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ABSTRACT: 

 

In this study we analyse the correlation between the spatial positions of Capra ibex (mountain goat) on an hourly basis and the 

information obtained from vegetation indices extracted from Landsat 8 datasets. Eight individuals were tagged with a collar with a 

GNSS receiver and their position was recorded every hour since the beginning of 2013 till 2014 (still ongoing); a total of 16 Landsat 

8 cloud-free datasets overlapped that area during that time period. All images were brought to a reference radiometric level and 

NDVI was calculated. To assess behaviour of animal movement, NDVI values were extracted at each position (i.e. every hour). A 

daily “area of influence” was calculated by spatially creating a convex hull perimeter around the 24 points relative to each day, and 

then applying a 120 m buffer (figure 4). In each buffer a set of 24 points was randomly chosen and NDVI values again extracted. 

Statistical analysis and significance testing supported the hypothesis of the pseudo-random NDVI values to be have, in average, 

lower values than the real NDVI values, with a p-value of 0.129 for not paired t-test and p-value of <0.001 for pairwise t-test. This is 

still a first study which will go more in depth in near future by testing models to see if the animal movements in different periods of 

the year follow in some way the phenological stage of vegetation. Different aspects have to be accounted for, such as the behaviour 

of animals when not feeding (e.g. resting) and the statistical significance of daily distributions, which might be improved by 

analysing broader gaps of time. 

 

 

1. INTRODUCTION 

The importance of NDVI comes from the fact that it gives 

information about a primary production (vegetation) over time. 

(Pettorelli et al., 2011)  have studied such interaction (figure 1) 

and found significant results related to biological dynamics. 

 
Figure 1. Schematic representation of interaction between 

vegetation and animals, and how NDVI can be 

useful (Pettorelli et al., 2011). 

 

NDVI allows to study the species related to this primary 

production and their behaviour with its changes and can also 

help the wildlife distribution models (Suárez-Seoane et al., 

2004). It is possible to find a lot of information in literature 

about the correlation of NDVI (as a proxy of vegetation growth) 

and movement of large herbivores, that is strongly related to the 

access to better forage  (Fryxell and Sinclair, 1988). One 

example is the study about the interaction between climatic 

variability (measured by the North Atlantic oscillation ‘NAO’), 

vegetation phenology and red deer body mass and movement in 

Norway (Pettorelli et al., 2005a). Results in this investigation 

show that earlier spring season can cause a faster growth of 

vegetation that leads to an increase in the body mass and earlier 

migrations of the animals. Other examples in literature that 

underline the benefits of NDVI in wildlife studies can be 

enumerated wth the following investigations: 

- Estimation of vegetation growth by NDVI its relation between 

migration of Connochaetes taurinus in the Serengeti (Boone et 

al., 2006). 

- Correlation between wet-season home-range of elephants and 

seasonal vegetation productivity in southern Africa (young et 

al., 2009) or between elephant diet and NDVI variation in 

Kenya (Wittemyer et al., 2009). 

- NDVI can be a good predictor to assess the body mass of roe 

deer and reindeer in France and Norway (Pettorelli et al., 2006, 

2005b). 
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Another study that is important to discuss is that one done on 

African buffalo where the correlation between quality of food 

(using NDVI) and occurrence/synchrony of birth was assessed, 

then relative relationship between NDVI and presence of 

nitrogen, that is an important protein surrogate, was investigated 

with data from field surveys (Ryan et al., 2007) (Figure 2). This 

underline how NDVI can be a good proxy for estimating 

vegetation quality for herbivores. 

 
Figure 2. NDVI in grey and monthly births of animal (Ryan et 

al., 2007) 

 

The story of NDVI is closely correlated to the start of the 

Landsat program. The launch of the Landsat 1 was in the 1972 

and it was integrated with multispectral scanner that allowed to 

investigate also into the spring vegetation green-up and the 

subsequent summer and fall dry-down. To overcame the 

problem of the differences in solar zenith angle cross, Donald 

Deering, Robert Haas and John Schell developed the ratio of the 

difference of the red and infrared radiances over their sum as a 

means to adjust or normalize the effects of the solar zenith angle 

in the 1973. The normalized difference vegetation index is one 

of the most useful and used index to quickly identify vegetated 

areas with the use of multispectral remote sensing data. 

The NDVI was applied over time in many different aspects: 

 

- Vegetation dynamics/Phenology over time (Wellens, 1997). 

- Biomass production (Anderson et al., 1993). 

- Grazing impacts/Grazing management (Hunt and Miyake, 

2006). 

- Change detection (Minor et al., 1999) 

- Vegetation/Land cover classification (Geerken et al., 2005). 

- Soil moisture estimation (Wang et al., 2004). 

- Wildlife management (Pettorelli et al., 2011) 

  

In the presented investigation our objective was to analyse the 

distribution of NDVI values in terms of recorded animal 

position over time. We wanted to assess if any trend is present 

which shows that either the whole population which is 

monitored, or any particular individual, have a preference over 

the choice of the area where it is found at time of recording, and 

if any trends are present. 

 

 

2. STUDY AREA AND MATERIALS 

The study area is located in the north-east part of Italy (Figure 

3). It is an Alpine region, with steep slopes and a range of 

heights above sea level  between 1700 and 3000 m a.s.l. In this 

area there is the presence of Capra ibex as local fauna. Eight 

individuals (all females) were tagged with a GPS collar which 

transmits information of position and acceleration every hour. 

This allows to monitor eventual deaths of the animal, since it 

will have the same position over time and no accelerometric 

information. 

The Landsat 8 was launched 11th February 2013 an started to 

acquire images the 18th of March 2013  (Belward and Skøien, 

2014). This sensor provides 16-bit images at 30 m resolution for 

multispectral bands (10 for panchromatic and 100 for thermal). 

With respect to Landsat 7, it has an extra band at the low part of 

the visible spectrum, therefore the red and infrared bands are 

respectively the 4th and 5th band instead of the 3rd and 4th like in 

the Landsat 7 (NASA, 2013).  

 

 

Figure 3.   Different views of the study area; top – regional 

view and bottom – close-up of the region with the 

red points representing the positions of the female 

Capra ibex. 

 

The data received from Landsat 8 are processed using 

parameters consistent with all standard Landsat data products 

(table 1) and are available for download at no charge and with 

no user restrictions from EarthExplorer or the LandsatLook 

Viewer at http://landsatlook.usgs.gov. (NASA, 2013) 

 

 

3. METHOD 

We analyse the correlation between the spatial positions of 

Capra ibex (mountain goat) on an hourly basis and the 

information obtained from vegetation indices extracted from 

Landsat 8 datasets. Eight individuals were tagged with a GPS 

collar and their position was recorded every hour since the 

beginning of 2013 to 2014 for a total of 16 time-stamps 

corresponding to Landsat 8 datasets which had matching dates. 

Table 1 shows the number of records from the GPS collar which 

every hour sends information to the database. The utc_date 

shows the date of the Landsat 8 image. Where there are 24 

readings it means that every hour of the day the positioning 

information was acquired from the collar during the whole day. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-147-2014 148



 

Lower numbers indicate malfunctions or cloud cover which 

required deletion of that position. 
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13/04/2013 22 23 24 0 24 24 0 24 

15/05/2013 22 24 24 0 23 24 0 24 

16/06/2013 23 23 24 0 23 24 0 24 

02/07/2013 22 23 24 0 24 24 0 19 

18/07/2013 22 22 22 0 23 24 0 22 

03/08/2013 0 24 22 0 20 24 0 24 

19/08/2013 0 14 0 0 0 0 0 0 

04/09/2013 0 24 0 0 0 0 0 0 

22/10/2013 0 0 0 24 0 0 24 0 

07/11/2013 0 0 0 24 0 0 24 0 

09/12/2013 0 0 0 17 0 0 24 0 

15/03/2014 0 0 0 23 0 0 21 0 

31/03/2014 0 0 0 23 0 0 24 0 

16/04/2014 0 0 0 24 0 0 24 0 

29/04/2013 24 24 24 0 21 24 0 24 

18/05/2014 0 0 0 24 0 0 20 0 

 

Table 1.  Contingency table of number of records per animal 

for each Landsat 8 image.  
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01 6 9 7 7 7 7 7 7 57 

02 6 9 7 6 7 7 6 7 55 

03 5 9 7 7 7 7 6 7 55 

04 4 9 7 7 7 7 6 7 54 

05 6 9 7 7 7 7 7 7 57 

06 6 9 7 7 5 7 7 7 55 

07 6 7 7 7 7 7 7 7 55 

08 6 8 7 7 6 7 7 7 55 

09 6 8 7 7 6 7 7 7 55 

10 6 8 5 7 7 7 7 7 54 

11 6 8 7 7 7 7 7 7 56 

12 6 8 6 7 6 7 7 7 54 

13 6 8 7 7 7 7 7 7 56 

14 6 7 6 7 6 7 7 7 53 

15 6 9 7 6 7 7 7 6 55 

16 6 9 7 6 7 7 7 6 55 

17 5 8 7 6 6 7 7 6 52 

18 3 7 7 6 6 7 7 7 50 

19 6 9 7 6 7 7 7 7 56 

20 6 8 7 6 7 7 6 7 54 

21 5 9 7 6 7 7 6 6 53 

22 5 9 7 7 7 7 6 6 54 

23 6 9 7 7 6 7 6 5 53 

 

Table 2.  Contingency table with number of records per 

animal per hour of day.  
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8 0 38 22 0 20 24 0 24 128 

9 0 24 0 0 0 0 0 0 24 

10 0 0 0 24 0 0 24 0 48 

11 0 0 0 24 0 0 24 0 48 

12 0 0 0 17 0 0 24 0 41 

 

Table 3.  Contingency table with number of records per 

animal per month of year.  

 

 

Collar ID Number 

88320 135 

88360 201 

88390 164 

8840 159 

88400 158 

88410 168 

8842 161 

88420 161 

Table 4.  Summary table of number of records per each 

monitored animal.  

 

 

The NDVI values calculated for each position (n) using the 

classic formula (equation 1) 

 

 
IR R
   
IR R

n n
n

n n

NDVI





  (1) 

 

where: 

 

IR and R are respectively the infrared and red band (5th and 4th 

band respectively), n is the position of the animal. 

 

We applied a normalization procedure using Landsat 8 radiance 

rescaling factors provided in the metadata file to provide top of 

atmosphere values (TOA): 

 

         L cal LL M Q A     (2) 

where:               

 

Lλ   = TOA spectral radiance (Watts (m-2 srad-1 μm-1) 

ML = Band-specific multiplicative rescaling factor from the 

metadata for each  band number) 

AL  = Band-specific additive rescaling factor from the metadata 

for each band number 

Qcal  = Quantized and calibrated standard product pixel values 

(DN)    

 

We removed points which were under cloud coverage which 

leads to misinterpretation of the NDVI value. Pseudo invariant 

features (PIFs) method (Du et al., 2002) was used on the TOA 

values to check that the areas that we expect to have invariant  

reflectance for each band is actually so. All images were 
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therefore brought to a reference radiometric level and NDVI 

was calculated. 

 

 

 

 

Figure 4.   Daily are of influence plotted over NDVI color map 

obtained from Landsat 8 satellite 

 

To compare our distribution of NDVI values with a control, we 

created a random stratified sampling over the daily “area of 

influence” (AoI) (figure 4). This area was calculated by spatially 

creating a convex hull perimeter around the 24 points relative to 

each day, and then applying a 120 m buffer (figure 4). The 

sampling was stratified according to such areas. In each area a 

set of 24 points was randomly chosen and NDVI values again 

extracted with the same process. This can be defined as a 

pseudo-random sampling, as the randomness is applied to the 

distance and the direction of the new point, which cannot be the 

same as the original position. Another term of comparison was 

the distribution of NDVI values in the AoI, extracting mean and 

standard deviation from each area, and then using this 

information for statistical comparison. 

 

 

4. RESULTS AND DISCUSSION 

A first look at overall distribution of NDVI as a function of 

month of the year, and time of day in figure 5 and figure 6 

respectively, allows a visual interpretation of any immediate 

trends that might be evident. We must keep in mind that this are 

still initial results and that monitoring and data recording are 

still going on. This dataset requires assessing the different 

sources of variability, which have to be considered when trying 

to model relationships between position, time and NDVI values. 

First of all animal behaviour cannot be considered homogenous, 

but a subjective aspect related to ethology of the specific 

species. It cannot be expected that all animals behave in the 

same way regarding their position in space during time of day 

and time of year. The variability of the land surface itself is a 

factor along with the behaviour of Capra ibex, as feeding 

happens in mountainous areas and it might be the case that a 

rocky slope hides feeding spots which are not large enough to 

be recorded by an NDVI value in a 30 m pixel. Another aspect 

to be mentioned is that we do have a certain number of records 

(see table 1-3), and it might seem that the numerosity of the 

sample is enough, but it must be kept in mind that it includes 

position during night time, were feeding does not take place. 

Also the seasonal variation in habits of the animal is a factor 

which must be considered with experts on the field. The ideal 

procedure would be to relate time of day and day of year to 

NDVI removing ranges of data to keep only significant sets – 

e.g. if it is a known fact that animals do not feed during the 

night, then we might decide to remove data which belongs to 

night hours, depending on the season. This would simply be 

considered a method to limit variability which is not due to the 

phenomenon under analysis.  

 

 
Figure 5.   Monthly distribution of NDVI values per animal. 

 

An analysis over figure 5 and figure 6 does give us some input 

for further analysis. Figure 5 shows that the summer months 

have data that are more complete, i.e. have a higher number  of 

animal positions, than the winter months. Therefore there is not 

enough information to infer relationship between season and 

NDVI at this stage; table 3 confirms this.  

 

4.1 Is the data normally distributed? 

To test for normality the Shapiro-Wilk test was applied to the 

data, and the resulting p-value showed that the data are not 

distributed normally. A successive analysis using a QQ-plot 

against a randomly generated normal distribution supported this 

conclusion. Therefore we cannot consider our data as normal. 

Nevertheless, because our sample size is quite large, we can 

proceed to compare distribution and define significant 

differences using Student t-test and a Wilcoxon signed-rank 

test. Nevertheless we must keep in mind that is we subset the 

data to analyse grouped differences, then the non-normal 

distribution must be considered is the number of samples is less 

than fifty (Rice, 1995). 
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Figure 6.   Hourly distribution of NDVI values per animal. 

 

 

 

 

 

4.2 Student t-test 

A first test, Student t-test, was applied to the whole dataset to 

see if the random positions extracted nearby the real positions 

do give us a significantly different NDVI value.  

 

 
2 2

   a b

a b

a b

x x
t

s s

n n






    (3) 

 

where: 

 

a and b are the real and pseudo-random distribution 

respectively, s is the standard deviation and n the numerosity of 

the sample (in our case it n = 1307). We choose to apply a one-

tailed test to define if the mean of the pseudo-random NDVI 

values is significantly less than the mean of the real distribution. 

The result for a difference of means of -0.0037, t = -1.1309 p-

value = 0.1291, whereas the p-value of a paired t-test was of 

<0.001. This allows us to say that the difference of means of the 

two distributions, in the sense that the real NDVI is greater than 

the pseudo-random ones, are very weakly different, unless we 

account for paired criteria, were this difference becomes very 

significant. In this case study the latter can be supported 

because there is a one-to-one relationship between points, as 

each “pseudorandom” point was taken from a real point, and the 

sampling mechanism was applied to distance and direction from 

the real point, therefore each real point is matched on a one to 

one basis to a pseudo-random point.  

 

 

4.3 Wilcoxon signed-rank test 

Another test was applied to the whole dataset to see if the 

random positions extracted nearby the real positions gave us a 

significantly different NDVI value.  

 

 

  2 1

1

sgn( ) R
N

i i i

i

W x x


     (5) 

 

where: 

W is the result of the test, N is the number of ranked pairsr, x2 

and x1 are the values of the ith rank pair of values, where i =  

1,…,N and Ri is the notation of the ith rank.  

The result of the classical Wilcoxon test gave us a p-value of 

0.0766, which means a 7.66% probability that the difference in 

means is due to casuality, and therefore we cannot refute the 

null hypothesis (H0) at 95% confidence. H0, e.g. the two 

distributions have the same mean value. Further application of 

this test applying the continuity correction gave us a p-value 

0.00087, which leads to quite different conclusions. Like the 

Student t test the pair-wise comparison leads to think that we 

can refute the null hypothesis and that the means are 

significantly different even at 99.9% confidence level. 

These initial results over the full dataset are comforting, because 

we have, as was mentioned before, many sources of variation, 

as positions might include resting spots or other relations not 

related to feeding habits. It is advisable to subset the data, as we 

suggested, trying to remove unrelated information. This will be 

the objective for future analysis. 
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4.4 Monthly differences 

We used a z-score test to extract which differences between real 

and pseudo-random NDVI are significant using a confidence 

level of 99%. In figure 7 we plot al the z-scores for each animal, 

coloured by month to visually assess if there are any significant 

trends between the time of the year and the difference between 

the two distributions. The z-score is related to the distribution 

of the NDVI in the day (~24 records).  

Z-score above 2.58 will hold true for a confidence interval of 

99% whereas if we drop to 95% confidence interval, the z-score 

threshold is 1.96. From figure 3 we can see that several cases 

(days) the difference is significant and we can believe that the 

behaviour of the animal led to choosing a certain spot instead of 

the neighbouring areas for a reason. This would lead to 

discussion on ecological and behavioural trends which are out 

of scope for this paper.  

Statistical analysis was also carried out comparing distributions 

of NDVI, one for the real positions of the animals, and against 

the random sampling of points, and for the total NDVI values of 

the area of influence (AoI). Because we have two distributions 

in the first case, we applied a z-test over all un-aggregated data 

to find if there we can expect the real NDVI values were in 

average higher than the pseudo-random ones. Initial results are 

reported in figure 5. 

 

 

 
Figure 7.   Z-scores of differences between real and pseudo-

random NDVI. 

 

5. CONCLUSIONS 

We tested data of Capra ibex positions over 16 Landsat 8 

images using NDVI values. We tested against two controls: (i) 

the statistical representation of NDVI values of the whole 

effective area of each animal per day (AoI – area of influence), 

and (ii) a semi-random distribution acquired by “jittering” the 

animal position from the original value anywhere else between a 

radius of 2 to 4 pixels at a random direction away from the 

original point. Results show that in some cases the differences 

are significant and represent an interesting source for further 

study. 

In the near future we will go more in depth by testing models to 

see if the animal movements in different periods of the year 

follow in some way the phenological stage of vegetation. 

Different aspects have to be accounted for, such as the 

behaviour of animals when not feeding (e.g. resting) and the 

statistical significance of daily distributions, which might be 

improved by analysing broader gaps of time. 
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