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A mathematical model was developed to correlate the four heat penetration parameters of 57 Stumbo’s tables (18,513 datasets) in
canned food: 𝑔 (the difference between the retort and the coldest point temperatures in the canned food at the end of the heating
process), 𝑓ℎ/𝑈 (the ratio of the heating rate index to the sterilizing value), 𝑧 (the temperature change required for the thermal
destruction curve to traverse one log cycle), and 𝐽𝑐𝑐, (the cooling lag factor). The quantities 𝑔, 𝑧, and 𝐽𝑐𝑐, are input variables for
predicting 𝑓ℎ/𝑈, while 𝑧, 𝐽𝑐𝑐 and 𝑓ℎ/𝑈 are input variables for predicting the value of 𝑔, which is necessary to calculate the heating
process time 𝐵, at constant retort temperature, using Ball’s formula. The process time calculated using the 𝑔 value obtained from
the mathematical model closely followed the time calculated from the tabulated 𝑔 values (root mean square of absolute errors RMS
= 0.567min, average absolute error = 0.421min with a standard deviation SD = 0.380min). Because the mathematical model can
be used to predict the intermediate values of any combination of inputs, avoiding the storage requirements and the interpolation of
57 Stumbo’s tables, it allows a quick and easy automation of thermal process calculations and to perform these calculations using a
spreadsheet.

1. Introduction

Featherstone [1] indicated that the nutritional value of prop-
erly processed canned food is as good as that of fresh or
frozen food. To assure a safe canned product with minimal
damage to organoleptic quality and nutritional value, it needs
to optimize the thermal processing of the product through
rigorous calculations [2].

The general method was the first method developed for
thermal process calculations [3]. The fundamental concepts
on which it was based served as foundation for the develop-
ment of the more sophisticated procedures [4].

Because the general method lacks the predictive power
needed for design purpose, the difficulties associated with
this procedure inspired interest in the formula method first
proposed by Ball [5]. Over the years, Ball’s formula method
passed through rigorous evaluations, simplifications, and
improvements [6, 7].

Additional formula methods were later developed by
Hayakawa [8] and Steele and Board [9], but Smith and

Tung [10], in a study on accuracy assessments of themethods,
reported that Stumbo’s tables [7] gave the best estimations of
process lethality under various conditions.

Although accurate, Stumbo’s method is difficult to com-
puterize because it involves 57 tables, as compared to Ball’s
method, where only one table is used. In fact, in computer
calculations, during the process control of retorts, a large
space is required to store 18,513 data of 57 tables, and an
interpolation procedure is required.

For this reason, in the last three decades, mathemat-
ical models based on heat transfer in canned food have
been developed and applied in thermal processes and their
optimization [11–14]. The use of mathematical modeling by
computational fluid dynamics (CFD) of the heat transfer for
evaluating thermal process has been showing to be a powerful
tool to assure food safety and nutritional quality [15–19].

However, thesemodels requiremultiple input data related
to the food product and system, such as the heat transfer
coefficient of the heating and cooling medium, thermal dif-
fusivity of the food product, can shape and dimensions, and
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processing conditions.Only by determining these parameters
precisely can the time-temperature history at any specific
location in the product be obtained through the solution of
a system of nonlinear algebraic equations requiring a time-
consuming iterative process [20].

As an alternative to perform the thermal process cal-
culations for canned food, in recent years, artificial neural
network (ANN), which requires a sequential solution of a
number of algebraic equations, has been proposed to predict
the process lethality𝐹 [20] or to predict the𝑔 value for a given
𝑓ℎ/𝑈 value, or vice versa, with very good accuracy [21, 22]. In
the last case, theANN technique is an information processing
system that learns from Stumbo’s datasets.

In the present work, it was proposed to transform the
57 Stumbo’s tables, which form the basis for the application
of the formula method, into a mathematical model easy to
handle and to be computerized.

Therefore, the overall objective of this paper was to auto-
mate, in a simple and fast way, a newmathematical procedure
involved in thermal process calculations. The computeriza-
tion was obtained by developing an original new mathemati-
cal model, based on various modification and improvements
of Ball’smodel, converging to Stumbo’s datasets, to predict the
𝑔 value for a given 𝑓ℎ/𝑈 value, or vice versa.

2. Review of Canned Food Thermal
Process Calculations

Even though the lethal effects of heat processing, similar to
those of sterilization, have been empirically known since the
beginning of the 19th century, thermal processing has been
optimized through several steps over the past two centuries.

The first step involved investigating the kinetics of micro-
bial destruction at a constant temperature. In this regard,
Bigelow [23] found that the reduction in microorganisms
over time is usually proportional to the number of microor-
ganisms with a constant of proportionality 𝑘𝑇, known as the
rate constant (min−1), which depends on the microorganism,
the temperature 𝑇 (∘C), and the chemical and physical char-
acteristics of the product as follows: (𝑑𝑁/𝑑𝑡) = −𝑘𝑇 ⋅ 𝑁. In
this equation, 𝑁 is the number of microorganisms at time
𝑡 (min), and 𝑁0 corresponds to the initial time 𝑡0 = 0. The
integral of the previous equation is ln(𝑁0/𝑁) = 𝑘𝑇 ⋅ 𝑡, which
can be conveniently represented by the decimal logarithm as
follows: log(𝑁0/𝑁) ≅ (𝑘𝑇/2.3) ⋅ 𝑡 = 𝑡/𝐷𝑇. In this equation,
𝐷𝑇 = 2.3/𝑘𝑇 is the decimal reduction time (min) required to
destroy 90% of the initial microbial population.

The evaluation of the effect of temperature on the kinetics
of microbial destruction was the second step. An increase
in the processing temperature produces a decrease in the
decimal reduction time 𝐷𝑇 (min) in accordance with the
Arrhenius law, which, if it is properly applied, will provide
log(𝐷𝑇1/𝐷𝑇2) = (𝑇2 − 𝑇1)/𝑧. If a decrease of 90% in the
decimal reduction time is assumed by increasing the temper-
ature from 𝑇1 to 𝑇2, the previous equation yields 𝑧 = 𝑇2 − 𝑇1.
The constant 𝑧 is then the increase in temperature that allows
the decimal reduction time𝐷𝑇 to decrease 10-fold.

For spore cells, the average of 𝑧 is 10∘C, while, for
vegetative cells, 𝑧 is lower because of lower temperatures.The
experimental values of the decimal reduction time 𝐷𝑇 for
the various microorganisms are often obtained at a reference
temperature of 121.1∘C (250∘F).Therefore, the values of𝐷121.1
are known.Moreover, for variousmicroorganisms, the values
of the number of decimal reductions 𝑛 necessary to achieve
desirable sterilization are also known: 𝑛 = log(𝑁0/𝑁).
Finally, the total heating time (min) at constant temperature
(equal to 121.1∘C), which is known as the process lethality, is
defined by the symbol 𝐹 and is simply calculated by 𝑡 = 𝐹 =

𝑛 ⋅ 𝐷121,1. When 𝑧 = 10
∘C, the process lethality is indicated

by the 𝐹0 symbol [6].
The third step was to recognize the kinetics of alteration

of the constituents (e.g., enzymes, heat-sensitive proteins,
and vitamins) at a constant temperature during the thermal
process. These alterations usually follow first-order kinetics:
𝑑𝐶/𝑑𝑡 = −𝑘

󸀠

𝑇
⋅ 𝐶, such as those of the thermal death process,

where 𝐶 is the concentration of the constituent in its original
state. Thus, the same mathematical developments could be
made, yielding the same results achieved in the destruction of
microorganisms, that is, the definition of a decimal reduction
time 𝐷𝑇 of the original constituent and the increase 𝑧 in
temperature that allows the 𝐷𝑇 value to be reduced 10-fold.
The parameter 𝑧 now becomes higher, reaching values of
approximately 30∘C for the B vitamins, of approximately 50∘C
for vitamin C and of almost 100∘C for chlorophyll.

The fourth step was the study of thermal processes
at variable temperatures versus time of the canned food.
For example, a sterilization by a retort filled with steam
condensing at the constant temperature of the retort, 𝑇𝑅, on
the surfaces of cans, but with the geometrical center of the
can (coldest point) at variable temperature during the heating
time.

The change in temperature 𝑇 versus time 𝑡 in the coldest
point of the canned food produces a change in the decimal
reduction time𝐷𝑇, according to the following equation:

log( 𝐷𝑇

𝐷121.1

) =
121.1 − 𝑇

𝑧
⇐⇒ 𝐷𝑇 = 𝐷121.1 ⋅ 10

(121.1−𝑇)/𝑧
.

(1)

In an infinitesimal time interval𝑑𝑡, duringwhich it is possible
to assume that the product has a lethal temperature 𝑇 and
a corresponding value of 𝐷𝑇 at its coldest point, there is
an infinitesimal reduction in the number of microorganisms
𝑑𝑁, which corresponds to an infinitesimal increase of the
decimal reduction: 𝑑𝑛 = log(𝑁/(𝑁−𝑑𝑁)). Consequently, we
can write: 𝑑𝑡 = 𝑑𝑛 ⋅ 𝐷𝑇, which can be integrated as follows:

𝑛 = ∫

𝑛

0

𝑑𝑛 = ∫

𝑡

0

𝑑𝑡

𝐷𝑇

= ∫

𝑡

0

𝑑𝑡

𝐷121.1 ⋅ 10
(121.1−𝑇)/𝑧

. (2)

Rearranging, the process lethality 𝐹 is obtained as follows:

𝐹 = 𝑛 ⋅ 𝐷121.1 = ∫

𝑡

0

10
(𝑇−121.1)/𝑧

𝑑𝑡. (3)

To solve the integral and to obtain the process lethality 𝐹

during the heating and cooling phases of canned food, it is



Modelling and Simulation in Engineering 3

necessary to know the relationship between the coldest point
temperature 𝑇 and time 𝑡, also called the heat penetration
curve or temperature-time history.

The first procedure used to calculate 𝐹 was developed
by Bigelow and is usually known as the general method
[3]. The general method makes direct use of the graphical
temperature-time history at the coldest point. Consequently,
Bigelow’s procedure involves the choice of a small time inter-
valΔ𝑡 that can be plotted on the graph of the heat penetration
curve. At each time interval, the average temperature is read,
and the decimal reduction time𝐷𝑇 can be calculated.

The procedure ends with the graphical construction of
the function 1/𝐷𝑇 versus time and measurement of the
area under this function, which yields the decimal reduction
number 𝑛 and the process lethality 𝐹 = 𝑛 ⋅ 𝐷121.1.

If higher or lower values of lethality 𝐹 are required, the
procedure can be repeated and the estimate of the cooling
curve advanced or retarded on a trial-and-error basis until
the desired lethality is achieved.

Bigelow’s procedure was termed the general method
because it depends only onmeasurement of the temperature-
time history of the coldest point. Because it does not consider
the mode of heat transfer, the food properties, or the can
size and shape, it is very accurate. However, the processing
time calculated using this method is specific for a given set
of processing conditions, and the method is not suitable for
computer applications because it is very long, tedious, and
impractical.

Over time, several improvements to the original general
method have been introduced by Ball [24], Schultz andOlson
[25], Patashnick [26], Hayakawa [27], and, more recently,
Simpson et al. [28].

The difficulties associated with Bigelow’s original proce-
dure prompted interest in the formula method first proposed
by Ball [5].The formulamethod highlights that the difference
of temperature between the retort and coldest point of the can
(𝑇𝑅 −𝑇) decays exponentially over the process time 𝑡 after an
eventual initial lag period as follows: (𝑇𝑅 − 𝑇) = (𝑇𝑅 − 𝑇0) ⋅

𝐽𝑐ℎ ⋅ 𝑒
−(2.3⋅𝑡)/𝑓ℎ , where 𝐽𝑐ℎ is the heating rate lag factor at the

can center (coldest point), 𝑇𝑅 (
∘C) is the retort temperature,

and 𝑇0 (
∘C) is the initial food temperature and 𝑓ℎ (min)

is the heating rate index (the heating time required for the
log temperature versus time plot to traverse one log cycle).
Thus, the heating process time 𝐵 (min) at a constant retort
temperature 𝑇𝑅 is given by Ball and Olson [6] and Stumbo
[7] as follows:

𝐵 = 𝑓ℎ ⋅ log[
𝐽𝑐ℎ (𝑇𝑅 − 𝑇0)

𝑔
] . (4)

Equation (4) is known as Ball’s formula, where 𝑔 = (𝑇𝑅 −

𝑇𝑔) (
∘C) is the difference between the retort temperature

and coldest point temperature 𝑇𝑔 (
∘C) at the end of the

heating process. Because (4) requires knowledge of the factor
𝐽𝑐ℎ and the index 𝑓ℎ through experimental evaluation, the
formula method is considered semianalytical. About the lag
factors, they may assume different values depending on the
rheological and thermal properties of the product.

It may have fluid foods, at low viscosity, for which the
convective heat transfer inside the can is prevalent. The
product has a changeable temperature versus time, but the
temperature tends to be uniform across all parts of the can.
In this case, the temperature differences during the heating
process (𝑇𝑅−𝑇) and the cooling process (𝑇−𝑇𝑊), where𝑇𝑊 is
the cold-water temperature, follow the exponential equation
from the beginning, and, thus, the heating and cooling rate
lag factors at the coldest point, 𝐽𝑐ℎ and 𝐽𝑐𝑐, respectively, are
approximately 1. In practice, they may be less than 1 because
of changes in the internal convective coefficient [29].

The product can be solid, in which case the internal
heat transfer takes place by conduction. The high thermal
resistance, which is associated with conduction, impairs heat
penetration, and, therefore, the temperature changes not only
during the time, but also between different parts of the
canned food with the generation of a coldest point. During
heating, the coldest point receives the thermal wave last. In
this case, the temperature of the coldest point follows the
exponential equation only after some time in the beginning of
the heating at a constant retort temperature.Thus, the heating
rate lag factor, 𝐽𝑐ℎ, and cooling rate lag factor, 𝐽𝑐𝑐, respectively,
are equal to approximately 2.

Finally, the product may consist of solid pieces immersed
in a liquid. In this case, the heat transfer within the product
becomes more complex with contributions from both con-
vection and conduction; the values of the heating and cooling
rate lag factors, at the coldest point, are between 1 and 2.

The sterilizing value𝑈 can be defined as the time required
at retort temperature𝑇𝑅 to accomplish a heat process of some
given 𝐹 value: 𝑈 = 𝐹 ⋅ 10

(121.1−𝑇𝑅)/𝑧. Ball [5] discovered
that, for a single value of 𝑧, any given ratio 𝑓ℎ/𝑈 has a
value of 𝑔 that corresponds to it. In computing values of
𝑓ℎ/𝑈 : 𝑔, by the mathematical resolution of the integral (3),
Ball [5] considered the cooling lag factor 𝐽𝑐𝑐 to be 1.41 and,
thus, produced one table of 𝑓ℎ/𝑈 versus 𝑔 for different values
of 𝑧 (6–26∘F). Over the years, Ball’s method, consisting of the
determination of 𝑔 for a given 𝑓ℎ/𝑈 value and the resolution
of formula (4), has undergone rigorous evaluations, simplifi-
cations, and improvements [6].

It was later found that, though the relationship 𝑓ℎ/𝑈 : 𝑔

was virtually independent of process parameters such as the
retort temperature, initial food temperature, cooling water
temperature, can dimensions, and heating lag factor 𝐽𝑐ℎ, it was
greatly dependent upon the 𝐽𝑐𝑐 lag factor of the food cooling
curve.

In recognition of this dependency, Stumbo [7] developed
57 tables of 𝑓ℎ/𝑈 : 𝑔 that covered a wide range of cooling lag
factor 𝐽𝑐𝑐 values (0.4–2) and 𝑧-values (4.4

∘–111.1∘C; 8∘–200∘F),
but under the condition that the cooling rate index 𝑓𝑐 = 𝑓ℎ.
Because Stumbo used the general method of integration to
obtain the𝑈 values (including the lethal value of heat during
cooling) in the 𝑓ℎ/𝑈 : 𝑔 relationship, it follows that for any
given value of 𝑔, the value of𝑈 in the 𝑓ℎ/𝑈 : 𝑔 ratio accounts
for all lethal heat during both heating and cooling.Then, 𝑔 as
used in formula (4) of the heating curve also accounts for all
lethal heat of both heating and cooling.
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3. Mathematical Model

As mentioned in the previous paragraph, the semianalytical
methods of the formula are based on the integration of (3).
Thus, the relationship between temperature and timemust be
defined.

During the heating process, starting from the time when
the retort temperature is considered constant, Ball [6] pro-
posed the following rearrangement of (4):

𝑔

(𝑇𝑅 − 𝑇0)
=

(𝑇𝑅 − 𝑇)

(𝑇𝑅 − 𝑇0)
= 𝐽𝑐ℎ ⋅ exp(−

2.3 ⋅ 𝑡

𝑓ℎ

) ,

𝑇 = 𝑇𝑅 − (𝑇𝑅 − 𝑇0) ⋅ 𝐽𝑐ℎ ⋅ exp(−
2.3 ⋅ 𝑡

𝑓ℎ

) .

(5)

Combining (5) with (3) andwith integration, the result of Ball
and Olson [6] is obtained as follows:

𝐹ℎ = −
𝑓ℎ

2.3
⋅ 10
(𝑇𝑅−121.1)/𝑧

× [Ei(
−2.3 ⋅ 𝑔

𝑧
) − Ei(−2.3 ⋅ 44.4

𝑧
)] ,

(6)

where 𝐹ℎ is the lethality during the heating process and the
function Ei is called the exponential integral. The values
of this function can be easily calculated with the following
series:

−Ei (−𝑥) = 0.5772 − ln (𝑥) + 𝑥 − 𝑥
2

2 ⋅ 2!

+
𝑥
3

3 ⋅ 3!
− ⋅ ⋅ ⋅ +

𝑥
𝑝

𝑝 ⋅ 𝑝!
.

(7)

The lower limit of the integration, that is, the initial temper-
ature difference of the heating process, was imposed by Ball
and Olson [6] and is equal to 44.4∘C (80∘F).

Considering that the retort temperature 𝑇𝑅 is usually
not greater than approximately 140∘C (284∘F), the initial
temperature of the coldest point 𝑇, considered for the
calculation of 𝐹ℎ, has a value lower than 100∘C. For any 𝑔
value, a temperature𝑇 lower than 100∘Cproduces a negligible
contribution to lethality when 𝑧 is lower than approximately
15∘C (26∘F) [4]. In fact, in this case, Ei(−(2.3 ⋅ 44.4)/𝑧) → 0,
and then, with no significant error, the equation of 𝐹ℎ can be
simplified as follows:

𝐹ℎ = −
𝑓ℎ

2.3
⋅ 10
(𝑇𝑅−121.1)/𝑧 [Ei(

−2.3 ⋅ 𝑔

𝑧
)] . (8)

Instead, if 𝑧 is higher than 15∘C (26∘F) and with higher
𝑔 values, this simplification produces an error that can be
eliminated by the introduction of a correction factor 𝑀, as
shown in (27).

As was noted in the introduction, during cooling, Ball
and Olson [6] considered only the case of 𝐽𝑐𝑐 = 1.41 and,
therefore, the presence of a cooling lag.This limitationmeans
that it is possible to represent the cooling of the coldest
point with a function similar to (5), only with a lag behind

the introduction of cold water into the retort, at the temper-
ature 𝑇𝑤.

During this cooling lag, Ball [5] proposed to represent
the temperature versus time using a hyperbolic function.The
characterization of this hyperbola was proposed by Ball on
the basis of various empirical observations; however, it is valid
when 𝑧 is between 3.33∘ and 14.4∘C (6∘–26∘F) and 𝐽𝑐𝑐 = 1.41.

As was discussed in the introduction, Stumbo [7]
obtained the 𝑓ℎ/𝑈 : 𝑔 relationship for 𝐽𝑐𝑐 values ranging
from 0.4 to 2 and for 𝑧 values ranging from 4.44∘ to 111.1∘C
(8∘–200∘F) using the general method with computational
methods, replacing the graphical integration of Bigelow.

Therefore, it is difficult to extend Ball’s hyperbolic func-
tion of temperature versus time in the cooling lag over such
large Stumbo’s conditions.

Here, a parabolic relationship is proposed:

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇𝑔

= 𝑎 ⋅ 𝑡
2

𝑤
+ 𝑏 ⋅ 𝑡𝑤 + 𝑐 (9)

or

𝑇 = 𝑇𝑤 + (𝑇𝑔 − 𝑇𝑤) (𝑎 ⋅ 𝑡
2

𝑤
+ 𝑏 ⋅ 𝑡𝑤 + 𝑐) , (10)

where 𝑡𝑤 is the cooling time (𝑡𝑤 = 𝑡 − 𝐵).
Equation (10) was preliminarily tested, with good results,

using data presented by Simpson et al. [28].
To obtain the parameters 𝑎, 𝑏, and 𝑐, some conditions are

placed as follows.
(1) When 𝑡𝑤 = 0, the following derivative of the parabolic

cooling lag equation (10):

𝑑𝑇

𝑑𝑡𝑤

= (2𝑎 ⋅ 𝑡𝑤 + 𝑏) (𝑇𝑔 − 𝑇𝑤) (11)

must be equal to the derivative of the heating equation (5):

𝑑𝑇

𝑑𝑡𝑤

= (𝑇𝑅 − 𝑇0)
2.3

𝑓ℎ

⋅ 𝐽𝑐ℎ ⋅ exp(−
2.3

𝑓ℎ

(𝑡𝑤 + 𝐵)) . (12)

Thus, also considering (4), 𝑏 is obtained as follows:

𝑏 =
2.3

𝑓ℎ

⋅ 𝐽𝑐ℎ ⋅ exp(−
2.3 ⋅ 𝐵

𝑓ℎ

) ⋅
(𝑇𝑅 − 𝑇0)

(𝑇𝑔 − 𝑇𝑤)

=
2.3

𝑓ℎ

⋅
𝑔

(𝑇𝑔 − 𝑇𝑤)
.

(13)

(2) The temperature of the coldest point at the end of the
heating process 𝑇𝑔 = 𝑇𝑅 −𝑔must be the same temperature as
that at the start of the parabolic equation (when 𝑡𝑤 = 0). This
allows for calculation of the parameter 𝑐:

𝑇𝑤 − 𝑇𝑔

𝑇𝑤 − 𝑇𝑔

= 𝑎 ⋅ 𝑡
2

𝑤
+ 𝑏 ⋅ 𝑡𝑤 + 𝑐 󳨐⇒ 𝑐 = 1. (14)

(3)When the cooling lag factor 𝐽𝑐𝑐 is equal to 2 and, therefore,
the heating of the product occurs by pure thermal con-
duction, the solution of Fourier differential equation is an



Modelling and Simulation in Engineering 5

infinite series of exponential and Bessel functions, which
asymptotically tend to a simple exponential equation.

The use of this last equation, instead of an infinite series,
is effective when the dimensionless time, called the Fourier
number Fo = (𝛼 ⋅ 𝑡𝑤)/𝑙

2, is greater than 0.2 = Fo∗ [25], where
𝛼 is the thermal diffusivity of the product, 𝑙 is a characteristic
dimension (shape factor) defined here as 𝑙 = 2𝑉/𝐴 that can
be used for any can geometry, 𝑉 is the volume, and 𝐴 is the
surface area of the can.

By defining the corresponding cooling time: 𝑡∗
𝑤

=

(Fo∗𝑙2)/𝛼 and the cooling exponential equation in a form
similar to (5) as well as the typical form used in the heat
transfer literature,

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇𝑔

= 𝐽𝑐𝑐 ⋅ exp(−
2.3 ⋅ 𝑡𝑤

𝑓𝑐

) = 𝐽𝑐𝑐 ⋅ exp (−𝑠 ⋅ Fo) , (15)

the following identity is found:

𝑡
∗

𝑤
=
𝑓𝑐 ⋅ 𝑠 ⋅ Fo

∗

2.3
, (16)

where, for 𝐽𝑐𝑐 = 2 and cylindrical cans, 𝑠 is given by Mafart
[29]:

𝑠 = (
5.783

𝑅2
+
𝜋
2

𝐻2
) 𝑙
2
. (17)

For cans typically used in the food industry [28], (17) yields:
𝑠 = 3.8 ± 0.15.

For a better approximation, in the present mathematical
model, Fo∗ = 0.25 is chosen.

Now, it is possible to establish that the last point of the
cooling parabolic equation coincides with the first point of
the cooling exponential equation at time 𝑡∗

𝑤
:

𝑎 ⋅ 𝑡
∗2

𝑤
+ 𝑏 ⋅ 𝑡

∗

𝑤
+ 𝑐 = 𝐽𝑐𝑐 ⋅ exp(−

2.3 ⋅ 𝑡
∗

𝑤

𝑓𝑐

) . (18)

Then, 𝑎 is obtained as follows:

𝑎 =
1

𝑡∗2
𝑤

⋅ [𝐽𝑐𝑐 ⋅ exp(−
2.3 ⋅ 𝑡
∗

𝑤

𝑓𝑐

) − 𝑏 ⋅ 𝑡
∗

𝑤
− 1] . (19)

By combining (10) with (3) and with integration, the cooling
process lethality 𝐹𝑐 is achieved as follows:

𝐹𝑐 = 0.584√

𝑧

𝑎 ⋅ (𝑇𝑤 − 𝑇𝑔)
⋅ 10
(𝑏
2
(𝑇𝑤−𝑇𝑔))/(4⋅𝑎⋅𝑧) ⋅ 10

(𝑇𝑔−121.1)/𝑧

⋅ erf [

[

0.759 ⋅ (𝑏 + 2 ⋅ 𝑎 ⋅ 𝑡𝑤)
√
(𝑇𝑤 − 𝑇𝑔)

𝑎 ⋅ 𝑧

]

]

𝑡
∗

𝑤

0

.

(20)

As can be seen later, for convergence of results of the
mathematical model to data of Stumbo’s tables showing the
𝑓ℎ/𝑈 : 𝑔 relationship, it is necessary to introduce a correction
factor.

Because the mathematical model that is being built
should be extended to all values of 𝐽𝑐𝑐 rather than to only value
of 2, this correction factor will surely be a function of 𝐽𝑐𝑐 but
will also depend on 𝑧 and on 𝑔.

Through the elimination of the error function in (20), a
simplification of the same equation (20) and a less problem-
atic influence of 𝑔 on the correction factor are achieved:

𝐹𝑐 = 0.584√

𝑧

𝑎 ⋅ (𝑇𝑤 − 𝑇𝑔)
⋅ 10
(𝑏
2
(𝑇𝑤−𝑇𝑔))/(4⋅𝑎⋅𝑧)

⋅ 10
(𝑇𝑔−121.1)/𝑧.

(21)

With regards to the possible contribution to the lethality of
the subsequent cooling described by the exponential equa-
tion, the calculation of the temperature of the coldest point
𝑇
∗ at time 𝑡∗

𝑤
through (10) showed values that were always

lower than 100∘C for each of the 𝐽𝑐𝑐 and 𝑔 values of Stumbo’s
tables.

As seen for (8), when 𝑧 is lower than 15∘C (26∘F), these low
temperatures 𝑇∗ produce a negligible contribution to lethal-
ity, and, therefore, it is possible to exclude the calculation of
lethality due to the cooling exponential equation.Thus, in this
mathematical model, the total lethality 𝐹 is only due to the
sum of 𝐹ℎ and 𝐹𝑐, given by (8) and (21), respectively.

When 𝑧 is higher than 15∘C, the error caused by these
exclusions (cooling exponential equation andEi(−2.3⋅44.4/𝑧)
factor in (8) will be eliminated by the introduction of the
correction factor𝑀, defined through the next equation (27),
which is in any case necessary for the mathematical model to
fit to Stumbo’s datasets.

As mentioned before, the cooling parabolic curve was
introduced to describe the temperature-time history during
the lag under the condition of pure thermal conduction and,
therefore, with 𝐽𝑐𝑐 = 2. Now, for example, if 𝐽𝑐𝑐 < 1, the time
of lag becomes negative in the cooling time scale 𝑡𝑤. Virtually,
it is as if the end point of the heating would come back. This
setbackmust necessarily be related to the𝑓𝑐 ⋅ log(𝐽𝑐𝑐) function
(Figure 1).

Now, to extend the mathematical model to all the values
of 𝐽𝑐𝑐 (from 0.4 to 2), it is assumed that the argument of the
logarithm is not simply 𝐽𝑐𝑐 but a function𝑀

󸀠:

𝑀
󸀠
= 𝑀
󸀠
(𝐽𝑐𝑐, 𝑧) , (22)

where𝑀󸀠 is also reasonably correlated with 𝑧, as we can infer
by examining Stumbo’s datasets.

Thus, the 𝑔 values virtually become 𝑔󸀠 as follows:

𝑔
󸀠
= (𝑇𝑅 − 𝑇0) ⋅ 𝐽𝑐ℎ ⋅ exp(−2.3

𝐵 − 𝑓𝑐 ⋅ log𝑀
󸀠

𝑓ℎ

) . (23)

Considering, as it was proposed by Stumbo [7], that 𝑓𝑐 = 𝑓ℎ

and by combining (5) with the last equation (23), the 𝑔󸀠 : 𝑔
relationship is the following:

𝑔
󸀠
= 𝑔 ⋅ 𝑀

󸀠
(𝐽𝑐𝑐, 𝑧) . (24)

Thus, multiplying 𝑀󸀠 by the quantity 𝑔, included in (8) of
𝐹ℎ and (21) of 𝐹𝑐, directly or indirectly through 𝑇𝑔 and 𝑏 and
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Figure 1: When 𝐽𝑐𝑐 is less than 1, the time of lag becomes virtually
negative in the cooling time scale 𝑡𝑤. The dashed line shows the
intersection of the cooling exponential curve with the time axis at
the negative virtual time: 𝑓𝑐 ⋅ log(𝐽𝑐𝑐).

by imposing 𝑓ℎ/((𝐹ℎ + 𝐹𝑐) ⋅ 10
(121.1−𝑇𝑅)/𝑧) equal to 𝑓ℎ/𝑈 of

Stumbo’s tables for the various 𝑔 and 𝑧 values, the values of
the correction factor𝑀󸀠 were obtained (Figure 2).

Figure 2 suggests a 𝑀󸀠(𝐽𝑐𝑐, 𝑧) power relationship as fol-
lows:

𝑀
󸀠
= 𝐾 (𝑧) ⋅ 𝐽

𝑚(𝑧)

𝑐𝑐
. (25)

Using a multiple nonlinear regression, 𝐾(𝑧) and 𝑚(𝑧) func-
tions were obtained:

𝐾 (𝑧) = exp(𝑧
0.75

90
) , 𝑚 (𝑧) = −

𝑧
0.54

14.5
. (26)

Figure 2 shows that when 𝐽𝑐𝑐 = 2,𝑀󸀠 is independent of 𝑧 and
is approximately 0.89 instead of 1. This was due to the choice
of neglecting the error function, transforming (20) into (21).

In any case, that is, for each value of 𝑧 and 𝐽𝑐𝑐, 𝑀
󸀠 was

almost constant for medium and high values of 𝑔 but tended
to increase when 𝑔 tended to 0. Thus, the introduction into
(25) of an exponential factor, found by means of a multiple
regression, was necessary.

Therefore, a more complete correction factor 𝑀 was
defined as follows:

𝑀 = 𝐾(𝑧) ⋅ 𝐽
𝑚(𝑧)

𝑐𝑐
⋅ [1 + 0.1 ⋅ 𝐽

𝑧/100

𝑐𝑐
⋅ exp(

−3 ⋅ 𝑔

𝐽3
𝑐𝑐

)] . (27)

𝑀 must be used as a multiplier of the 𝑔 quantity present,
directly or indirectly through 𝑇𝑔 and 𝑏, in (8) of 𝐹ℎ and (21)
of 𝐹𝑐, which are useful for calculating 𝑓ℎ/𝑈:

𝑓ℎ

𝑈
=

𝑓ℎ

(𝐹ℎ + 𝐹𝑐) ⋅ 10
(121.1−𝑇𝑅)/𝑧

. (28)

4. Results and Discussion

4.1. 𝑓ℎ/𝑈 Calculation. Themathematical model, made of the
following ten equations (26) (27), (8), (7) (with 𝑥 = 2.3 ⋅ 𝑔/𝑧

and 𝑝 = 24), (13), (14), (16) (with Fo∗ = 0.25 and 𝑠 = 3.8),
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Figure 2: Correction function 𝑀
󸀠 versus cooling rate lag factor at

the coldest point 𝐽𝑐𝑐 and versus 𝑧 (
∘C) value.The solid lines are power

functions obtained by nonlinear regression.
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Figure 3: Predicted 𝑓ℎ/𝑈 values using the mathematical model
versus desired Stumbo’s values of 𝑓ℎ/𝑈.

(19), (21), and (28) to be sequentially solved, was implemented
in a spreadsheet to calculate 𝑓ℎ/𝑈 values by varying 𝑔 values
obtained from Stumbo’s tables. The comparison between
the calculated value of 𝑓ℎ/𝑈 and desired Stumbo’s values
of 𝑓ℎ/𝑈 is shown in Figure 3. The following were found: a
determination coefficient 𝑅2 = 0.9823, a mean relative error
MRE = 2.46 ± 3.38%, and a mean absolute error MAE =

3.38 ± 20.49.

4.2. 𝑔 Calculation. The same mathematical model made of
the ten equations (26), (27), (8), (7), (13), (14), (16), (19),
(21), and (28) was easily implemented in the spreadsheet,
to calculate 𝑔 values for various 𝑓ℎ/𝑈 values obtained from
Stumbo’s tables. The system of equations is implicit in the
𝑔 value; therefore, 𝑔 can be rapidly calculated using the
spreadsheet by putting Stumbo’s 𝑓ℎ/𝑈 values into (28) and
searching for the corresponding 𝑔 value that ensures the
validity of the ten equations. A comparison between the cal-
culated value of 𝑔 and desired Stumbo’s values of 𝑔 is shown
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Table 1: Comparison of process time calculated using 𝑔 values from the Stumbo [7] tables, ANN model of Sablani and Shayya [21], ANN
model of Mittal and Zhang [22], and mathematical model of this work.

RMS (min) Deviations or absolute error (min) SD Slope of line in Figure 5
Max Min Ave

Sablani and Shayya [21] 1.164 2.57 0.05 0.936 0.697 1.011
Mittal and Zhang [22] 0.612 1.63 0.01 0.466 0.400 0.999
This work 0.567 1.61 0.003 0.421 0.380 1.001
RMS: root mean square of deviations; SD: standard deviations.
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Figure 4: Values of 𝑔 predicted using the mathematical model
versus desired Stumbo’s values of 𝑔.

in Figure 4. The following values were found: determination
coefficient 𝑅2 = 0.9990, mean relative error MRE = 2.67 ±

2.69%, and mean absolute error MAE = 0.16
∘
± 0.20

∘C
(0.29
∘
± 0.36

∘F).

4.3. Mathematical Model Validation. In order to validate the
mathematicalmodel of this work, thermal process time𝐵was
calculated for various heating conditions. For comparison
purposes, these conditions were the same as those imposed
by Sablani and Shayya [21]: 𝑧 (10∘ and 44.4∘C; 18∘ and 80∘F),
𝑇0 (65.5

∘C; 150∘F), 𝑓ℎ (30 and 90min), 𝐽𝑐ℎ (1 and 2), 𝐽𝑐𝑐 (0.4
and 2),𝑇𝑅 (111.1

∘, 121.1∘, and 140∘C; 232∘, 250∘, and 284∘F), and
𝐹 (5, 15, and 25min).

To calculate the thermal process time 𝐵 reference, by 𝑔
values from Stumbo’s tables [7], the Ball’s formula (4) was
used. To improve the validation of the mathematical model
of this work, it was instead used a modified Ball’s formula by
a corrective coefficient, which was found dependent on 𝑇𝑅

and 𝐽𝑐𝑐 as follows: (123/𝑇𝑅)
0.1⋅𝐽𝑐𝑐 .Therefore themodified Ball’s

formula was

𝐵 = (
123

𝑇𝑅

)

0.1⋅𝐽𝑐𝑐

𝑓ℎ ⋅ log[
𝐽𝑐ℎ ⋅ (𝑇𝑅 − 𝑇0)

𝑔
] . (29)

Figure 5 and Table 1 provide a comparison of the process time
𝐵 calculated using 𝑔 values from the mathematical model
described in this work and formula (29), and 𝑔 values from
Stumbo’s tables [7] and formula (4).

Table 1 shows also that the process time𝐵 calculated using
this mathematical model is closer to the 𝐵 values calculated
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Figure 5: Comparison of the process time, calculated using 𝑔 values
from Stumbo’s tables [7], and the mathematical model of this work.

using the 𝑔 values from Stumbo’s tables [7] than the 𝐵 values
calculated using both the neural networks models of Sablani
and Shayya [21] andMittal and Zhang [22]. Compared to the
latter, the average absolute error was reduced from 0.466 to
0.421min.The rootmean square of absolute errors value RMS
was also reduced from 0.612 to 0.567, with a SD reduced from
0.400 to 0.380min. All of these comparisons were significant
at a 95% confidence level.

5. Conclusions

A new original mathematical model was developed to cal-
culate 𝑓ℎ/𝑈 and 𝑔 starting from Ball’s formula method of
thermal process calculations. The new model was based on
ten equations to be sequentially solved, in an easy and fast
way, even on a spreadsheet to obtain 𝑔, and on the modified
Ball’s formula (29) to calculate the thermal process time 𝐵.

The ten equations are based on various modification and
improvements of Ball’s mathematical model, such that the
new model results converge on those values obtained from
Stumbo’s tables [7].

The mathematical model of this work allows the com-
puterization of 18,513 Stumbo’s data, avoiding the use of 57
lookup tables and interpolation among the three data param-
eters associated with the use of these tables.

The thermal process time, calculated using the 𝑔 from
themathematical model presented in this work and using the
modified Ball’s formula (29) here proposed, closely followed
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the time calculated from the tabulated 𝑔 values (RMS =

0.567min, average absolute error = 0.421min with an SD of
0.380min). This high prediction accuracy, better than ANN
models, allows practical applications, such as an easy evalu-
ation of the parameters for thermal processes controlled by
computers.
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