differences between the estimated values B

√
1 + Φ and

the fitted ones B2 is smaller than 10%. It should be remarked that, due to variations in the
inflow details, the decay constant B of unladen turbulent jets show a scatter of the order of
10% among experiments and DNSs (see George, 1989; Picano & Casciola, 2007). In addition,
at least in the near field, a 2-way coupled particle-laden jet is affected by a strong turbulence
modulation that alters the initial jet dynamics and may imprint the successive behavior of the
jet, (George, 1989). Hence considering a two-way coupled particle-laden jet in the extreme far
field, StL(z) < 0.7, as a single-phase variable-density jet with a decay constant B2 = B

√
1 + Φ

seems a fair approximation.
The intermediate far field appears to be characterized also by a linear scaling law for the

inverse of the fluid centerline mean velocity, now with a different decay constant, B1. Its
value is here estimated by fitting the data in the region where 2 < StL(z) < 5, although the
axial interval where the scaling law appears to hold seems wider. B1, table 1, displays a clear
dependence on both parameters Φ and St0. Beyond giving evidence of the existence of a scaling
law of the form Uc = B12RU0/(z − z0) in this intermediate far field, the present dataset does
not allow a complete determination of its dependence on St0 and Φ. A more complete analysis
is currently in progress to address this complicate issue.

4. Final remarks

DNS data on one-way and two-way coupling regimes of particle-laden jets have been presented.
Concerning the one-way coupling regime, mean particle concentration peaks are found on the
jet centerline. The peak location moves downstream when the particle inertia (St0) increases.
This phenomenology is controlled by a local large-scale Stokes number StL(z) which decreases
quadratically with the axial distance. The peaks occur when StL ' 1. Analogously, the mean
particle velocity is mainly governed by StL(z). Mean particle velocity is usually larger than that
of the fluid up to the location where StL(z) = 0.7. In this intermediate far field, characterized
by 2 < StL(z) < 5, a scaling law is found from theoretical arguments and confirmed by
the data. In particular, the mean centerline particle velocity is found to be linear with a
negative proportionality constant K, Vc ∝ K z. The constant K is found to scale with St−0.660 .
Downstream the location where StL(z) = 0.7, the mean particle velocity collapses on the fluid
one.

These two distinct behaviors appear to reflect on the scaling of the fluid phase when the
mass load ratio increases and two-way coupling conditions take place. In the very far field,
StL(z) < 0.7 the particle-laden jet can be considered as a single-phase variable-density jet.
Consistently the decay constant of the mean centerline fluid velocity becomes B2 = B

√
1 + Φ.

In the intermediate far field, 2 < StL(z) < 5, the existence of a scaling law of the form
Uc = B1 2RU0/(z − z0) emerges from the data. However now the constant B1 seems to depend
in a non-trivial way on the particle inertia–St0–and on the mass load ratio–Φ. Further work is
planned to better assess this issue.
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