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On Lusztig’s map for spherical unipotent conjugacy classes

G. Carnovale and M. Costantini

Abstract

We provide an alternative description of the restriction to spherical unipotent conjugacy classes,
of Lusztig’s map Ψ from the set of unipotent conjugacy classes in a connected reductive algebraic
group to the set of conjugacy classes of its Weyl group. For irreducible root systems, we analyze
the image of this restricted map and we prove that a conjugacy class in a finite Weyl group has
a unique maximal length element if and only if it has a maximum.

1. Introduction

Springer [24] has shown how to associate to a unipotent conjugacy class of a connected reductive
algebraic group G over an algebraically closed field k some irreducible representations of the
associated Weyl group W . This led Kazhdan and Lusztig [16] to the definition of a conjecturally
injective map from the set G of unipotent conjugacy classes of G to the set W of conjugacy
classes of W , for k = C. This map is not easily computable but Lusztig has very recently
introduced in [18, 19] a new, more computable, surjective map φ defined in all characteristics,
from W to G, and a right inverse Ψ which conjecturally coincides with the Kazhdan–Lusztig
map over the complex numbers. The map φ is defined by assigning to a conjugacy class C in W
a minimal unipotent conjugacy class in G, with respect to Zariski closure, having non-empty
intersection with the Bruhat double coset corresponding to a minimal length element in C.
It is a non-trivial result that this construction works. The proof of this important property is
split into a proof for classical groups and one, based on a computer calculation, for exceptional
ones. The right inverse Ψ is defined by taking, for a given unipotent class γ in G, the unique
class C in W in the fiber of γ through φ for which the dimension of the fixed-point space of
w ∈ C in the geometric representation of W is minimal. Also in this case, the fact that this
procedure actually works is a deep result.

The aim of this note is to give a different and direct combinatorial description of the
restriction to spherical unipotent conjugacy classes of the map Ψ. We recall that a conjugacy
class C in G is called spherical if a Borel subgroup B of G has a dense orbit in C. This new
description is made possible by several recent results showing how the relation between spherical
conjugacy classes and the Bruhat decomposition can be made very explicit. It has been shown in
[2, 3, 9, 17] that spherical (unipotent) classes may be characterized by means of a dimension
formula involving the maximal Weyl group element w for which BwB meets a class. More
precisely, let us define, for γ in G, the element wγ ∈ W as the unique element in W for which
BwγB ∩ γ is Zariski dense in γ. Then γ is spherical if and only if dim γ = �(wγ) + rk(1 − wγ),
where � is the length function on W and rk is the rank of the operator in the geometric
representation of W . In addition, spherical conjugacy classes in good, odd characteristic are
also characterized as those classes intersecting only Bruhat double cosets corresponding to
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involutions [3, 4]. Combining all these properties with the analysis of the elements wγ in [7]
leads us to the proof of our main result:

Theorem. Let γ be a spherical unipotent conjugacy class. Then Ψ(γ) = W · wγ .

We also give some results on the map ι : G → W defined by ι(γ) = W · wγ .
This map can be defined on the set of all conjugacy classes in G. It was observed in [7,

Remark 3] that the image of the set of all conjugacy classes and of the set of all spherical
conjugacy classes through this map, in characteristic zero or good and odd characteristic, is
the set Wm of classes in W having a unique maximal length element. We analyze the image
of the restriction of ι to the set Gsph of spherical unipotent conjugacy classes. A case-by-case
analysis allows us to conclude the following proposition.

Proposition. For every irreducible root system there always exists a p such that in
characteristic p, we have ι(Gsph) = Wm.

It is worthwhile to mention that the element wγ , for spherical classes, controls the G-module
structure of the ring of regular functions C[γ]. Indeed, Vinberg and Kimel’fel’d [27] proved that
this module is multiplicity-free and it has been observed in [2] that the weights λ occurring in
the decomposition of C[γ] all satisfy the equality wγλ = −λ and that the rank of the lattice
generated by these weights is rk(1 − wγ). The precise G-module decomposition of C[γ] has
been given in [8].

We conclude the paper by proving the following theorem:

Theorem. The set Wm coincides with the set of classes in W having maximum element
with respect to the Bruhat order.

This result holds for arbitrary finite Coxeter groups (see Remark 3).

2. Notation and main result

Throughout this paper, G is a semisimple algebraic group over an algebraically closed field k.
Let T be a maximal torus of G, and let Φ be the associated root system. Let B ⊃ T be a Borel
subgroup, B− its opposite Borel subgroup, and let Δ = {α1, . . . , αn} be the basis of Φ relative
to (T,B). The Weyl group is denoted by W = N(T )/T , the symbol W will indicate the set of
its conjugacy classes, and W inv will indicate the set of conjugacy classes of involutions in W ,
that is, the set of classes of those elements w ∈ W such that w2 = 1. The symbol G will stand
for the set of unipotent conjugacy classes and Gsph will denote the set of spherical unipotent
ones. We recall that a conjugacy class γ in G is called spherical if B has a Zariski dense orbit
in γ.

For any C ∈ W , we define Cmin to be the subset of C consisting of elements of minimal
length. For w ∈ W , we define Σw = {γ ∈ G | γ ∩ BwB �= ∅}.

For γ ∈ G, we define Wγ = {w ∈ W | γ ∩ BwB �= ∅}. It is clear that Wγ is always not empty.
It is also true that Σw is always not empty: indeed BwB ∩ B− �= ∅ for every w ∈ W [14, §A2],
so BwB ∩ U− �= ∅ for every w ∈ W .

As usual, w0 denotes the longest element in W and, for Σ ⊆ Δ, we shall denote by wΣ the
longest element in the parabolic subgroup WΣ of W generated by simple reflections indexed
by elements in Σ. The root subsystem of Φ generated by the roots in Σ will be denoted by ΦΣ.

It follows from [12, 8.2.6(b); 18, 1.2(a)] that, for w, σ ∈ Cmin, then Σw = Σσ.
Let φ : W → G be the map introduced in [18]. It is defined as follows: let C ∈ W and let

w ∈ Cmin. The image of C through φ is the unique γ ∈ G such that γ ∈ Σw and such that
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every γ′ ∈ G lying in Σw contains γ in its closure. By Lusztig [18, Theorem 0.4], the map φ is
surjective.

If γ ∈ G and C ∈ φ−1(γ), then γ ∈ Σw for some w ∈ Cmin. For γ a spherical unipotent
conjugacy class the set Wγ has a particular structure. We recall the facts we will need.

Theorem 2.1 [3, 9]. Let γ be a spherical conjugacy class, and let γ ∩ BwB be non-empty.
Assume in addition that γ is unipotent if char(k) = 2. Then w is an involution.

Proof. If the characteristic of k is zero or if it is good and odd, the statement is [3, Theorem
2.7]. The same proof holds as long as char(k) �= 2. For char(k) = 2, let u be an element of
γ ∩ BwB. From the classification of spherical unipotent conjugacy classes it follows that u is
an involution, see [9, Theorem 3.18]. Thus, u = u−1 ∈ Bw−1B ∩ BwB, forcing w = w−1.

So, φ−1(Gsph) ⊆ W inv. One may wish to see whether Gsph can be characterized as the image
of a suitable subset of W inv.

The statement of the lemma below was communicated to the first named author by Kei–Yuen
Chan.

Lemma 2.2. Let char(k) �= 2. Let γ be a (not necessarily unipotent) spherical conjugacy
class and let γ ∩ BwB �= ∅ for some w ∈ C and C ∈ W . Then γ ∩ BσB �= ∅ for every σ ∈ C.
The same conclusion holds for char(k) = 2 if γ is a spherical unipotent conjugacy class.

Proof. Let σ = sil
. . . si1wsi1 . . . sil

with τ = sil
. . . si1 of minimal length l such that σ =

τwτ−1. Let us put σj = sij
. . . si1wsi1 . . . sij

for j = 0, . . . l, so that σ0 = w and σl = σ. We shall
prove by induction on j that γ ∩ BσjB �= ∅ for every j ∈ {0, . . . , l}. The basis of the induction
is our assumption. Assume γ ∩ BσjB �= ∅ for a given j. Then there is also x ∈ Bσj ∩ γ. Let
ṡij+1 be a lift of sij+1 in N(T ). We have

ṡij+1xṡ−1
ij+1

∈ sij+1Bσjsij+1 ⊆ Bσj+1B ∪ Bσjsij+1B.

By Theorem 2.1, the class γ intersects only cells corresponding to involutions. Hence, w and
σj are involutions. On the other hand, σjsij+1 is an involution if and only if σj and sij+1

commute, but this would contradict minimality of the length of τ . Thus, γ ∩ Bσjsij+1B = ∅,
and we necessarily have ṡij+1xṡ−1

ij+1
∈ Bσj+1B ∩ γ, yielding the statement.

Let γ be any conjugacy class in G. We shall denote by wγ the unique element in W for which
BwγB ∩ γ is dense in γ, and by Cγ = W · wγ , the conjugacy class of wγ in W . Let us denote
by Wm the set of classes in W containing a unique maximal length element. We recall some
basic facts.

Theorem 2.3 [7]. Let γ be a conjugacy class in G and let wγ and Cγ be as above. Then

(i) Cγ lies in Wm and wγ is its maximal length element;
(ii) Wm ⊆ W inv;
(iii) if char(k) is either 0 or good and odd, then for every C ∈ Wm there is a spherical

conjugacy class γ such that C = Cγ .

Proof. Statement (i) is Corollary 2.11 in [7], the proof of which is characteristic-free.
Statement (ii) follows from the fact that any w is conjugate to w−1 [6, Theorem C]. Statement
(iii) is observed in Remark 3 in [6].
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We will also make use of the following result.

Theorem 2.4 [2, 3, 9, 17]. Let γ be a unipotent conjugacy class, let wγ be as above, and
let w ∈ W .

(i) If γ ∈ Σw, then dim γ � �(w) + rk(1 − w).
(ii) We have dim γ � �(wγ) + rk(1 − wγ).
(iii) The class γ is spherical if and only if dim γ = �(wγ) + rk(1 − wγ).

Proposition 2.5. Let γ be a spherical unipotent conjugacy class and let Cγ be as above.
Then φ(Cγ) = γ.

Proof. Let w ∈ (Cγ)min. We need to show that γ ∈ Σw and that it is the unique minimal
element therein.

By construction γ lies in Σwγ
so by Lemma 2.2, it also lies in Σw. It follows from [7,

Propositions 2.8, 2.9], which in turn uses [10, Proposition 3.4; 11, § 2.9], that if σ ∈ Cγ and
y is a maximal length element in Cγ , then Σσ ⊆ Σy. In particular, this holds for σ = w and
y = wγ by Theorem 2.3(i).

Let γ′ ∈ Σw. Then γ′ ∈ Σwγ
and by part (i) of Theorem 2.4 we have dim γ′ � �(wγ) + rk(1 −

wγ). However, by Theorem 2.4, we have dim γ = �(wγ) + rk(1 − wγ) so γ is minimal in Σwγ
,

and, a fortiori, in Σw. The assertion follows from uniqueness of the minimal element in Σw

(see [18]).

The above result can be rephrased by saying that the restriction to Gsph of the map

ι : G −→ W inv,

γ 
−→ Cγ

is a right inverse for φ on Gsph.
In [19, Theorem 0.2], a right inverse Ψ to φ has been constructed. It is defined as follows.

For any γ ∈ G one considers φ−1(γ). This set contains a unique element C0 ∈ W for which
the dimension dC of the fixed-point space of an (thus any) element in C is minimal. Then
Ψ(γ) = C0. We want to compare the maps ι and Ψ on Gsph.

It is shown in [7, Lemma 3.2] that wγ = w0wΣ for some Σ ⊆ Δ such that wΣ coincides with
w0 on Σ. Using the same arguments, one can prove the following result, that we report here
for completeness.

Lemma 2.6. Let γ be a spherical unipotent conjugacy class or any spherical conjugacy
class if char(k) is either 0 or good and odd, and let σ ∈ Wγ be a maximal length element in
its conjugacy class C. Then σ = w0wΣ for some Σ ⊆ Δ such that wΣ coincides with w0 on Σ.

Proof. Since Wγ consists of involutions, we may apply [21, Theorem 1.1(ii)], so σ = w0wΣ

for some Σ ⊆ Δ. In addition, w0 and wΣ necessarily commute so (−w0)Σ = Σ. Let α ∈ Σ. We
have β = w0wΣα ∈ Σ ⊆ Φ+ so �(w0wΣsα) = �(w0wΣ) + 1. Then, by maximality of the length
of σ in C, we have �(sαw0wΣsα) = �(w0wΣ). By Springer [25, Lemma 3.2], we get α = β.

Lemma 2.7. Let Π ⊆ Δ and let w = w0wΠ be an involution with the property that w0

restricted to ΦΠ is wΠ. Then (−w0)(Π) = Π and

rk(1 − w0) = rk(1 − wΠ) + rk(1 − w).
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Proof. The first statement follows from w0wΠ(α) = α for every α ∈ Π.
Let us denote by Em(x) the m-eigenspace of an operator x. Clearly, if x is an involution,

then dim E−1(x) = rk(1 − x). It is an immediate exercise in linear algebra that if x and y are
commuting involutions, then dimE−1(x) + dim E−1(y) = dim E−1(xy) if and only if E−1(x) ∩
E−1(y) = {0}.

We have Π ⊆ E1(w0wΠ) = E−1(w0wΠ)⊥ so, since wΠ can be written as a product of
reflections with respect to roots in Π, for every v ∈ E−1(w0wΠ) we have wΠ(v) = v. In other
words,

E−1(w0wΠ) ∩ E−1(wΠ) ⊆ E1(wΠ) ∩ E−1(wΠ) = {0},
whence the second statement.

We are ready to state the main result of this paper.

Theorem 2.8. Lusztig’s map Ψ coincides with ι on Gsph.

Proof. Let γ ∈ Gsph. By Proposition 2.5, we have Cγ ∈ φ−1(γ), so we need to show only
that the dimension dC of the fixed-point space E1(w) of an element w ∈ C for C ∈ φ−1(γ) is
minimal for w ∈ Cγ .

Let C be a class in φ−1(γ). Then every σ in C lies in Wγ by Lemma 2.2. By Theorem 2.1,
the set Wγ is a union of classes in W inv. Moreover, all elements in Wγ are less than or equal
to wγ in the Bruhat ordering, in particular, this holds for all elements in C. Let z be a
maximal length element in C. By Lemma 2.6, z = w0wΣ and wγ = w0wΠ, where Σ and Π are
subsets of Δ on which z and wγ , respectively, act as the identity, and z � wγ , or, equivalently,
wΠ � wΣ. Since wΣ has a reduced expression as a product of reflections with respect to roots
in Σ, the simple reflections occurring in some reduced expression of wΠ correspond to some
simple roots in Σ by [1, Corollary 2.2.3]. By Björner and Brenti [1, Corollary 1.4.8(ii)], the
set of simple roots occurring in any reduced expression of wΠ is precisely Π. Hence, Π ⊆ Σ.
Moreover, the restriction of wΣ to Π coincides with wΠ so by Lemma 2.7 applied to ΦΣ we have
rk(1 − wΣ) = rk(1 − wΠwΣ) + rk(1 − wΠ), so rk(1 − wΠ) � rk(1 − wΣ). Applying Lemma 2.7
once more we see that

rk(1 − wγ) = rk(1 − w0wΠ) = rk(1 − w0) − rk(1 − wΠ)
� rk(1 − w0) − rk(1 − wΣ) = rk(1 − z),

so rk(1 − x) reaches its maximum over φ−1(γ) at x = wγ . Since all elements in φ−1(γ) are
involutions, this gives precisely minimality of dCγ = dim E1(wγ). Thus, Ψ(γ) = Cγ .

Corollary 2.9. The map ι is injective on spherical unipotent conjugacy classes.

Remark 1. Except for type A1, the maps ι and Ψ do not coincide on the full set G because
Ψ is necessarily injective whereas ι is not. Indeed, the regular unipotent class γreg intersects
every BwB (see [15] or the result of Springer in the Appendix of [10]), so ι(γreg) = W · w0.
On the other hand, there is always a spherical unipotent conjugacy class intersecting Bw0B.

An important feature of the maps φ and Ψ is that they are defined in all characteristic
and they satisfy compatibility conditions as follows. For a fixed irreducible root system Φ,
let Gp denote a corresponding group in characteristic p and let φp, Ψp and ιp denote the
corresponding maps φ, Ψ and ι. If in the sequel reference to p is omitted, we shall mean that
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the statement holds for every p � 0. Let us recall that there is a dimension-preserving and order-
preserving injective map π : G0 → Gp, where the order is given by inclusion of Zariski closures
[19, § 3.1; 22, III, 5.2]. It is shown in [19, Theorem 0.4(b)] that Ψ0 = Ψpπ and π = φpΨ0.
The compatibility behaves well when we restrict ourselves to spherical conjugacy classes.

Proposition 2.10. The map π maps G0
sph into Gp

sph, and if γ lies in G0
sph, then

wπ(γ) = wγ .

Proof. Let γ ∈ G0
sph. Then

π(γ) = φpΨ0(γ) = φpι0(γ) = φp(Cγ).

Let σ be a minimal length element in Cγ . Then π(γ) ∈ Σσ and, arguing as in the proof of
Lemma 2.5, since wγ is the maximal length element, π(γ) ∈ Σwγ

. Thus, wγ � wπ(γ). It is
not hard to show, by induction on the length of a word in W , that if w � τ in the Bruhat
order, then �(w) + rk(1 − w) � �(τ) + rk(1 − τ) (see the proof of [2, Proposition 6]). Therefore,
invoking part (ii) of Theorem 2.4 for γ we have dim(π(γ)) = dim(γ) = �(wγ) + rk(1 − wγ) �
�(wπ(γ)) + rk(1 − wπ(γ)). Applying Theorem 2.4 to π(γ), we have the first statement. The
second one is immediate from Ψ0 = Ψpπ and Theorem 2.8.

In the remainder of the paper, we analyze the image of the restriction of Ψ to spherical
unipotent conjugacy classes.

By part (i) of Theorem 2.3, the image of the restriction of ι to Gsph lies in Wm. We observe
that the map ι can be defined in the same way for any conjugacy class.

Identifying a class in Wm with its unique maximal length element, we may endow Wm with
a poset structure from the Bruhat order of W . Inclusion of Zariski closures induces a poset
structure on the set of conjugacy classes in G and on G.

We observe that if for some conjugacy classes γ, γ′ we have γ̄ ⊆ γ′, then

∅ �= BmγB ∩ γ ⊆ BmγB ∩ γ = γ̄ ⊆ γ′ = Bmγ′B ∩ γ′ ⊆ Bmγ′B,

so mγ � mγ′ in the Bruhat order and ι is order-preserving.
By Theorem 2.3, in zero or good and odd characteristic the image of the set of all spherical

classes through ι is exactly Wm. Let us analyze the situation for spherical unipotent conjugacy
classes.

Proposition 2.11. For every Φ there is some p such that ιp(Gp
sph) is Wm.

Proof. The list of the maximal length representatives for all elements in Wm is given in [7]
in terms of subdiagrams of the Dynkin diagram, and it can be deduced from [20]. In zero or
good and odd characteristic, we have ιp(Gp

sph) = Wm precisely in type An, n � 1; Dn, n � 4;
E6; E7; E8 (see [2, Table 3; 5, 7, Lemma 3.5]). From Proposition 2.10, it follows that in these
cases, we have ιp(Gp

sph) = Wm also when p is a bad prime or p = 2.
In type Cn (and Bn), n � 2, in characteristic 2 there are n + [n/2] non-trivial spherical

unipotent conjugacy classes (see [9, 3.1.2]) and therefore we have ι2(G2
sph) = Wm.

In type F4, for p = 3 the poset of spherical unipotent conjugacy classes is the same as the
corresponding poset in good characteristic, while for p = 2 we have ι2(G2

sph) = Wm (see [9,
Table 6, 7]).

In type G2, for p = 2 the poset of spherical unipotent conjugacy classes is the same as the
corresponding poset in good characteristic, while for p = 3 we have ι3(G3

sph) = Wm (see [9,
Table 8, 9]).
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Corollary 2.12. The following are equivalent:

(i) ιp(Gp
sph) = Wm for every p � 0;

(ii) ι0(G0
sph) = Wm;

(iii) the restriction of π to G0
sph is an isomorphism onto Gp

sph for every p � 0.

Proof. The equivalence of (i) and (ii) is immediate from ι0 = ιpπ. Let us assume (i).
By bijectivity of ι0 and injectivity of ιp, we have

|Gp
sph| � |Wm| = |G0

sph|
so injectivity of π implies (iii). Finally, Proposition 2.11 shows that (iii) implies (i).

Remark 2. Let J be the set of subsets of Δ such that

Wm = {W · w0wJ | J ∈ J }.
We can identify Wm with J and the partial order on Wm becomes reverse inclusion of subsets
in J . We observe that for J,K ∈ J both J ∩ K and J ∪ K are in J and therefore Wm is a
lattice. It can be proved by inspection that for every p the order-preserving map ιp restricted
to Gp

sph is a poset isomorphism onto its image and that Gp
sph is always a lattice.

Theorem 2.13. The set Wm is the set of conjugacy classes in W having maximum with
respect to the Bruhat order.

Proof. By Theorem 2.3(iii) or by Proposition 2.11 if C lies in Wm, then C = Cγ for some
spherical conjugacy class in Gp for some p. By Lemma 2.2, every w ∈ C lies in Wγ so it must
be less than or equal to wγ in the Bruhat ordering. Thus, the maximal length element in C
is the sought maximum in C. Conversely, if C has maximum σ with respect to the Bruhat
ordering, then σ has maximal length in C. Hence, σ is the unique maximal length element in
C because for any τ ∈ C different from σ we have �(τ) < �(σ).

Remark 3. It was kindly suggested to us by A. Hultman that the statement of The-
orem 2.13 for arbitrary finite Coxeter groups follows from the observation in [11, p. 577].
Indeed, it is shown therein that for C ∈ W and any w ∈ C there exists some σ of maximal
length in C and a chain of simple reflections si1 , . . . , sir

satisfying

σ0 = σ; σj = sij
σj−1sij

; σr = w

and �(σj) � �(σj+1) for j = 0, . . . , r. Now, if C ∈ Wm, then C ∈ W inv (see [23, Theorem 8.7]
for H3 and H4 or [12, Corollary 3.2.14] for arbitrary finite Coxeter groups). By Springer
[25, Lemma 3.2], we have �(σj) = �(σj+1) if and only if σj = σj+1, and if �(σj) > �(σj+1), we
necessarily have �(σj) = �(σj+1) + 2. This forces

σj−1 � σj−1sij
� sij

σj−1sij
= σj

in the Bruhat order, so the unique maximal length element σ is the sought maximum in C.
The main result in [11] is based on a case-by-case analysis, but a new case-free proof is

available in [13]. On the other hand, surjectivity of ι on Wm relies on the case-by-case analysis
in [2]. This could be shortened by looking at the image through ι of the classes of involutions
(in the adjoint group) in [26, Table 1] and using [2] only for the few missing cases.
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