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This paper presents two different modules for the validation of human shape presence in far-infrared images. These modules are
part of a more complex system aimed at the detection of pedestrians by means of the simultaneous use of two stereo vision systems
in both far-infrared and daylight domains. The first module detects the presence of a human shape in a list of areas of attention
using active contours to detect the object shape and evaluating the results by means of a neural network. The second validation
subsystem directly exploits a neural network for each area of attention in the far-infrared images and produces a list of votes.

1. Introduction

During the last years, pedestrian detection has been a key
topic of the research on intelligent vehicles. This is due to the
many applications of this functionality, like driver assistance,
surveillance, or automatic driving systems; moreover, the
heavy investments made by almost all car manufacturers on
this kind of research prove that particular attention is now
focused on improving road safety, especially for reducing the
high number of pedestrians being injured every year. Also
the U.S. Army is actively developing systems for obstacle
detection, path following, and anti-tamper surveillance, for
its robotic fleet [1, 2].

Finding pedestrians from a moving vehicle is, however,
one of the most challenging tasks in the artificial vision field,
since a pedestrian is one of the most deformable object thats
can appear in a scene. Moreover, the automotive environ-
ment is often barely unstructured, incredibly variable, and
apparently moving, due to the fact that the camera itself is
in motion; therefore, really few assumptions can be made on
the scene.

This paper describes two modules for pedestrian valida-
tion developed for integration into a vision-based obstacle
detection system to be installed on an autonomous military

vehicle. This system is able to detect all obstacles appearing
in the scene and is based on the simultaneous use of two
stereo camera systems: two far-infrared cameras and two
daylight cameras [3]. The first stages of this system provide
a reliable detection of image areas that potentially contain
pedestrians; following stages are devoted to refine and filter
these rough results to validate the pedestrians presence. The
validation is based on a multivote system; several approaches
are independently used to analyze areas of attention, and
each subsystem outputs a vote describing how much the
obstacle is likely to be a pedestrian. Then, a final validation is
done, based on all votes.

This paper describes two of the intermediate validation
modules. The first one has been developed and, in an initial
stage, extracts objects shape by means of active contours
[4], then provides a vote using a neural network-based
approach. The second validation stage directly exploits a
neural network for evaluating the presence of human shapes
in far-infrared images.

This paper is organized as follows. Section 2 describes
related work in pedestrian detection systems based on
artificial vision. The pedestrian detection system is discussed
in Section 3. The module for active contours-based shape
detection algorithm is detailed in Section 4 while Section 5



describes the neural network-based validation step. Finally,
Section 6 ends the paper presenting few results and remarks
on the system.

2. Related Work

For the U.S. Army the use of vision as a primary sensor for the
detection of human shapes is a natural choice since cameras
are noninvasive sensors and therefore do not emit signals.

Vision-based systems for pedestrian detection have been
developed exploiting different approaches, like the use of
monocular [5, 6] or stereo [7, 8] vision. Many systems
based on the use of a stationary camera employ simple
segmentation techniques to obtain foreground region; but
this approach fails when the pedestrians have to be detected
from moving platforms. Most of the current approaches
for pedestrian detection using moving cameras treat the
problem as a recognition task: a foreground detection is
followed by a recognition step to verify the presence of a
pedestrian. Some systems use motion detection [7, 9] or
stereo analysis [10] as a means of segmentation.

Other systems substitute the segmentation step with
a focus-of-attention approach, where salient regions in
feature maps are considered as candidates for pedestrians.
In the GOLD system [11], vertical symmetries are associated
with potential pedestrians. In [12] the local image entropy
directs the focus-of-attention followed by a model-matching
module.

For what concerns the recognition phase, recent
researches are often motion based, shape based, or multicue
based. Motion-based approaches use the periodicity of
human gait or gait patterns for pedestrian detection [7, 12].
These approaches seem to be more reliable than shape-
based ones, but they require temporal information and are
unable to correctly classify pedestrians that are still or have
an unusual gait pattern.

Shape-based approaches rely on pedestrians appearance;
therefore both moving and stationary people can be detected
[11, 13]. In these approaches, the challenge is to model
the variations of the shape, pose, size and appearance of
humans, and their background. Basic shape analysis methods
consist in matching a template with candidate foreground
regions. In [14], a tree-based hierarchy of human silhouettes
is constructed and the matching follows a coarse-to-fine
approach. In [15, 16], probabilistic templates are used to
take into account the possible variations in human shape.
As a final step of the recognition task, some systems also
exploit pattern-recognition techniques based on the use of
classifiers, or in combination with a shape analysis with gait
detection [14, 17].

For the task of human shape classification, the most com-
mon classifiers are support vector machine [18], adaboost
[19], and neural networks. Concerning the systems adopting
the neural networks approach, most of them first extract
features from images, and then use these features as the input
of the classifier. In [10], foreground objects are first detected
through foreground/background segmentation, and then
classified as pedestrian or nonpedestrian by a trained neural
network. Conversely, other systems are based on the direct
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use of neural network on images. As an example, in [20],
convolutional neural networks are used as feature extractor
and classifier.

3. System Description

The algorithms described in this work have been developed
as a part of a tetravision-based pedestrian system [3, 21].
The whole architecture is based on the simultaneous use
of two far-infrared and two daylight cameras. Thanks
to this approach, the system is able to detect obstacles
and pedestrians when the use of infrared devices is more
appropriate (night, low-illumination conditions, etc.) or,
conversely, in case visible cameras are more suitable for the
detection (hot, sunny environments, etc.).

In fact, FIR images convey a type of information that
is very different from those in the visible spectrum. In the
infrared domain the image of an object depends on the
amount of heat it emits, namely, it is generally related to
its temperature (see Figure 1). Conversely, in the visible
domain, objects appearance depends on how the surface
of the object reflects the incident light as well as on the
illumination conditions.

Since humans usually emit more heat than other objects
like trees, background, or road artifacts, the thermal shape
can be often successfully exploited for pedestrian detection.
In such cases, pedestrians are in fact brighter than the back-
ground. Unfortunately, other road participants or artifacts
emit heat as well (cars, heated buildings, etc.). Moreover,
infrared images are blurred and have a poor resolution and
the contrast is low compared with rich and colorful visible
images.

Consequently, both visible and far-infrared images are
used for reducing the search space.

Figure 2 depicts the overall algorithm flow for the
complete pedestrian system. Different approaches have
been developed for the initial detection in the two image
domains: warm areas detection, vertical edges detection, and
an approach based on the simultaneous computation of
disparity space images in the two domains [3, 21].

These first stages of detection output a list of areas of
attention in which pedestrians can be potentially detected.
Each area of attention is labelled using a bounding box.
A symmetry-based approach is further used to refine this
rough result in order to resize bounding boxes or to separate
bounding boxes that can contain more pedestrians.

These two steps in the processing, barely, take into
account specific features of pedestrians; in fact, only sym-
metrical and size considerations are used to compute the
list of bounding boxes. Therefore, independent validation
modules are used to evaluate the presence of human shapes
inside the bounding boxes. These stages exploit specific
pedestrian characteristics to discard false positives from the
list of bounding boxes. In the following paragraphs the
two validators shown as bold in Figure 2 are described and
detailed.

A final decision step is used to balance the votes of
validators for each bounding box.
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FiGure 1: Examples of typical scenarios in FIR and visible images.
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4. Active Contour-Based Validator

As previously discussed, the pedestrian validation step is
composed by several validators, each one supplying a vote
that is then provided to the final evaluation step. The
validator detailed in this section is based on the analysis of
a pedestrian shape, which can be extracted using the well-
known active contour models, also known as snakes.

4.1. Active Contour Models. Active contour models are widely
used in pattern recognition for extracting an object shape.
First introduced by [22], this topic has been extensively
explored also in the last years. Basically, a snake is a curve
described by the parametric equation v(s) = (x(s), y(s)),
where s is the normalized length, assuming values in the
range [0, 1]. This continuous curve becomes, in a discrete
domain, a set of points that are pushed by some energies that
depend on the specific problem being addressed. Indeed, on
the image domain, over which a snake moves, energy fields
are defined, which affect the snake movements. Such energy
fields depend on the original image, or on an image obtained
by processing the original one, in order to highlight those
features by which the snake should be attracted.

The points of the contour then move according to both
these external forces and other forces that are said to be
internal to the snake, that is, that control the way each snake
point influences its neighbors.

The two challenges when dealing with snakes are, on
one hand, a good choice of the external forces, in order to

efficiently guide the snake toward the desired image features,
and on the other hand, a correct decision on the snake
internal parameters that should provide to the snake the
desired “mechanical” properties.

Regarding external forces, it should be noted that they
must generate something similar to an energy field: it is
therefore not enough to choose the important features, but
rather, a method must also be defined, in order to create the
field: the snake behavior should be affected by the features
also at a certain distance—this, after all, is the meaning of
force field.

Every point composing the snake reaches a local energy
minimum; this means that the active contour does not find
a global optimum position; rather, since it is based on local
minimization, the final position strongly depends on the
initial condition, that is, the initial snake position.

Because initial stages of the pedestrian detection system
provide a bounding box for each detected object, the snake
initial position can be chosen as the bounding box contour;
then, a contracting behavior should be impressed, to force
the snake to move inside the bounding box. Other energies
must also be introduced to make the snake stop when the
object contour is reached.

It was said that there are two kinds of forces, and
associated energies that control snake movements and that
can be divided into two different categories: internal and
external. Because internal energy comes from interactions
between points, it depends only on the topology of the snake,
and controls the continuity of the curve derivatives; it is



evaluated by the equation

Eint = a(s) [v5(s)|* + B(s) [ vss(s) |, (1)

where v,(s) and v(s) are, respectively, the first and second
derivatives of v(s) with respect to s. The first contribution
appearing in the sum represents the tension of the snake that
is responsible for the elastic behavior; the second one gives
the snake resistance to bending; a(s) and f3(s) are weights.

Therefore, internal energy controls the snake mechanical
properties, but is independent of the image; external energy,
on the contrary, causes the snake to be attracted to the
desired features, and should therefore be a function of the
image.

Analytically, the snake will try to minimize the whole
energy balance, given by the equation

1
Egnake = JO (Eint(v(s)) + Eext(v(s)))ds. (2)

Because energies are the only way to control a snake, a proper
choice of both internal and external energies should be made.
In particular, the external energy depending on the image
must decrease in the regions where the snake should be
attracted. In the following, the energies adopted to obtain an
object shape are described.

As previously said, the initial snake position is chosen
to be along the bounding box contour. In this system both
visible and far-infrared images are available, but the latter
seem much more convenient when dealing with pedestrians,
due to the thermal difference between a human being and the
background [3].

To extract a pedestrian shape, the Sobel filter output is a
useful starting point; moreover, the edge image is needed also
by previous steps of the recognition algorithm; therefore it is
already available. A Gaussian smoothing filter is then applied
to enlarge the edges, and consequently the area capable of
influencing the snake behavior, that is, the area where the
field generated by external forces is sensible. The resulting
image is then associated with an energy field that pushes the
snake towards the edges: for this reason, the brighter a pixel
in that image, the lowest the associated energy; in this way,
snaxels (the points into which the snake is discretized) are
attracted by the strongest edges; see Figure 3.

Bright regions of the original FIR image are also consid-
ered. In fact, smoothed edges do not accurately define the
object contour (mainly because they are smoothed): snake
contraction has to be arrested by bright regions in the FIR
image that can belong to a portion of a human body (see
Figure 4). This method lets the snake correctly adapt to a
body shape in a lot of situations, and it should also be noticed
that this mechanism works only if there are hot regions inside
the bounding box; a useful side effect, then, is an excessive
snake contraction when there are not warm blobs inside a
bounding box.

The minimum energy location is found by iteratively
moving each snaxel, following an energy minimization
algorithm. Many of them were proposed in the literature. For
this application, the greedy snake algorithm [23], applied on
5 x 5 neighborhood, was adopted.
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During the initial iterations, the snake tends to contract,
due to the elastic energy; this tendency stops when some
other energy counterweights it, for instance, the presence
of edges or a light image region. While adapting to the
object shape, the snake length decreases, as well as the
mean distance between two adjacent snaxels. Since this mean
distance is a value that affects the internal energy, in order to
keep almost constant the elastic property also during strong
contraction, the snake is periodically resampled using a fixed
step; in this way some unwanted snaxels accumulation can be
avoided.

Due to the iterative nature of the snake contraction,
computational times are not negligible. On a Core2 CPU
working at 2.13 GHz the algorithm needs a time that is below
20 ms for each snake, and sensibly lower for small targets.
This computational load makes the use of this technique
feasible in a system that is asked to work at several frames
per second, like the one being described.

4.2. Double Snake. The active contour technique turned out
to be effective, but it showed some weaknesses when adapting
to concave shapes, like those created by a pedestrian when his
legs are open. In this case, the active contour needs to sensibly
extend his length while wrapping around the concave shape,
but this process is usually not complete because of the
elastic energy. Moreover, the initialization, that is, the initial
configuration of the snake, strongly influences the shape
extracted at the end of the process. To increase the capability
of adapting to concave shapes, and to partially solve the
dependence on the initialization, the study in [24] proposed
a technique based on two snakes: a snake external to the
shape to recover, like the one previously discussed, and a
new one, placed inside the pedestrian shape, that tends to
adapt from inside, driven by a force that makes the snake
expand, instead of contracting. Moreover, the two snakes do
not evolve independently, but rather interact; how they do
that is a key point in the development of this technique.
The simplest interaction is obtained by adding in (2) a
contribution that depends on the position of the other snake,
so that each one tends to move towards the other.

Note, however, that there is no guarantee that the two
snakes will get very close, as there can be strong forces
that make the two snakes remain far from each other; for
this reason, the tuning of the parameters in the energy
calculation should be carefully performed, so that the force
between the two contours can balance the other components.
This task turns out to be particularly difficult when dealing
with images taken in the automotive scenario, which usually
present a huge amount of details and noise; it is in fact
very difficult to find a set of parameters providing a good
attraction between the two snakes, and, at the same time,
letting them free of moving towards the desired image
features.

Alternatively, the snake evolution can be controlled by
a new behavior that ensures that the two snakes will get
very close to each other. Such behavior is based on the idea
that, at each iteration, every snaxel should move towards
the corresponding snaxel on the other snake. Snaxels are
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(b)

(c)

FIGURE 3: Energy field due to edges: (a) original image, (b) edge image obtained using Sobel operator and gaussian smooth, and (c) edge
energy functional with inverted sign, to obtain a more effective graphical representation.

(b)

FIGURE 4: Energy field due to the image: (a) original image and (b) intensity energy functional with inverted sign, to obtain a more effective

graphical representation.

therefore coupled, so that each snaxel in one snake has a
corresponding one in the other contour. Then, during the
iteration process, snaxels couples are considered: for each of
them, one of the points is moved towards the other one,
the latter remaining in the same position; the moving point
is chosen so that the energy of the couple is minimized.
In general, the number of points is different for the two
snakes, this means that a snaxel of the shorter contour can
be included in more than one couple: such points have a
greater probability of being moved, but this effect does not
jeopardize the shape extraction.

In this approach the energy balance is still considered,
but here it has a slightly different meaning, because it is
used to choose which snaxel in the couple should move.
This gives a great power to the force that attracts the two
snakes, and the drawback is that they can therefore neglect
the other forces, namely, the features of the image that should
attract them. To mitigate this power, every two iterations
with the new algorithm, an iteration with the classical greedy
snake algorithm is performed, so that the snakes are better
influenced by the image and by the internal energy. This
solution turned out to be the most effective one.

Some examples and performance comparisons of con-
tour extraction are presented in Figure 5; in the left column,
a simple case is presented: the contour of the same pedestrian
is extracted using the single snake technique (a) and the
double snake (c). Then, in (b) and (d) a more complex
scene is considered: together with a pedestrian, some other

obstacles are detected in the frame; all of the contours are
extracted for the classification. In this case it can be analyzed
the behavior of the shape extractor when dealing with
obstacles other than pedestrians that are usually colder than
a human being: as a result, in the FIR images they will appear
dark, and will therefore lack the features that attract the
snakes. In this situation, contours extracted using the double
snake algorithm (d) tend to become similar to a square,
and are clearly different from the shape of a pedestrian; this
difference is not so high using the single snake technique, as
can be seen in (b).

4.3. Neural Network Classification. Once the shape of each
obstacle is extracted, it has to be classified, in order to obtain
a vote to provide to the final validator. Obstacles shapes
extracted using the active contour technique are validated
using a neural network.

Prior to be validated, extracted shapes should be further
processed: the neural network needs a given number of input
data, but each snake has a number of points that depend on
its length. For this reason, each snake is resampled with a
fixed number of points, and the coordinates are normalized
in the range [0; 1]. The neural network has 60 input neurons,
two for each of the 30 points of the resampled snake, and
only one output neuron that provides the probability that
the contour represents a pedestrian; such probability will be,
again, in the range [0; 1].
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(d)

FIGUre 5: Examples of shape extraction. In (a), the contour of a pedestrian is extracted using the single snake algorithm, while (c) shows the
result when the double snake technique is used; it can be seen that the contour is smoother in the latter case. In (b) a more complex situation
is analyzed using the single snake technique, and (d) presents the same scene analyzed by the double snake algorithm (the red contour is the

inner one, while the green snake is the outer one).

For the training of the network, a dataset of 1200 pedes-
trian contours and roughly the same number of contours
of other objects has been used. They have been chosen in
a lot of short sequences of consecutive frames, so that each
pedestrian appeared in different positions, but avoiding to
use too many snakes of the same pedestrian. During the
training phase, the target output has been chosen as 0.95
and 0.05 for pedestrians and nonpedestrians, respectively;
extreme values, like 0 or 1, have been avoided, because they
could have produced some weighting parameters inside the
network to assume a too high value, with negative influence
on the performance.

This classificator was tested on several sequences. Recall
that the output of the neural network is the probability
that an obstacle is a pedestrian; it is therefore interesting
to analyze which values are assigned to pedestrians and
other objects on the test sequences. Output values of the
network are shown in Figure 6(a) which represents the
output values distribution when pedestrians are classified,
while (b) is the distribution when contours of objects that
are not pedestrians are analyzed.

It can be seen that classification results are accurate,
and this classificator was therefore included in the global
system depicted in Figure 2. Moreover, the performance was
evaluated also considering this classificator by itself, and not
as a part of a greater system. A threshold was therefore
calculated to obtain a hard decision; the best value turned
out to be 0.4, which provided a correct classification of 79%
of pedestrians and 85% of other objects.

The computational time of a neural network can be
neglected, since it is anyway below 1 ms.

5. Neural Network-Based Validator

This section describes the neural network-based validator,
shown in Figure 2. A feed-forward multilayer neural network
is exploited to evaluate the presence of pedestrians in the
bounding boxes detected by previous stages. Since neural
networks can express highly nonlinear decision surfaces, they
are especially appropriate to classify objects that present a
high degree of shape variability, like a pedestrian. A trained
neural network can implicitly represent the appearance of
pedestrians in various poses, postures, sizes, clothing, and
occlusion situation.

In the system described here, the neural network
is directly trained on infrared images. Generally, neural
network-based systems, working on daylight images, do not
exploit directly the image; in fact, it is not appropriate
for encoding the pedestrian features, since pedestrians
present a high degree of variability in color and texture
and, moreover, intensity image is sensitive to illumination
changes. Conversely, in the infrared domain the image of
an object depends on its thermal features and therefore it is
nearly invariant to color, texture, and illumination changes.
The thermal footprint is a useful information for the neural
network to evaluate the pedestrian presence and, therefore,
it is exploited as a direct input for the net (Figure 7). Since
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Figure 6: Distribution of the neural network output values. On
the x-axis are plotted the probability values given by the neural
network, while on the y-axis is reported the occurrence of each
probability value when the shapes of pedestrians (a) and other
objects (b) are analyzed.

a neural network needs a fixed-sized input ranged from 0 to
1, the bounding boxes are resized and normalized.

The net has been designed as follows: the input layer is
composed by 1200 neurons, corresponding to the number of
pixels of resized bounding boxes (20 x 60). The output layer
contains a single neuron only and its output corresponds to
the probability that the bounding box contains a pedestrian
(in the interval [0,1]). The net features a single hidden
layer. The number of neurons in the hidden layer has been
computed trying different solutions; values in the interval
25-140 have been considered.

The network has been trained using the back-
propagation algorithm. The training set is generated
from the results of the previous detection module that were
manually labelled. Initially, a training set, composed by 1973
examples, has been created. It contains 902 pedestrians,
and 1071 nonpedestrians examples ranging from traffic
sign poles, vehicles, to trees. Then, the training set has been
expanded to 4456 examples (1897 of pedestrian and 2559
of nonpedestrian) in order to cover different situations

Output layer

Input layer

Hidden layer

FIGURE 7: A three-layer feed-forward neural network: each neuron
is connected to all neurons of the following layer. The infrared
bounding boxes are exploited as input of the network.

and temperature conditions and to avoid the overfitting.
Moreover, an additional test set has been created in order to
evaluate the performance of the validator.

The network parameters are initialized by small random
numbers between 0.0 and 1.0, and are adapted during
the training process. Therefore, the pedestrian features are
learnt from the training examples instead of being statically
predetermined. The network is trained to produce an output
of 0.9 if a pedestrian is present, and 0.1 otherwise. Thus,
the detected object is classified thresholding the output value
of the trained network: if the output is larger than a given
threshold, then the input object is classified as a pedestrian,
otherwise as a nonpedestrian.

A weakness of the neural network approach is that it
can be easily overfitted, namely, the net steadily improves
its fitting with the training patterns over the epochs, at the
cost of diminishing the ability to generalize to patterns never
seen during the training. The overfitting, therefore, causes an
error rate on validation data larger than the error rate on the
training data. To avoid the overfitting, a careful choice of the
training set, the number of neurons in the hidden layer, and
the number of training epochs must be performed.

In order to compute the optimal number of training
epochs, the error on validation dataset is computed while
the network is being trained. The validation error decreases
in the early epochs of training but after a while it begins to
increase. The training session is stopped if a given number
of epochs have passed without finding a better error on
validation set and if the ratio between error on validation
set and error on training set is greater than a specific value.
This point represents a good indicator of the best number of
epochs for training and the weights at that stage are likely to
provide the best error rate in new data.

The determination of number of neurons in the hidden
layer is a critical step as it affects the training time and
generalization property of neural networks. Using too few
neurons in the hidden layer, the net results inadequate to
correctly detect the patterns. Too much neurons, conversely,
decreases the generalization property of the net. Overfitting,
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in fact, occurs when the neural network has so much
information processing capacity that the limited amount of
information contained in the training set is not enough to
train all of the neurons in the hidden layer. In Figure 8,
the accuracy of the net on validation set depending on the
number of neurons in hidden layer is shown. With a larger
training set, a bigger number of neurons in the hidden layer
are required. This is caused by the bigger complexity of the
training set that contains pedestrians in different conditions.
Therefore, a net with more processing capacity is needed.

The trained nets have been tested on the test set that
is strictly independent to the training and validation set. It
contains examples of pedestrians and nonpedestrians in var-
ious poses, shapes, sizes, occlusion status, and temperature
conditions. In Figure 9, the accuracy of the net on test set
varying the number of neurons in hidden layer is shown. The
performance of the nets, trained on the big training set, is
greater than that trained on the small set. This is caused by a
higher completeness of the training set. The performance of
nets is similar to that performed on validation set (Figure 8);
but the optimal number of neurons in the hidden layer is
lower. The net having 80 neurons in the hidden layer and
trained on big training set is the best one, achieving an
accuracy of 96.5% on the test set.

6. Discussion

The developed system has been tested in different situations
using an experimental vehicle equipped with the tetra-vision
system (see Figure 10).
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FiGure 10: The tetravision far-infrared and daylight acquisition
system installed on board of the test vehicle.

Tests were performed on both validation techniques
separately, in order to understand the strong and weak points
of each of them; such a knowledge is needed by the final
validator in order to properly adjust the weights of the soft
decisions. The discussion will therefore focus on results given
by both neural networks, one working on shapes extracted by
the active contours technique and the other one directly on
the regions of interest found by the algorithm early stages.

As previously described, the approach chosen for the
classification of pedestrians contours is based on a neural
network, an approach that gives good results when the
problem description turns out to be complex. A neural
network suitable for the classification of pedestrians contours
was developed, which provided good results, as can be seen
in Figure 6.

In Figure 11 some examples of the contraction mecha-
nism are reported: the white lines are the snakes in the initial
position, that is, on the bounding box contour, while the
snakes after energy minimization are drawn in yellow. Some
examples are presented for a close pedestrian, Figure 11(a),
and for a distant pedestrian and a motorbike, Figure 11(b).
In Figure 11(c) the importance of the initial snake position is
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(c)

FIGURE 11: Results: in (a) and (b), shape extraction of a close and distant pedestrian, respectively; the white snake represents the initial
position, while the yellow one is the final configuration. In (¢), a typical issue connected with a wrong initial snake disposition is shown: the
head is outside the extracted shape because it was also outside the bounding box. In (d) some results in a difficult working condition are
presented, that is, during summer, when a lot of background objects appear bright, due to the high temperature.

(c)

Figure 12: Classification results of the neural network analyzing pedestrians shapes. Bounding boxes that are filled are classified as
pedestrians, while a red contour is put around obstacles that are classified as nonpedestrians. Output values are also printed on the image.
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(e)

)

FiGUrg 13: Neural network results: validated pedestrians are shown using a superimposed red box; the white rectangles represent the

discarded bounding boxes.

highlighted: the head is not detected because it is outside of
the initial snake position (in white). Some shape extraction
results are presented when the FIR images are not optimal,
like those acquired in summer, under heavy direct sunlight;
in this condition, many objects in the background become
warm, and the assumption that a pedestrian has a higher
temperature than the background is not satisfied. This
causes some errors in the contraction process, so that the
snake in the final position does not completely adhere to
the pedestrian contour, but also includes some background
details (Figure 11(d)).

In Figure 12 some classification results of the neural
network that analyzes pedestrians shapes are shown. In
Figure 12(a), a lot of potential pedestrians are found by the
obstacle detector of previous system stages, but only one
is classified as a pedestrian, with a vote of 0.98, while all
the other obstacles received a vote not greater than 0.17.
In Figure 12(b) a scene with a lot of pedestrians is shown
and two obstacles: the latter received votes not exceeding
0.19, while one of the pedestrians received a vote of 0.44,

and all the others votes greater than 0.85. In Figure 12(c),
a distant pedestrian is correctly classified with a vote of
0.84; in Figure 12(d) two pedestrians are present, at different
distances, and are correctly classified, with votes of 0.87 and
0.77.

Concerning the neural network-based validator, a feed-
forward multilayer neural network is exploited to evaluate
the presence of pedestrians in the bounding boxes detected
by previous stages of the tetra-vision system. The neural net-
work is trained on infrared images in order to acknowledge
the thermal footprint of pedestrians. The training set has
been generated from the results of the previous detection
modules that were manually labelled. Such set contains a
large number of pedestrian and nonpedestrian examples,
like traffic sign poles, vehicles, and trees, in order to cover
different situations and temperature conditions. Different
neural nets have been trained to understand which is the
optimal number of training epochs, neurons in the hidden
layer of the net, and training examples and, therefore, to
avoid the overfitting. The test set containing also pedestrians
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partially occluded or with missing parts of the body has
been generated in order to evaluate the performance of
net. Experimental results show that the system is promising,
achieving an accuracy of 96.5% on the test set.

Figure 13 shows some results of the neural network
validator. The validated pedestrians are shown using a super-
imposed solid red box. Conversely, the empty rectangles
represent the bounding boxes generated by previous steps
and classified as nonpedestrians. Figures 13(a) and 13(b)
depict examples of pedestrians and nonpedestrians correctly
classified. In Figure 13(c), an area of attention is not correctly
validated because it contains multiple pedestrians, and they
are not in the typical pedestrian pose. Some false positives
are presented in Figures 13(d) and 13(e).
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