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ABSTRACT
Introduction. It is well known that resolution on a gamma camera varies as a
function of distance, scatter and the camera’s characteristics (collimator type,
crystal thickness, intrinsic resolution etc). Manufacturers frequently provide only
a few pre-calculated resolution values (using a line source in air, 10–15 cm from
the collimator surface and without scattering). However, these are typically not
obtained in situations resembling a clinical setting. From a diagnostic point of view,
it is useful to know the expected resolution of a gamma camera at a given distance
from the collimator surface for a particular setting in order to decide whether it is
worth scanning patients with “small lesion” or not. When dealing with absolute
quantification it is also mandatory to know precisely the expected resolution and its
uncertainty in order to make appropriate corrections.
Aim. Our aims are: to test a novel mathematical approach, the cubic spline inter-
polation, for the extraction of the full width at half maximum (FWHM) from the
acquisition of a line source (experimental resolution) also considering measurement
uncertainty; to compare it with the usually adopted methods such as the gaussian
approach; to compare it with the theoretical resolution (analytical resolution) of a
gamma camera at different distances; to create a web-based educational program
with which to test these theories.
Methods. Three mathematical methods (direct calculation, global interpolation us-
ing gaussian and local interpolation using splines) for calculating FWHM from a line
source (planar scintigraphy) were tested and compared. A NEMA Triple Line Source
Phantom was used to obtain static images both in air and with different scattering
levels. An advanced, open-source software (MATLAB/Octave and PHP based) was
created “ad hoc” to obtain and compare FWHM values and relative uncertainty.
Results and Conclusion. Local interpolation using splines proved faster and more
reliable than the usually-adopted Gaussian interpolation. The proposed freely avail-
able software proved effective in assessing both FWHM and its uncertainty.

Subjects Bioengineering, Biophysics, Radiology and Medical Imaging
Keywords Gaussian, Splines, Gamma camera, FWHM, Resolution, Local interpolation, Global
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INTRODUCTION
The spatial resolution of a gamma camera is a measure of its ability to resolve small objects

in the field of view. Spatial resolution can also be defined as the minimum distance between

two points such that they can be pictured separately. This means that objects placed at a

distance smaller than the resolution limit are imaged as a single blurred one.

Minute variations (even of 0.3 mm) in the system’s resolution could affect image

quality (Dendy, Barber & Bayliss, 1988). Therefore, it is important to know precisely “a

priori” what the gamma camera’s limits are before scanning a patient. Moreover, when

dealing with the absolute quantification of the tracer in SPECT, the measure of the mean

radioactivity in a volume of interest (VOI) can be affected by an error proportional to the

resolution (Kojima et al., 1989). Resolution is therefore a crucial parameter that measures

the reliability of the gamma camera in a specific setting (Soreson & Phelps, 1987). A precise

measure of resolution, together with the uncertainty of such measure, can lead to an

appropriate qualitative reading of images and to a correct quantitative evaluation.

The overall spatial resolution of a gamma camera system (Rs) depends on different

factors, both geometrical and physical, and it is usually expressed in terms of collimator

resolution (Rc) and intrinsic resolution (Ri). The Rs is typically assessed from the full width

at half maximum (FWHM) of the profile of a point-like, or line-like, radiation source.

FWHM can be expressed as a function of the gamma camera’s characteristics and the

distance between the object and the collimator (Soreson & Phelps, 1987; Cherry, Sorenson

& Phelps, 2012; Zaidi, 2006) (the so-called analytical resolution) or computed from the

experimental data obtained from the image of a line source (the so-called experimental

resolution).

Different methods have been proposed to calculate the experimental FWHM from a

point spread function (PSF) or line spread function (LSF) (Hander et al., 1997; Hander et

al., 2000; Wasserman, 1998; Metz, Atkins & Beck, 1980), but none of these methods provide

the uncertainty of the measure of FWHM.

The aim of this work is to introduce a method for computing FWHM (using a

matematical method known as splines) in the case of a parallel-hole collimator and the

relative uncertainty from a LSF and compare it to the usually adopted methods. The most

reliable one will be chosen using a cost function.

Every algorithm described in this paper was implemented and tested on the Phantom’s

data and is part of the freely-available package (Resolution Calculator 0.1.zip)

developped by our group for educational purposes: http://www.rad.unipd.it/fwhm/.

Analytical resolution
The system resolution Rs depends on the collimator resolution Rc and on the intrinsic

resolution Ri (Soreson & Phelps, 1987; Cherry, Sorenson & Phelps, 2012; Zaidi, 2006).

Using the convolution mathematical theory (Cherry, Sorenson & Phelps, 2012),we
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obtain R2
s = R2

c + R2
i , which gives us

Rs =


R2

c + R2
i (1)

due to the fact that Rs will be positive.

The intrinsic resolution Ri is linked to the properties of the detector and electronics.

For the given energy of a photon, Ri could be considered independent of the object-to-

collimator distance, whereas the collimator‘s resolution depends largely on the geometrical

layout and can be expressed as a function of a number of parameters:

• x: distance between the object and the collimator’s surface;

• L: collimator’s hole length;

• D: collimator’s hole size;

• c: crystal’s thickness, including an estimate of the gap between collimator and crystal

and between crystal and image plane. An estimate of the average depth of interaction in

the crystal has also been considered;

• t: thickness of the septa

where L, D, c, t are declared by the manufacturer as well as Ri.

Figure 1 schematically shows the geometrical layout of a point source.

To calculate Rc, consider gamma rays coming from a point source P (as in Fig. 1) and

particularly rays PA (parallel to the septa) and PB (angular limit). Now, since the radiation

profile is similar in shape to an isosceles triangle (
△

HIB) and triangles
△

HIB and
△

HFG are

similar, then the FWHM is about half of the base (Rc ≃ AB).

Because of the similitude of the triangles
△

PAB and
△

P′A′B and the fact that t ≪ D(= A′B′)

we infer that

P′A′ : A′B′ = PA : AB

which is equivalent to:

L : D = (c + L + x) : Rc. (2)

Instead of L, Leff is usually used which is a length that is weighted to take the septal

penetration into account,

Leff = L −
2

µ
. (3)

The constant µ is the linear attenuation coefficient of the material of the collimators

(usually lead, µ = 2.49 mm−1 at 140 KeV). Thus from (2) and (3):

Rc = D


1 +

x + c

Leff


. (4)
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Figure 1 Geometrical layout of a point source acquisition by a gamma camera equipped with a parallel
hole collimator (D is the diameter of the holes of the collimator and t is the septal thickness).

MATERIALS AND METHODS
Image acquisition
A planar static image of a line source, filled with about 200 MBq of 99mTc activity and

inserted in the center of a NEMA SPECT Triple Line Source Phantom (as in Fig. 2) was

acquired using a Thriple-Head Irix Marconi-Philips gamma-camera (256 × 256 matrix,

180 s) equipped with a parallel-hole, ultra-high resolution collimator. The line source was

placed in air, water and a radioactive solution (about 30 kBq/ml of 99mTc) to reproduce

different background conditions. A loss of resolution (Cherry, Sorenson & Phelps, 2012)

was expected as a consequence of an increasing scattering effect. Planar images were
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Figure 2 NEMA SPECT Triple Line Source Phantom used in the experiments (photograph by Diego
Cecchin).

acquired with the Phantom at increasing source-to-collimator distances (134, 164, 194,

224, 254 and 284 mm) and exported in DICOM format.

From data to experimental resolution
Figure 3 shows an image derived from the acquisition of a line source. It is an N × N

data matrix with the number of radioactive counts in N points at N different heights. For

each image, an N × J submatrix was visually selected (on the middle third of the line) so

as to obtain near-constant data profiles For each j-th row of the submatrix, FWHMj was

calculated from the data (xi,yi)i=1,...,N using the three methods described below.
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Figure 3 Line source acquired using “NEMA SPECT Triple Line Source Phantom” (in inverted gray
scale) and a plot of activity at a certain height j ∈ J.

The FWHM value was assessed as the average of FWHMj (j = 1,...,J).

The standard deviation σ and the variation coefficient Cv were calculated to estimate the

absolute and relative uncertainties respectively where

Cv =
100 · σ

FWHM
.

Another way to quantify the uncertainty of FWHM is the use of a quadratic cost defined

case by case. The maximum error in FWHM is expected to be proportional to the square

root of such cost (Walter & Pronzato, 1997).

Method 1: direct calculation
This first method was intentionally a basic one to prove that a naive approach will lead to

an unreliable FWHM value.

The maximum pixel value h = max(yi) = yK for a proper index K and its argument

x̃ = xK were found. Two points z1 < x̃ and z2 > x̃, which are the closest to h
2 , were used and
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their distance

FWHMj = |z1 − z2|

was ascertained.

For this case the following cost was defined:

C1(z1,z2) =
(y(z1) − h/2)2

+ (y(z2) − h/2)2

2
. (5)

Method 2: Gaussian—global interpolation
Data (xi,yi) were modelled as a deterministic function with a small level of noise.

The process called least-squares is reliable for choosing a function close to the data.

Mathematically speaking, the least-squares approximation of a given data set looks for the

best fit minimizing a suitable functional. Usually the functional is the sum of the squares of

all deviations of a function chosen from the data.

The linear least-squares approximation consists in finding a function fā(x) =n
i=1aiφi(x) depending on some parameters ā = (a1,...,an), with φi,i = 1,...,n a set of

known (basis) functions. Nonlinear least-squares approximation can also be constructed

(see below), providing a function fā that is a nonlinear combination of some known

functions.

The algorithm looks for:

ā∗
= argmin

ā∈Rn
J(ā) = argmin

ā∈Rn
∥yi − fā(xi)∥

2.

Since fā is not always linearly dependent on the parameters ā, an iterative optimization

algorithm was used to estimate ā∗. If the Optimization Toolbox/optim package is installed

in MATLAB/Octave, the proposed software will use the well-known Levenberg–Marquardt

algorithm; if not, it will use the Gauss-Newton algorithm (Nocedal & Wright, 2006).

The cost used in this method, which is a mean square deviation (as the cost used in

direct calculation) was

C2(ā) =
J(ā∗)

N
=

∥y − fā∗(x)∥2

N
. (6)

The Gaussian function was used (Zaidi, 2006):

fā(x) = a1e−a2
2x2

which has a resolution FWHMj = 2
√

log(2)

|a2|
.

Method 3: splines—local interpolation
The third method proposes the use of splines of degree 1 (linear), 2 (quadratic) or 3

(cubic) calculated on a huge number of points (we used 104 interpolation points in the

experiments).
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A spline of order m is a function s(x) defined by the following (de Boor, 2001; Lancaster

& Šalkauskas, 1986):

1. on each subinterval Ii = [xi,xi+1],i = 1,...,N − 1, s|Ii = si ∈ P m(R) where P m(R) is the

space of real polynomials of degree ≤ m.

2. s(xi) = yi,i = 1,...,N, i.e., s interpolates the data.

3. s(k)
i (xi) = s(k)

i+1(xi),i = 2,...,N − 1,k ≤ m − 1,m ≤ N. This means that the polynomial

pieces are continuous up to order m − 1 in each inner point.

This approach is called local interpolation. Cubic splines were chosen for their well-known

approximation properties (de Boor, 2001), and for the ability to provide a model-

independent interpolation. In other words, the cubic spline approach is able to accurately

follow the shape suggested by discrete data on a pointwise basis instead of searching a

global fitting function.

As in Method 1 the algorithm searches for two points z1 and z2 a minimal distance away

from the half of the maximum:

zi = argmin
x∈Ji

|s(x) − h/2|, i = 1,2

where J1 and J2 are sets of 104 equidistant points of the intervals (x1,x̃) and (x̃,xN)

respectively.

The distance between these two points gives a good estimate of the FWHMj

FWHMj = |z1 − z2|.

The cost is defined as in Method 1:

C3(z1,z2) =
(s(z1) − h/2)2

+ (s(z2) − h/2)2

2
. (7)

Computation of analytical and experimental resolution curves
On the basis of formulas (1) and (4), Rs can be expressed as follows:

Rs(x) =


p1x2 + p2x + p3. (8)

Using parameters (L,D,c,t,Ri) declared by the manufacturer (Table 1) the following values

were calculated for the analytical resolution:

p1
∼= 0.0010, p2

∼= 0.1468, p3
∼= 2.4267 (9)

The formula (8) was also used to fit the experimental FWHM data obtaining an

experimental fitting curve.

The parameters that describe the experimental fitting curve were computed using the

weighted least-squares method, as defined in Lancaster & Šalkauskas (1986).

To caclulate parameters an expression equivalent to (8) was used:

y2
= p1x2

+ p2x + p3
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Table 1 Parameters declared by the manufacturer of the gamma camera used (Triple-Head Irix
Marconi-Philips).

L D c t FWHM FWHM Ri

(mm) (mm) (mm) (mm) @ 0 mm @ 100 mm (mm)

58.4 1.78 19 0.152 4.8 mm 6.7 mm 4.1

Table 2 Experimental results in air and analytical results.

Experimental FWHM

radius (mm) 134 164 194 224 254 284

FWHM (mm) 7.31 8.13 8.96 9.71 10.62 11.37

σ (mm) 0.80 1.19 0.87 0.87 1.18 0.80

Cv (%) 10.9 14.6 9.7 9.0 11.1 7.0
Direct Met.

mean cost 147543 137062 88423 66376 44393 34223

FWHM (mm) 7.53 8.20 8.88 9.65 10.54 11.35

σ (mm) 0.24 0.22 0.22 0.21 0.33 0.30

Cv (%) 3.2 2.7 2.5 2.2 3.1 2.7
Global Int.

mean cost 3.75 3.11 2.33 2.06 2.15 1.99

FWHM (mm) 7.50 8.23 8.92 9.70 10.54 11.36

σ (mm) 0.26 0.27 0.26 0.26 0.37 0.31

Cv (%) 3.4 3.3 2.9 2.6 3.5 2.7
Local Int.

mean cost 1.55 0.95 0.79 0.49 0.35 0.25

Analytical FWHM

FWHM (mm) 7.70 8.50 9.33 10.17 11.03 11.89

where y is the vector of FWHM s and y2 is the pointwise square of y. The vector

p = (p1,p2,p3) can be obtained by solving the normal equations of the weighted least

squares method

(VTΣV)p = VTΣf

where V is the Vandermonde matrix, f = y2 and Σ = diag(1/σ 2
1 ,...,1/σ 2

n ) the weight

matrix, and σi is the standard deviation of the i th FWHM value.

Usually the manufacturer provides the FWHM values at 0 and 100 mm. These two

values (not measurable in our experimental setting), which weigh 90% less than the

experimental FWHM ones, were used to regularize the fitting curve only in a scatterless

condition (in air).

RESULTS
The experimental results, obtained by scanning the phantom in air, are given in Table 2

where the absolute (σ ) and relative (Cv) deviations between the experimental and

analytical FWHM are also shown.1

1 The interested reader can use the data
contained in our MATLAB/Octave
package to replicate these results.

The analytical and experimental (both in air and with different level of background)

FWHM curves are shown in Fig. 4.
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Figure 4 Experimental FWHM values, obtained using splines, in different scattering conditions. The
analytical and fitting curves (in air) are also shown.

Figure 5 Overall comparison between zoomed-in details of line sources acquired in all conditions.

Figure 5 shows an overall comparison between zoomed-in details of line sources

acquired in all conditions.

It should be noted that:

- the direct method, as expected, demonstrated higher σ , Cv and mean cost values than

the other two methods.

- the FWHM values obtained using global and local interpolation methods were nearly

identical, and σ and Cv were also very similar for local and global interpolation

methods.
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- the mean cost calculated using splines is significantly lower than when the other

methods are used (at least 50% less than the cost of global interpolation).

- all previous observations were also valid in the case of different scattering conditions.

- as expected, the FWHM increases with source-to-collimator distance (radius).

- all the methods used revealed a cost that decreased in proportion to source-to-

collimator distance.

DISCUSSION
The direct method is very quick and easy but it proves more “costly” than the other

methods. The resulting FWHM does not differ significantly from the others because it

is obtained as the mean of a number of profiles. It is important to use the means of multiple

profiles if the direct method is the only one available, but the high Cv should discourage the

use of this method.

The results obtained using local and global interpolation were nearly identical in terms

of FWHM, σ and Cv but different in term of mean cost. Local interpolation is therefore

more reliable than global interpolation when a small sample of profiles is chosen.

It should be noted that the widely used gaussian interpolation is much more

time-consuming (about 25 times) than spline calculation. Given its lower cost and

higher computational speed, the splines method is a very good choice for calculating

FWHM from a static image. Where images are used qualitatively, reported differences in

FWHM (between local and global approaches) are irrelevant. If images are also used for

a quantitative approach, it is mandatory to have a FWHM value as reliable as possible.

Therefore, in this latter situation, the spline method seems to be a better choice.

When the FWHM obtained using analytical calculations is compared with the results

of the splines method, the difference, in air, range from about 3% to 5% (up to 0.5 mm

for the largest radius); the greater the difference, the larger the radius. As expected, this

trend becomes worse with a greater degree of scattering (even considering, as in our

data, a low background activity concentration). For example the difference between the

experimental FWHM with background and analytical resolution ranges from 13% to

15% (up to 1.7 mm for the largest radius). The software presented in this work is able to

quantify this uncertainty effectively in terms of σ , Cv and cost.

CONCLUSIONS
Three mathematical methods for assessing the experimental resolution obtained from

static data were inputed and tested on Phantom-derived data. Local interpolation using

splines proved more reliable and faster than the usually adopted gaussian interpolation

(the global method).

An open source package for calculating analytical and experimental FWHM was

developed in MATLAB/Octave and proved effective in assessing both FWHM and its

uncertainty. A similar PHP web-based application was also developed for open access.

Both tools enable a graphical and numerical comparison of experimental and analytical

FWHM. These programs are freely available at: http://www.rad.unipd.it/fwhm/.
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