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Hearing impairment is the second most prevalent clinical feature after optic atrophy in dominant optic atrophy associated with

mutations in the OPA1 gene. In this study we characterized the hearing dysfunction in OPA1-linked disorders and provided

effective rehabilitative options to improve speech perception. We studied two groups of OPA1 subjects, one comprising 11 patients

(seven males; age range 13–79 years) carrying OPA1 mutations inducing haploinsufficiency, the other, 10 subjects (three males; age

range 5–58 years) carrying OPA1 missense mutations. Both groups underwent audiometric assessment with pure tone and speech

perception evaluation, and otoacoustic emissions and auditory brainstem response recording. Cochlear potentials were recorded

through transtympanic electrocochleography from the group of patients harbouring OPA1 missense mutations and were compared

to recordings obtained from 20 control subjects with normal hearing and from 19 subjects with cochlear hearing loss. Eight

patients carrying OPA1 missense mutations underwent cochlear implantation. Speech perception measures and electrically-evoked

auditory nerve and brainstem responses were obtained after 1 year of cochlear implant use. Nine of 11 patients carrying OPA1

mutations inducing haploinsufficiency had normal hearing function. In contrast, all but one subject harbouring OPA1 missense

mutations displayed impaired speech perception, abnormal brainstem responses and presence of otoacoustic emissions consistent

with auditory neuropathy. In electrocochleography recordings, cochlear microphonic had enhanced amplitudes while summating

potential showed normal latency and peak amplitude consistent with preservation of both outer and inner hair cell activities. After

cancelling the cochlear microphonic, the synchronized neural response seen in both normally-hearing controls and subjects with

cochlear hearing loss was replaced by a prolonged, low-amplitude negative potential that decreased in both amplitude and duration

during rapid stimulation consistent with neural generation. The use of cochlear implant improved speech perception in all but one

patient. Brainstem potentials were recorded in response to electrical stimulation in five of six subjects, whereas no compound

action potential was evoked from the auditory nerve through the cochlear implant. These findings indicate that underlying the

hearing impairment in patients carrying OPA1 missense mutations is a disordered synchrony in auditory nerve fibre activity

resulting from neural degeneration affecting the terminal dendrites. Cochlear implantation improves speech perception and syn-

chronous activation of auditory pathways by bypassing the site of lesion.
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Introduction
Dominant optic atrophy (DOA) is among the most

common inherited optic neuropathies and is characterized

by progressive bilateral visual loss beginning in childhood

(Kjer, 1959). Retinal ganglion cell degeneration, affecting

primarily the small fibres of the papillo-macular bundle

(Carelli et al., 2004), is the pathological hallmark of

DOA. About 60–70% of DOA cases are associated with

pathogenic mutations in the nuclear gene (OPA1) encoding

for the OPA1 protein (Alexander et al., 2000; Delettre

et al., 2000), a mitochondria-targeted dynamin-related

GTPase that localizes to the inner mitochondrial membrane

(Delettre et al., 2000; Olichon et al., 2006). OPA1 pro-

motes fusion of the inner mitochondrial membrane

(Olichon et al., 2006), maintains the integrity and structure

of mitochondrial cristae (Frezza et al., 2006), and is also

implicated in maintenance of membrane potential and oxi-

dative phosphorylation (Lodi et al., 2004).

More than 200 mutations have been identified so far

(www.mitodyn.org), and most of them are predicted to

generate protein truncation, possibly inducing haploinsuffi-

ciency. These mutations are responsible for the classic form

of ‘non-syndromic’ optic neuropathy characterized by vari-

able degrees of central vision impairment (Ferré et al.,

2009). Some patients may present with a syndromic form

of DOA associated with sensorineural hearing loss, ataxia,

sensorimotor neuropathy, progressive external ophthalmo-

plegia and mitochondrial myopathy (DOA + phenotype)

(Meire et al., 1985; Amati-Bonneau et al., 2008; Hudson

et al., 2008). Multiple deletions of mitochondrial DNA

(mtDNA) accumulate in the skeletal muscle of these pa-

tients, thus pointing to a further function of OPA1 in main-

taining mtDNA stability (Amati-Bonneau et al., 2008). The

DOA + phenotype has been associated mainly with mis-

sense mutations affecting the GTPase domain (Amati-

Bonneau et al., 2005; Yu-Wai-Man et al., 2010), and a

dominant negative mechanism has been proposed, which

would result from abnormal protein structure.

The most common extra-ocular manifestation in DOA+

is sensorineural hearing loss, found in �60% of such pa-

tients, most frequently associated with the R445H missense

mutation (Yu-Wai-Man et al., 2010; Leruez et al., 2013;

Yu-Wai-Man and Chinnery, 2013). Hearing loss starts in

childhood or adolescence, and usually follows the onset of

visual symptoms (Yu-Wai-Man et al., 2010; Leruez et al.,

2013; Yu-Wai-Man and Chinnery, 2013). Although the

majority of studies broadly qualify the hearing disorder

as ‘sensorineural hearing loss’, some authors have proposed

auditory neuropathy as the pathophysiological mechanism

underlying the hearing impairment in DOA + (Amati-

Bonneau et al., 2005; Huang et al., 2009; Santarelli 2010).

Auditory neuropathy is a hearing disorder characterized

by a disrupted temporal coding of acoustic signals in the

auditory nerve fibres resulting in impairment of auditory

perceptions relying on temporal cues (Starr et al., 1996,

2008; Zeng et al., 2005). The disruption of auditory

nerve discharge underlies either the absence or profound

alteration of auditory brainstem responses (ABRs) and

severe impairment of speech perception. In contrast, coch-

lear receptor outer hair cell activities are preserved (otoa-

coustic emissions, cochlear microphonic) (Santarelli et al.,

2008; Starr et al., 2008). The suggested mechanisms for

hearing dysfunction include both pre synaptic and post

synaptic disorders affecting inner hair cell depolarization,

neurotransmitter release from ribbon synapses, spike initi-

ation in auditory nerve terminals, loss of nerve fibres and

impaired conduction, all occurring in the presence of

normal physiological measures of outer hair cell activities

(otoacoustic emissions, cochlear microphonic). The hearing

impairment has peculiar features reflecting alteration in

temporal coding of acoustic information in auditory nerve

fibres, which is typically unaffected in cochlear hearing im-

pairment resulting from hair cell loss and disruption of the

cochlear amplifier (for a review see Starr et al., 2008).

In the last decade, the use of electrocochleography

(ECochG) recording has been proposed in the diagnosis of

auditory neuropathy for defining the details of both receptor

and neural responses in the various forms of the disorder

(Santarelli and Arslan, 2002; McMahon et al., 2008;

Santarelli et al., 2008). Recordings of cochlear potentials by

transtympanic ECochG in two OPA1 patients harbouring the

R445H mutation have shown prolonged low-amplitude

negative potentials replacing the auditory nerve compound

action potential found in subjects with normal hearing

(Huang et al., 2009; Santarelli, 2010). These prolonged re-

sponses have been considered as originating from the activa-

tion of degenerated terminal portions of auditory nerve fibres

(Huang et al., 2009).

In this study we investigated the site of the lesion and the

pathophysiological mechanisms behind the hearing impair-

ment in patients with DOA carrying different mutations in

the OPA1 gene. To this end, we recorded the receptor and

neural cochlear potentials using transtympanic ECochG,

and compared them to the electrically-evoked neural and

brainstem responses obtained after cochlear implantation.

Materials and methods

Subjects

We evaluated hearing function in two groups of subjects with
OPA1-related DOA. One group included patients carrying

564 | BRAIN 2015: 138; 563–576 R. Santarelli et al.

by guest on F
ebruary 27, 2015

D
ow

nloaded from
 

www.mitodyn.org


OPA1 mutations predicted to induce haploinsufficiency or

rearranged protein (indicated as OPA1-H) while the second

group included subjects harbouring OPA1 missense mutations
(indicated as OPA1-M). Details of neurological and genetic

findings from all subjects are summarized in Supplementary

Table 1, whereas clinical and audiological results are reported

in Supplementary Table 2 and Table 1, for the OPA1-H and
OPA1-M groups.

The OPA1-H group comprised 11 subjects (seven males; age
range 13–79 years), all affected with variable degrees of im-

paired vision. Only two subjects complained of hearing loss.
The OPA1-M group included 10 subjects (three males; age

range 5–58 years), three of whom (Subjects 1, 2 and 6) have

been partially reported in previous studies (Santarelli and
Arslan, 2002; Huang et al., 2009). In all patients, visual loss

started in childhood or adolescence. The onset of vision im-

pairment preceded that of hearing loss in seven subjects,
whereas in two patients the disease started with congenital

deafness (Subject 7) or impaired speech perception (Subject

4). At the time of evaluation all but one patient (Subject 10)

complained of difficulty in understanding speech. Two subjects
reported tinnitus and vertigo. Subject 9 had been using a coch-

lear implant for 2 years at the time of our first evaluation.
All subjects underwent audiological assessment including

pure tone and speech audiometry, speech perception measures

and otoacoustic emissions and ABRs recording, all performed
in the same session. The patients included in the OPA1-M

group were also submitted to ECochG recording except for
Subjects 9 and 10.

CT and MRI scans of the head and ear (including the in-
ternal acoustic canal) were performed in all patients of the
OPA1-M group except for Subject 10. The results were
normal; in particular, no cochlear malformations were found.

Seven OPA1-M patients underwent unilateral cochlear im-
plantation at our department. Surgery was performed within
1 year of first evaluation except for Subject 2, who received a
cochlear implant 2 years after the first audiological assessment.
All patients underwent a further audiometric evaluation in the
week preceding cochlear implantation. None showed worsen-
ing of the hearing threshold with respect to the first
assessment.

Given poor performance with the cochlear implant, Subject
9 underwent the device manufacturer’s integrity testing and a
further CT scan of the ear was carried out to confirm correct
positioning of the electrode array. This patient also showed no
cochlear malformation on radiological imaging.

Audiological studies

Audiometry

We tested hearing thresholds at frequencies from 250 to
8000 Hz (Grason-Stadler GSI 61 audiometer) in a sound-
attenuating room. The degree of hearing impairment was
defined by the pure tone average (PTA) threshold levels at

Table 1 Clinical and audiological data from the OPA1-M group

Subjects 1 2 3 4 5 6 7 8 9 10

Clinical

Gender F F F F M F F F M M

Age tested 21 48 41 18 46 5 31 11 48 58

Age onset 9 9 5 13 6 4 Congenital 5 6 6

Sign at onset Vision Vision Vision Hearing Vision Vision Hearing Vision Vision Vision

Deafness Quiet Quiet Noise Quiet Quiet Quiet Quiet Quiet Quiet –

Deaf onset 9 28 25 13 13 5 Congenital 5 15 –

Tinnitus – – Yes – – – – Yes – –

Vertigo – – Yes – – – – Yes – –

Audiology (right/left)

Hearing Mild/Mod Mild/Mod Mild/Mild Mild/N Sev/Mod Mod/Mild Prof/Prof Mod/Mod Prof/Prof N/N

PTA (dB) 35/43 40/50 41/39 28/15 73/68 50/38 116/116 71/58 100/120 13/11

LF (dB) 45/54 30/40 48/33 33/23 71/68 56/45 105/105 71/69 103/115 11/10

HF (dB) 40/25 70/43 28/25 25/23 70/73 50/43 130/130 80/35 100/130 15/15

OAEs + / + + / + + / + + / + + / + + / + ABS/ABS + / + ABS/ABS + / +

ABR-V (ms) ABS/8.0 ABS/7.6 7.8/ABS ABS/ABS ABS/ABS ABS/ABS ABS/ABS ABS/ABS ABS/ABS 5.8/5.9

Cochlear implantation

CI CI24RE CI24RE CI24RE CI24RE CI24RE – CI24RE CI24RE HiRes90K –

Ear R L R R R R R L

Aided Threshold (dB) 32 32 26 20 26 21 32 36

ABRs in implanted patients

Acoustic ABRs No – Yes No No No No –

eABR-V electr. 20 4.6 NT 4.1 3.9 ABS – 4.3 4.5 NT

eABR-V electr. 13 4.2 NT ABS 4.1 ABS – 4.2 4.9 NT

eABR-V electr. 6 5.0 NT ABS 4.2 ABS – 4.5 4.8 NT

R/L = right ear/left ear; N = normal; Mod = moderate; Sev = severe; Prof = profound; PTA = pure tone average (average thresholds at 0.5, 1, 2, 4 kHz); LF = low frequencies (average

thresholds at 0.5, 1, 2 kHz); HF = high frequencies (average thresholds at 4, 8 kHz); ABS = absent; OAEs = otoacoustic emissions; CI = cochlear implant; eABR = electrically evoked

ABR; electr. = stimulating electrode number; NT = not tested. Aided threshold = average thresholds at 0.25, 0.5, 1, 2, 4 kHz as measured in the free-field with subjects wearing their

sound processor; Acoustic ABRs refers to the presence of acoustically-evoked ABRs in the implanted ear before cochlear implantation.
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0.5, 1, 2 and 4 kHz, and was classified as mild (PTA 21–40 dB
HL), moderate (PTA 41–70 dB HL), severe (PTA 71–95 dB
HL) and profound (PTA 495 dB HL) (Study group on termin-
ology, definition and hearing assessment, 1996; Martini et al.,
1997).

Acoustic reflex thresholds were measured ipsilaterally
and contralaterally to the stimulated ear (Grason-Stadler
GSI TympStar impedance audiometer). They were con-
sidered absent when no response was found at intensities
4110 dB HL.

In implanted patients, aided thresholds were measured
(Interacoustic AC30 Audiometer connected to a Pioneer A
103 amplifier, JBL TLX130 loudspeakers) with subjects wear-
ing their sound processor on user settings. Warble tone stimuli
were presented in the free-field at octave frequencies from 250
to 4000 Hz. To avoid contralateral acoustic stimulation, the
ear canal was occluded with an earplug.

Speech audiometry

Articulation gain curves were obtained using disyllabic, phon-
etically-balanced words from an Italian word list for adults
(Bocca and Pellegrini, 1950). Ten words were presented for
each stimulus intensity. At each level, scoring was based on
the percentage of words correctly repeated by the subject.

Speech perception tests

Speech perception tests were performed in a sound-attenuated
room. Speech stimuli were presented in the free-field through
one loudspeaker placed 1 m away from the front of the sub-
ject’s head. Tests were administered at 70 dB(A) in quiet, and
in the presence of competing noise presented at two signal-to-
noise ratios ( + 10, + 5). Competing speech noise was presented
through two additional loudspeakers placed laterally at an
angle of 90� on either side of the subject’s head at a distance
of 1 m.

Speech material consisted of disyllabic words and comprised
digital anechoic recordings of a native Italian female speaker.
Subjects were presented with one of four randomly chosen
lists, each list consisting of 25 items. The speech material
was obtained from the protocol of patient candidacy for coch-
lear implantation for the Italian language (Quaranta et al.,
1996). Subjects were requested to respond by repeating the
words they heard.

Distortion product otoacoustic emissions

Distortion product otoacoustic emissions were obtained using
the ILO-92 OAE system. Primary tones were presented at
70 dB SPL and the f2/f1 ratio was kept at 1.21. The frequency
was increased in 1/4 octave steps from 708 to 6299 Hz. Four
spectral averages were summed for each stimulus condition.

Electrophysiological studies

Auditory brainstem responses

Potentials were recorded from scalp electrodes (vertex to mas-
toid ipsilateral to the stimulated ear) in response to 2000 trials
of alternating polarity clicks presented monaurally (TDH-50
transducer earphone) at a maximum intensity of 125 dB SPL
(corresponding to 90 dB nHL, referred to the psychoacoustical
threshold of subjects with normal hearing).

Electrocochleography

Eight of 10 OPA1-M patients were administered this procedure
as part of our standard cochlear implantation assessment proto-
col, which includes a signed patient consent form. ECochG was
not performed in two subjects, one who showed normal hearing
(Subject 10) and the second who was using a cochlear implant at
the time of our assessment (Subject 9).

ECochG protocol was assessed by the regional body for
quality control of clinical and therapeutic procedures
(CCHSA, Veneto Region 2007–2010).

Adults were tested under local anaesthesia and children under
general anaesthesia. A sterile stainless steel needle electrode was
passed through the tympanic membrane and placed on the prom-
ontory wall with the aid of an operating microscope. Stimuli
consisted of 0.1 ms rarefaction and condensation clicks, delivered
separately in the free-field by means of two high frequency drivers
(Electro-Voice DH1A/2MT 16 �) mounted on a single polyur-
ethane horn (Electro-Voice HP420) with a maximum intensity of
120 dB SPL (corresponding to 90 dB nHL relative to the psychoa-
coustic threshold of subjects with normal hearing). The stimulus
was calibrated in the free-field by means of a microphone (Brüel
and Kjaer 4165) placed at 1 m from the base of the polyurethane
horn, which corresponded to the distance of the patient’s ear
from the horn.

The stimulus paradigm consisted of an initial click, followed
15 ms later by 10 clicks with an interstimulus interval of
2.9 ms, and the sequence was repeated every 191 ms
(Santarelli et al., 2008). This stimulus paradigm was used to
distinguish between neural and receptor potentials by taking
advantage of the different effects of adaptation induced by
high stimulation rates (Eggermont and Odenthal, 1974;
Santarelli and Arslan, 2013).

The potentials were differentially amplified (50 000 times), fil-
tered (5–8000 Hz) and digitized (25 ms) for averaging (500 trials).
The procedure of averaging the responses evoked separately by
condensation and rarefaction clicks was applied to cancel the
cochlear microphonic and extract the compound action potential
with the superimposed summating potential. The resulting curve
was subtracted from the potential evoked by condensation clicks
to obtain the cochlear microphonic. As cochlear microphonic at-
tenuation was often incomplete at high stimulus intensity and
cochlear microphonic spectral energy was at a maximum between
1500 and 3000 Hz, a low-pass digital filter (12 dB/octave, cut-off
frequency 2000 Hz) was used to attenuate the residual cochlear
microphonic, where needed (Santarelli et al., 2008).

After cancelling the cochlear microphonic, the ECochG
waveform begins with the receptor summating potential,
which appears as an initial negative deflection arising from
baseline and preceding the neural compound action potential
(Eggermont, 1976; Schoohnoven, 2007; Santarelli and Arslan,
2013). Latency was defined relative to cochlear microphonic
onset in milliseconds. Amplitude was computed relative to the
period 1 ms before cochlear microphonic onset in microvolts
(mV). We defined latency and amplitude of summating poten-
tial at the initial negative deflection arising from baseline while
compound action potential peak amplitude was measured at
maximum negative potential (with respect to baseline).

Cochlear potentials recorded from OPA1-M patients were
compared to the ECochG data previously collected from two
groups of children tested for presumed cochlear deafness. The
first group included 20 children with normal hearing with normal
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thresholds when evoking neural and receptor potentials (age
range 3.5–6.5 years), whereas the second group comprised 19
children with cochlear hearing loss mainly related to genetic aeti-
ology (mutations in the GJB2 gene) with compound action po-
tential thresholds between 80 and 100 dB SPL (age range 1–4
years) (Santarelli et al., 2008; Santarelli and Arslan, 2013).

Electrically-evoked compound action potentials and

auditory brainstem responses

Electrically-evoked compound action potentials were recorded
with Cochlear Corporation Custom-Sound EP software.
Stimulation consisted of trains of biphasic, 25 ms width per
phase pulses presented at 80 Hz. The evoked electrical activity
was recorded two electrodes apart.

Electrically-evoked ABRs were obtained by using biphasic
pulses, 50 ms width per phase, presented at 20 Hz. Potentials
were recorded from scalp electrodes (vertex to mastoid contralat-
eral to the stimulated ear). Three electrodes (No.20 apical, No.13
intermediate and No.6 basal) were tested at decreasing stimulus
levels starting from the upper limit of behavioral dynamic range.

Statistical analysis

ANOVA for repeated measures was carried out to analyse
ECochG measures. Separate two-factor ANOVAs with factors
of group and stimulus intensity were used to evaluate latency,
amplitude and duration measures. Post hoc tests for multiple
comparisons were conducted with the Tukey-Kramer proced-
ure. The level of significance was P50.05.

Values contained in both text and figures indicate
mean � standard error.

Results

Hearing thresholds and middle ear
muscle acoustic reflexes

The OPA1-H group showed normal hearing thresholds

except for Subjects 1 and 7, who had mild and moderate

hearing loss, respectively (Supplementary Table 2). High

resolution CT scanning performed in Subject 7 revealed a

thickened stapes footplate, suggestive of grade 1 otoscler-

osis (Marshall et al., 2005). Moreover, Subject 1 had a

positive history of exposure to occupational noise and

showed a typical audiometric profile of noise-induced hear-

ing loss.

All but one patient from the OPA1-M group had ele-

vated hearing thresholds, and the severity of hearing loss

ranged from mild to profound (Table 1). Differently from

all the others, Subject 10 showed normal hearing

thresholds.

Acoustic reflexes were detected in all OPA1-H patients,

whereas they were absent in all but one (Subject 10) of the

OPA1-M group.

Speech audiometry

Articulation-gain curves were obtained from all subjects.

Ears were pooled into different classes of PTA. These

were defined by minimum and maximum PTA levels in

the OPA1-H group, whereas the OPA1-M subjects were

pooled into three classes characterized by increasing PTA

values (Fig. 1). Subjects with profound hearing loss were

not included. Because of the high variability of scores, in

the case of the OPA1-M patients, the articulation curves

obtained from individual ears were considered.

Articulation-gain curves from OPA1 patients were com-

pared to the mean functions with 95% confidence limits,

calculated for each class of PTA for a large sample of sub-

jects, including normally-hearing individuals (394 ears,

range 18–50 years) and patients with cochlear hearing

loss (583 ears, range 18–50 years), submitted to audiomet-

ric evaluation at our department over the past 8 years.

The mean articulation-gain function calculated for the

OPA1-H group closely followed the corresponding curve

obtained from subjects with normal hearing. In contrast,

OPA1-M patients showed lower scores compared to the

Figure 1 Articulation gain curves from patients with DOA. Articulation curves obtained from OPA1-H and OPA1-M groups have been

superimposed on the mean articulation functions (dashed lines) with 95% confidence limits (shadowed areas) calculated for controls at cor-

responding PTA values. These were defined by minimum and maximum (10–14 dB) PTA values in the OPA1-H group, whereas the OPA1-M subjects

were pooled into three classes characterized by increasing PTA values (15–28 dB, 35–50 dB, 58–73 dB). Mean function is displayed for the OPA1-H

group, whereas articulation curves from individual ears have been considered for the OPA1-M patients due to the high variability of scores. Speech

intelligibility was within normal limits in OPA1-H patients, whereas a remarkable decrease in reception scores compared to controls was found for

all but one of the OPA1-M subjects. R = right, L = left.
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hearing-impaired controls for all PTA classes, except for

Subject 10, who displayed normal scores. These findings

indicate that the decrease in speech intelligibility in the

OPA1-M group cannot solely be attributed to the increase

of hearing threshold, as is the case for hearing-impaired

subjects with cochlear hearing loss.

Distortion product otoacoustic
emissions

Distortion product otoacoustic emissions were re-

corded from all but one of the OPA1-H patients, and

from the OPA1-M group except for the two subjects show-

ing profound hearing loss (Table 1 and Supplementary

Table 2).

Auditory brainstem responses

ABRs were recorded from all OPA1-H subjects with

normal latencies and morphology (Fig. 2 and

Supplementary Table 2). In contrast, ABRs were absent

in 6 of 10 subjects of the OPA1-M group (Table 1). Of

the remaining patients, one had normal responses (Subject

10), whereas in three subjects (Subjects 1–3) only wave V

was recorded from one ear with prolonged latency (Fig. 2

and Table 1).

Electrocochleography

Cochlear microphonic potentials were recorded from all the

tested OPA1-M patients (Fig. 3). The responses proved to

be significantly larger compared to both controls and sub-

jects with cochlear hearing loss (Fig. 3). An enhancement of

cochlear microphonic amplitude in patients with auditory

neuropathy might result from decreased activity of the ef-

ferent system secondary to abnormal auditory nerve fibre

activation (Santarelli and Arslan, 2002).

ECochG responses obtained after cochlear microphonic

cancellation showed remarkable differences in comparison

with subjects with normal hearing and patients with coch-

lear hearing loss. The waveforms recorded from two repre-

sentative OPA1-M subjects are superimposed on the

corresponding potentials obtained from one normally-

hearing control and from one hearing-impaired child at

stimulus intensities from 120 to 60 dB SPL in Fig. 4. In

the normal control, the response begins with the receptor

summating potential, which is believed to derive from inner

hair cell activation (Durrant et al., 1998). This is followed

by the neural compound action potential, originating from

the synchronous activation of auditory nerve fibres inner-

vating the basal portion of the cochlea (Eggermont, 1976).

Decreasing the stimulus level results in a gradual latency

increase and amplitude reduction of both summating po-

tential and compound action potential peaks. The duration

of the summating potential–compound action potential

Figure 2 ABRs recorded at 90 dB nHL from one control with normal hearing and three subjects with DOA, one included in

the OPA1-H and two in the OPA1-M group. ABRs were normal in the OPA1-H subject, whereas OPA1-M patients had no brainstem responses

(#4-L) or showed a delayed wave V (#1-L). For each subject the thick line results from the average of individual recordings (thin lines).

Vertical dashed black lines indicate wave I, III and V peaks in the control, while the vertical red line refers to wave V peak in OPA1-M Subject 1.

L = left.
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complex, as measured from initial negative deflection to

return to baseline, is relatively constant at suprathreshold

intensities but broadens at low stimulus level. The ECochG

waveforms obtained from the subject with cochlear deaf-

ness showed comparable peak latencies and duration with

respect to the control with normal hearing; however, the

amplitude of both summating and compound action poten-

tials was remarkably lower.

Two patterns of ECochG potentials were observed in the

OPA1-M patients. In the most common pattern (10 of 14

ears, red line in Fig. 4), the response recorded at high in-

tensity (120–100 dB SPL) began with a fast negative deflec-

tion, peaking at the same summating potential peak latency

as in the normal control and showing a comparable amp-

litude. This was followed by a low-amplitude prolonged

negative potential, which returned to baseline at �8–9 ms

from response onset. In the second pattern, which was

found in a smaller sample (both ears in Subject 5, right

ear in Subjects 2 and 3), at high intensity (120–100 dB

SPL) only the prolonged potential was identified without

the preceding summating potential component (blue line

in Fig. 4).

At intensities lower than 100 dB, the prolonged potential

was recorded for both ECochG patterns with increased

peak latency and reduced amplitude compared to the com-

pound action potential recorded from the normal control.

The means and standard errors of amplitude, latency and

duration of ECochG potentials are plotted as a function of

signal intensity in Fig. 4 for control subjects with normal

hearing, hearing-impaired subjects and OPA1-M patients.

The ANOVA results for these comparisons are summarized

in Supplementary Table 3. Both amplitude and peak la-

tency of the summating potential component calculated

for the OPA1-M group was comparable with the corres-

ponding values measured for control subjects with normal

hearing. Compared with subjects with cochlear hearing

loss, the ECochG responses from OPA1-M patients

showed similar summating potential peak latencies but sig-

nificantly larger summating potential amplitudes. The dur-

ation of the whole ECochG waveform, as measured from

summating potential onset to return to baseline, was sig-

nificantly prolonged in OPA1-M patients compared to the

other two groups. Also the peak latency of the prolonged

negative potential was significantly delayed in OPA1-M

patients compared to the compound action potential la-

tency calculated for both normally-hearing and hearing-

impaired groups.

Differently from all other OPA1-M patients, Subject 7

showed only the cochlear microphonic potential without

a superimposed negative activity at each stimulation

intensity.

To clarify whether the prolonged potentials originate

from neural or from receptor activation, we used an adap-

tation procedure that preferentially attenuates neural re-

sponses with minor changes in summating potential

amplitude (Eggermont and Odenthal, 1974; Santarelli

et al., 2008). Figure 5 shows the recordings obtained at

100 dB SPL from one control subject with normal hearing

and two representative OPA1-M patients in response to the

click stimulation sequence reported at the bottom of the

graph. Mean values of normalized amplitudes are reported

in the right panel as a function of click position in the

Figure 3 Cochlear microphonic potentials. Left: Cochlear microphonic potentials recorded at 120 dB SPL from one control with normal

hearing, one hearing-impaired subject with cochlear hearing loss and one representative OPA1-M patient (Subject 7, left ear). Right: Mean cochlear

microphonic amplitudes are reported as a function of stimulus intensity for the OPA1-M patients and for both normally-hearing and hearing-

impaired subjects. Cochlear microphonic potentials recorded from OPA1-M patients are significantly larger compared to controls with normal

hearing and hearing-impaired subjects with cochlear hearing loss (Cochlear HL).
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stimulus sequence for both controls with normal hearing

and OPA1-M patients, superimposed on mean normalized

summating potential amplitudes calculated for controls. In

the normal controls, compound action potential amplitude

was markedly attenuated after adaptation (61%), whereas

summating potential attenuation was much lower (17%).

Moreover, response duration as measured from summating

potential onset to return to baseline was almost unchanged

after adaptation. In OPA1-M patients, the prolonged re-

sponse was markedly attenuated after adaptation, and the

amount of peak amplitude attenuation was comparable

with that of the normal compound action potential

(52%). Moreover, a high stimulation rate reduced the dur-

ation of the response evoked by the last click in the stimu-

lus sequence (range 2.1–3.5 ms) to the values seen in

controls (range 1.9–3.4 ms) (Santarelli et al., 2008). These

findings point to a neural rather than a receptor origin for

the generation of the prolonged negative potentials re-

corded from OPA1-M patients.

Aided thresholds and speech
perception in implanted subjects

Aided thresholds were obtained from all implanted patients

in the free-field at frequencies from 0.25 to 4 kHz. Hearing

sensitivity was restored within 1 month of cochlear implant

connection in all subjects (Table 1).

Open-set disyllable recognition scores were evaluated

before cochlear implantation and after 1 year of cochlear

implant use. Although there was considerable variation be-

tween subjects, scores significantly improved for all coch-

lear implant recipients in a quiet environment and in the

presence of background noise, except for Subject 9 (paired

t-test, P5 0.01). Speech recognition scores as evaluated in

a quiet environment (Fig. 6) increased from 0% in the pre-

implant condition to 50–90% after 1 year of cochlear im-

plant use in four patients with mild-to-moderate hearing

loss (Subjects 1, 2, 5 and 8) and in one subject (Subject

7) with profound deafness. In the remaining subjects

Figure 4 Cochlear potentials recorded from OPA1-M patients. Left: ECochG waveforms obtained after cochlear microphonic cancel-

lation from two representative OPA1-M patients are superimposed on the corresponding responses recorded from one control with normal

hearing and from one hearing-impaired child with cochlear hearing loss (Cochlear HL) at decreasing stimulus intensity. Right: Means and standard

errors of summating potential (SP) peak latency and amplitude obtained from OPA1-M patients are superimposed on mean compound action

potential (CAP) and summating potential amplitude and peak latency calculated for controls with normal hearing and hearing-impaired subjects

with cochlear hearing loss. Mean amplitude and latency of the prolonged potentials (OPA1-Prolonged) are also reported. Mean response

duration as calculated from onset to return to baseline (SP-CAP) is shown for OPA1-M subjects and for both normally-hearing and hearing

impaired groups in the lower right corner. Time ‘0’ refers to cochlear microphonic onset. In each recording the horizontal dashed line refers to

baseline.
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(Subjects 3 and 4) the recognition scores increased from

pre-implant values of 40–64% to 75–88% as evaluated

after cochlear implantation. Overall, mean disyllable recog-

nition scores measured in quiet increased from 16% in the

pre-implant condition to 72% as evaluated after 1-year’s

experience with the cochlear implant. Differently from all

others, Subject 9 had no improvement of speech perception

with cochlear implant use (not shown).

In six patients speech perception was also evaluated in

the presence of background noise at two different signal-

to-noise ratios ( + 10, + 5) (Fig. 6). For each level of noise,

open-set recognition scores significantly increased after

1 year of cochlear implant use compared to the pre-implant

condition (P50.01). Considering individual scores, all the

OPA1-M patients improved performances when using the

cochlear implant.

Electrically-evoked compound action
potentials and auditory brainstem
responses

Electrically-evoked compound action potentials were absent

in all the implanted patients except for Subject 7, who

showed the electrically-evoked neural response at each elec-

trode location (Fig. 7).

Electrically-evoked ABRs were tested in six implanted

patients (Table 1). The waveforms recorded from two sub-

jects (Subjects 4 and 7) at decreasing current levels are

shown for apical (n.20), intermediate (n.9, 13) and basal

(n.6) electrodes in Fig. 7. In the most common pattern

(Subject 4) electrically-evoked ABR recordings showed

wave V, which was recorded with increasing latency from

apical to basal electrodes (Fig. 7 and Table 1). For a given

electrode location, decreasing current levels resulted in

increased latencies and attenuated wave V amplitudes

(Fig. 7). This response pattern was observed in three of

six patients (Subjects 1, 4 and 8). In Subject 3, wave V

was recorded in response to electrical stimulation only at

the apical electrode location, whereas no brainstem re-

sponses were evoked in Subject 5 through the cochlear

implant.

In OPA1-M implanted patients no acoustically-evoked

ABRs had been obtained before cochlear implantation in

the ear using the cochlear implant, except for Subject 3,

who showed a markedly delayed wave V in response to

acoustic stimulation.

In the patient with profound deafness (Subject 7), neural

and brainstem potentials were recorded in response to elec-

trical stimulation through the cochlear implant (Fig. 7).

In this subject wave II was also identified in addition to

wave V in the ABR recordings obtained at each electrode

location (Firszt et al., 2002).

Discussion
Our study demonstrates that the hearing dysfunction in

OPA1 patients is underlain by auditory neuropathy due

to degeneration of auditory nerve fibres, and that electrical

stimulation through the cochlear implant is able to improve

hearing thresholds, speech perception, and synchronous ac-

tivity in auditory brainstem pathways.

Figure 5 Adaptation of ECochG potentials in OPA1-M patients. ECochG recordings obtained at 100 dB SPL from one control with

normal hearing and two OPA1-M patients in response to the stimulus sequence reported at the bottom are illustrated in the left panel. In the right

panel the means and standard errors of normalized summating potential–compound action potential (SP-CAP) amplitudes are reported as a

function of click position in the stimulus sequence for normally-hearing controls and OPA1-M patients superimposed on mean summating potential

amplitudes calculated for controls. In OPA1-M patients the size of attenuation of cochlear potentials during adaptation was within the range of

compound action potential attenuation calculated for controls. The vertical dashed lines indicate the summating potential and compound action

potential peak in the control and the peak of the prolonged response in OPA1-M patients. Time ‘0’ refers to cochlear microphonic onset. In each

recording the horizontal dashed line refers to baseline.
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Figure 7 Electrically-evoked compound action potentials and ABRs from OPA1-M implanted patients. Electrically-evoked po-

tentials from two representative subjects are displayed. In Subject 7 (bottom) both electrically-evoked compound action potentials (left) and

electrically-evoked ABRs (middle and right) were recorded at all electrode locations; wave II was also identified in electrically-evoked ABR

recordings in addition to wave V. No electrically-evoked compound action potentials were obtained from Subject 4, whereas electrically-evoked

ABR wave V was recorded at all electrode locations. In both patients wave V was recorded with increasing latency from apical to basal electrodes

(vertical dashed lines, middle). For a given electrode location, decreasing current levels resulted in increased latencies and attenuated wave V

amplitudes (vertical dashed lines, right).

Figure 6 Speech perception scores obtained from OPA1-M patients using a cochlear implant. Individual and mean scores on open-

set disyllable recognition test measured in quiet and in the presence of competing noise at two signal-to-noise (S/N) ratios (+10, +5) are reported

for the pre-implant condition and within 1 year of cochlear implant (CI) experience. Speech perception improved in all OPA1-M patients after

cochlear implantation except for Subject 9 (not shown).
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Previous studies have shown that mutations leading to

haploinsufficiency are associated with a lower risk of de-

veloping the DOA + phenotype and hearing loss compared

to missense mutations involving the GTPase domain (Yu-

Wai-Man et al., 2010; Leruez et al., 2013). Overall, our

results support this earlier observation as all but two

OPA1-H patients showed normal hearing function. Of

the two hearing-impaired subjects, one had a positive his-

tory of occupational noise exposure, whereas the second

patient had otosclerosis. Thus, although our study included

a limited series of patients, we suggest caution in causally

relating any hearing impairment to the pathogenic OPA1-

H mutations due to the possible coexistence of unrelated

aetiologies.

All but one of the OPA1-M patients had hearing impair-

ment. Of these, four subjects carried the R445H mutation.

These findings confirm previous studies reporting that mis-

sense mutations occur in about two-thirds of patients with

DOA + , and that R445H is by far the most frequent mu-

tation in hearing-impaired patients (Yu-Wai-Man et al.,
2010; Leruez et al., 2013). In this study, three novel mis-

sense mutations, p.S298N, p.A115V and p.R290Q, are re-

ported for the first time in association with hearing

impairment, and two of these, p.S298N and p.R290Q,

affect the GTPase domain.

Only a few studies have reported the clinical profile of

auditory neuropathy in patients harbouring mutations in

the OPA1 gene (Amati-Bonneau et al., 2005; Huang

et al., 2009; Leruez et al., 2013). Mild-to-moderate hearing

loss with disproportionate impairment of speech percep-

tion, absent ABRs and presence of otoacoustic emissions

have been reported by Amati-Bonneau et al. (2005) in

three adult patients carrying the R445H mutation consist-

ent with auditory neuropathy. In accordance with these

data, the findings reported in our study point to auditory

neuropathy as the pathophysiological mechanism underly-

ing the hearing disorder in OPA1-M patients. First, an im-

pairment of speech perception was observed in all but one

subject of the OPA1-M group. This impairment was not

related to the increase in hearing thresholds, as perform-

ance on speech audiometry was remarkably poorer com-

pared to control subjects showing cochlear hearing loss and

a comparable amount of hearing threshold elevation.

Moreover, acoustically-evoked brainstem responses were

absent or showed profound alteration in all OPA1-M pa-

tients irrespective of the severity of the hearing impairment.

Third, otoacoustic emissions were detected bilaterally while

cochlear microphonic was recorded through electrocochleo-

graphy with normal or enhanced amplitude. All these find-

ings point to disruption of auditory nerve discharge with

preservation of outer hair cell function consistent with the

occurrence of auditory neuropathy (Starr et al., 1996,

2008).

In our previous study, transtympanic ECochG recordings

performed in two related subjects with auditory neuropathy

carrying R445H mutation showed that the compound

action potential found in subjects with normal hearing

was replaced by low-amplitude prolonged negative poten-

tials, which have been interpreted as arising from abnormal

activation of the terminal dendrites of auditory nerve fibres

(Huang et al., 2009; Santarelli, 2010). The current results

extend these observations. First, in addition to the R445H

mutation other OPA1 mutations have been associated with

the prolonged negative potentials found in ECochG record-

ings. More importantly, a rather uniform ECochG pattern

emerged across subjects. In the majority of OPA1 patients

the ECochG response begins with an abrupt deflection with

peak latency and amplitude falling within the range of

summating potential latencies and amplitudes in controls

with normal hearing, a picture consistent with preservation

of inner hair cells.

The summating potential component is followed by pro-

longed low-amplitude negative potentials, replacing the

synchronized compound action potential found in ears

with normal hearing. The sensitivity of these potentials to

rapid stimulation is consistent with their neural generation,

thus indicating that they result from abnormal activation of

degenerated auditory nerve fibres. Based on these findings,

the hearing dysfunction found in OPA1 patients could be

considered essentially as a neural rather than a receptor

disorder and thus qualified as ‘post-synaptic auditory neur-

opathy’ (Starr et al., 2008). Specifically, the unmyelinated

portion of auditory nerve terminals could be primarily

involved by the degenerative process due to the high meta-

bolic demand for spike conduction, as occurs for unmyeli-

nated pre-laminar axons of the papillo-macular bundle in

the optic nerve (Carelli et al., 2004).

The ECochG pattern observed in OPA1 patients appears

profoundly different with respect to hearing-impaired sub-

jects with cochlear hearing loss. In the latter, the morph-

ology of ECochG waveforms is preserved as both

summating potential and compound action potential had

peak latencies and durations comparable to controls with

normal hearing, whereas the amplitudes were remarkably

smaller. This pattern is consistent with the lack of cochlear

amplifier with consequent transition from the compressive

behaviour found in normal hearing to the passive dynamics

of a damaged cochlea. Differently from cochlear hearing

loss, the distinctive feature of the ECochG waveforms re-

corded from OPA1-M patients is their prolonged duration

reflecting dis-synchrony of auditory nerve firing. This might

result from a limited probability of summation of the po-

tentials arising from single auditory nerve fibres due to dis-

turbances in spike initiation and conduction. These findings

support the hypothesis that the hearing impairment found

in OPA1-related auditory neuropathy reflects the alteration

in temporal coding of acoustic information rather than the

decrease of acoustic input due to the reduction of hair cell

number.

In some ears, however, the cochlear potentials showed no

clear separation between summating potential and the pro-

longed negative component. In these cases the coexistence

of a lesion localized to inner hair cells cannot be ruled out.

In addition, Subject 7 had profound deafness with absence
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of both otoacoustic emissions and summating potential re-

sponse in the ECochG waveform consistent with cochlear

damage. The coexistence of neural and hair cell involve-

ment in OPA1 patients is in accordance with the expres-

sion of the OPA1 protein in both outer and inner hair cells

(Bette et al., 2007). Nevertheless, as high density of mito-

chondria has been found only in spiral ganglion cells, it is

plausible that auditory nerve fibres represent the most vul-

nerable site to OPA1-related lesions in auditory periphery.

Cochlear potentials recorded from OPA1-M patients

were compared to ECochG data previously collected from

children tested for presumed cochlear deafness. Bilateral

transtympanic recording methods are part of our audiolo-

gical evaluation of hearing disorders in children when the

reliability of ABRs in hearing threshold estimation could be

significantly reduced, possibly resulting from dysfunction or

immaturity of brainstem generators of ABRs (Kraus et al.,

1984; Jiang et al., 2008, 2011). Approximately 350 chil-

dren have been tested by transtympanic ECochG at our

department over the past 15 years. In some, the transtym-

panic results did not show objective evidence of a periph-

eral auditory disorder. Electrocochleography data from

these subjects served, therefore, as normal hearing control

data for comparison with the OPA1-M patients. In add-

ition to normally-hearing controls, we extracted from the

large sample a group of hearing-impaired subjects meeting

specific inclusion criteria (genetic aetiology, compound

action potential threshold between 80 and 100 dB SPL).

Although the controls were considerably younger than

OPA1-M subjects, the age difference cannot be considered

a major limitation (Santarelli et al., 2008). Both amplitude

and latency of the compound action potential peak re-

corded from children in response to click stimulation at

several intensities were comparable to the corresponding

values reported in other studies for normally-hearing and

hearing-impaired adults (Eggermont, 1976; Noguchi et al.,

1999; Schoonhoven, 2007). This is in line with our know-

ledge of the timing of developmental maturation processes

in the cochlea and auditory nerve. Indeed, the latency of

ABR wave I, which reflects the synchronous activation of

auditory nerve fibres, is comparable to adult values by 1–2

years of life (Eggermont et al., 1991). Moreover, the rate-

induced latency shifts of ABR wave I recorded from new-

borns show no, or only very slight, differences compared to

adult values (Salamy et al., 1978; Weber and Roush, 1993).

Two patients of the OPA1-M group had vertigo, which

was reported as a disturbing symptom in Subject 3 and as

occurring only occasionally in Subject 8. Caloric tests of

vestibular function performed before cochlear implantation

in Subject 3 revealed abnormally decreased velocity of the

slow phase of nystagmus for the left ear consistent with

decreased peripheral vestibular sensitivity. Bilateral vestibu-

lar hyporeflectivity was found in Subject 2, who has never

complained of vertigo. Similar findings have been obtained

in one Japanese patient harbouring the R445H mutation in

the OPA1 gene, who showed no response bilaterally on

caloric testing in the absence of vestibular symptoms

(Mizutari et al., 2010). Impaired vestibular function has

previously been reported in other patients with auditory

neuropathy, particularly in those with a concomitant per-

ipheral neuropathy, and attributed to degeneration of ves-

tibular nerves (Starr et al., 1996; Fujikawa and Starr, 2000;

Sinha et al., 2013). The lack of vestibular symptoms in

these patients might reflect the slow rate of the degenerative

process (Fujikawa and Starr, 2000).

The benefits of cochlear implantation in two OPA1 pa-

tients were reported for the first time in our previous paper

(Huang et al., 2009). This study extends these observations,

showing that cochlear implants constitute a viable thera-

peutic option in improving speech perception in patients

with OPA1-related hearing impairment. First of all, hearing

sensitivity was restored regardless of the degree of hearing

loss. More importantly, speech recognition scores improved

remarkably in quiet as well as in the presence of competing

noise in all but one patient (Subject 9). In particular, the

improvement of speech perception scores in the presence of

background noise was striking, as one of the hallmarks of

auditory neuropathy is the difficulty in understanding

speech in noisy environments due to the impairment of

temporal processing of acoustic signals in auditory nerve

fibres (Zeng et al., 2005; Starr et al., 2008). Indeed,

mean disyllable recognition scores as measured in the pres-

ence of competing noise at signal-to-noise ratio + 5,

increased from 7% in the pre-implant condition to 53%

as evaluated after 1-year’s experience with the cochlear

implant.

Electrically-evoked responses in auditory nerve fibres

(electrically-evoked compound action potentials) were

absent in all but one (Subject 7) implanted OPA1-M pa-

tient. This finding, together with the detection of prolonged

neural potentials in ECochG recording in the presence of

normal cochlear receptor activities, points to degeneration

of auditory nerve fibres as the primary damage underlying

hearing dysfunction in patients with OPA1 disease.

Differently from auditory nerve potentials, brainstem po-

tentials were recorded in response to electrical stimulation

in five of six implanted patients. Of these, four subjects

showed ABR wave V in response to electrical stimulation

at at least one electrode location. As the neural responses

recorded at intracochlear electrodes are believed to be

dominated by the activation of the terminal portion of

auditory axons (Miller et al., 2008), the detection of

wave V in electrically-evoked ABR recordings in the ab-

sence of electrically-evoked neural responses supports the

hypothesis that the hearing dysfunction in OPA1-M pa-

tients is underlain by degeneration of the distal portion of

auditory nerve fibres, and that electrical stimulation

through the cochlear implant evokes brainstem responses

by bypassing the site of the lesion localized to the terminal

dendrites. This hypothesis also fits in with the findings re-

ported for a mouse model of DOA showing dendritic prun-

ing of the optic nerve fibres at the very early stage of the

disorder (Williams et al., 2010).
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Of the five OPA1 patients who had electrically-evoked

ABRs, the subject with profound deafness (Subject 7) also

showed neural potentials (electrically-evoked compound

action potentials) and both waves II and V in ABR record-

ings in response to electrical stimulation consistent with

cochlear deafness. Nevertheless, it should be pointed out

that this subject also showed a remarkable enhancement

of cochlear microphonic amplitude in ECochG recordings

as found in the other OPA1 patients (Fig. 3).

Brainstem potentials were absent in response to electrical

stimulation in Subject 5, while they were recorded only

from the apical electrode location in Subject 3. As these

patients were older compared to the other OPA1 implanted

subjects, we think that the duration of the disease could be

a crucial prognostic factor in predicting the effectiveness of

electrical stimulation in activating the auditory nerve fibres

in OPA1-M subjects. Indeed, both demyelination and

axonal loss affecting the entire auditory nerve have been

described at an advanced stage of the OPA1 disease (Kjer

et al., 1983). Thus, it is reasonable to hypothesize that a

possible involvement of more proximal portions of audi-

tory nerve fibres in the progression of the disease results

in decreased stimulating efficiency of the cochlear implant.

Although the improvement of speech perception with

cochlear implant use may be related to the stimulation of

preserved proximal portions of auditory fibres, there does

not seem to be a straightforward correlation between im-

provement of speech perception scores with cochlear im-

plant use and wave V detection in electrically-evoked

ABRs. Indeed, in the OPA1 patient (Subject 5) showing

absence of electrically-evoked ABRs, speech perception

scores considerably improved in both quiet and noise

after 1-year’s experience with the cochlear implant.

Overall, the results of cochlear implantation provide evi-

dence of the effectiveness of cochlear implant use in im-

proving speech perception in OPA1-M patients, and

contribute to shedding light on the mechanisms and site

of lesion of the primary degeneration affecting the auditory

periphery.

In conclusion, we document that the hearing dysfunction

affecting patients with mutations in the OPA1 gene is

underlain by degeneration of terminal dendrites at an

early stage of the disease, whereas demyelination and

axonal loss may become prevalent at an advanced stage.

Cochlear implantation is a successful therapeutic option to

improve speech perception. Further studies are needed to

ascertain whether electrical stimulation through the coch-

lear implant can prevent further degeneration of auditory

nerve fibres at an early stage of the disease.
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