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Abstract

The goal of supervised classification is to assign a new object to a class from a given set
of classes based on the attribute values of this object and on a training set. Although “su-
pervised”, classification algorithms provide only very limited forms of guidance by the
user. Typically, the user selects the dataset and sets the values for some parameters of the
algorithm - which are often difficult to determine a priori. We believe the user should be
involved more interactively in the process of classification because, by providing adequate
data and knowledge visualizations, the pattern recognition capabilities of the human can
be used to increase the effectivity of classifier construction. Moreover, users often want to
validate and explore the classifier model and its output. To address these issues, the classifi-
cation system should have an intuitive and interactive explanation capability. We present a
two-dimensional visualization tool for Bayesian classifiers that can help the user understand
why a classifier makes the predictions it does given the vector of parameters in input. The
user can interact with the classifier by: selecting different models, changing the distribution
of the prior, tuning the mis-classification costs. To help people discover (sub)optimal pa-
rameters, we develop several visual interaction methods that allow people to interactively
analyze objects. Finally, we present a case study to demonstrate the effectiveness of our
solution in text classification.
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1 Introduction

In machine learning, “computers are programmed to optimize a performance criterion
using example data or past experience” [Alpaydin, 2009]. It is reasonable to assume that
there is a hidden process that explains the data we observe. Though we do not know the
details of this process, we know that it is not completely random. This enacts the possibility
of finding a good and useful approximation despite we may not be able to identify the
process completely. Mathematical models defined upon parameters can be used for this
task. The “learning” part of the model consists in choosing the parameters which optimize
a performance criterion with respect to observed data.

“Application of machine learning methods to large databases is called data mining” [Al-
paydin, 2009]. Data mining applications can retrieve and explore existing information as
well as extrapolate, predict, and derive new information from the given database. Classi-
fication is a special kind of the prediction task which deals with the need of classifying
items based on previously classified training data. The research in this field has been very
active in the last years 1 . For example, mining billions of user ratings for musical pieces
to discover user profiles and predict which songs users will listen to, or mining tweets
contents to capture users interests to serve them with potentially interesting items thus
reducing information overload. In literature, many successful algorithms for pattern clas-
sification, inference and prediction has been presented [Hastie et al., 2009]. Some of these
techniques require that the user selects the dataset and performs some tuning on the al-
gorithm’s parameters - which are often difficult to determine a priori. Moreover, some of
these act as black boxes screening the user out of the analysis process. In this context, in-
terpreting learned parameters and discovering the causal process underlying observed data
become difficult tasks. Data mining applications may benefit significantly by providing
visual feedback and summarization. This is the goal of Visual Data Mining.

Visual data mining is a general approach which aims to include the human in the data
exploration process, thus gaining benefit from his perceptual abilities. In particular, users
often want to validate and explore the classifier model and its output or understand the
classification rationale. To address these issues, the classification system should have an
intuitive and interactive explanation capability [Poulin et al., 2006,Wong, 1999,de Oliveira
and Levkowitz, 2003]. Visual data mining techniques have proven to be of high value in ex-
ploratory data analysis and they also have a high potential for exploring large databases [Hansen

sordonia@iro.umontreal.ca (Alessandro Sordoni).
1 http://www.sigkdd.org/
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and Johnson, 2004, Part XI, pp. 819-830]. Two or three-dimensional representation is
probably the most ‘natural’ metaphor a visualization system can offer to model object
relationships. This is how we perceive world as humans: two objects that are ‘close’ each
other are probably more similar than two objects far away. The interactive visualization
and navigation of such space becomes a means to browse and explore the corpus which
match predetermined characteristics [Chalmers and Chitson, 1992,Wise et al., 1995,Wise
et al., 1995, Becker, 1997, Rohrer et al., 1999, Becks et al., 2000, Kohonen, 1995, Ankerst
et al., 2000,Harrell, 2006,Mozina et al., 2004,Leban et al., 2006,Poulin et al., 2006,Poulet,
2008, Seifert and Lex, 2009].

In this chapter we focus our attention on the Bayesian classifier. Although based upon
strong conditional dependence assumptions, this classifier is still widely used in practice
mostly likely due to its tradeoff between very efficient model training and good empir-
ical results. These characteristics make this type of classifier very suitable for analyzing
large-scale datasets and synthesizing big amounts heterogeneous data quickly. The chapter
is organized in two main parts: we present the Bayesian framework which characterizes
the nature of the classification problem by introducing bayesian data analysis; then we
describe a visualization tool to support the classification process.

The chapters is divided into the following sections: we discuss related works in Section 2;
in Section 3, we give the motivations of our work and list the requirements of the R code.
Section 4 presents the Bayesian probabilistic framework we use to describe the Naı̈ve
Bayes classifiers. The two-dimensional visualization system is described in Section 5.

2 Related Works

Some works in literature have specifically tackled the problem of the visualization of Naı̈ve
Bayes (NB) classifiers and in this respect are the ones that can be directly compared to
our visualization tools. The Evidence Visualizer [Becker et al., 2002] can display Bayes
model decisions as pies and bar charts. In particular, the rows of pie charts represent each
attribute, and each pie chart represents an interval or value of the attribute. The attributes
are listed in order of usefulness for predicting the label. The height of the pies shows the
number record having a particular value. In [Mozina et al., 2004], authors show how to
adapt Naı̈ve Bayesian classifiers and present them with a visualization technique called
nomograms [Harrell, 2006]. On of the main benefits of this approach is the simple and
clear visualization of the complete model and the quantitative information it contains. The
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visualization can be used both for exploratory analysis and for decision making. It can also
be used to compare different models, including those coming from logistic regression. Ex-
plainD [Poulin et al., 2006] is a framework for explaining decisions made by classifiers
that use additive evidence. It has been applied to different linear model such as support
vector machines, logistic regression and Naı̈ve Bayes. The main goal of this framework
is to visually explaining the decisions of machine-learned classifiers and the evidence for
those decisions. There are five explanation capabilities: Decision, Decision Evidence, De-
cision Speculation, Ranks of Evidence, Source of Evidence. Each successive capability
increases the user’s ability to understand and audit an aspect of the classification process,
based on the evidence. The Class Radial Visualization [Seifert and Lex, 2009] is an in-
tegrated visualization system that provides interactive mechanisms for a deep analysis of
classification results and procedures. In this system, class items are displayed as squares
and equally distributed around the perimeter of a circle. Objects to be classified are dis-
played as colored points in the circle and the distance between the point and the squares
represent the uncertainty of assigning that object to the class.

It is worth mentioning another approach that does not specially address the NB classifier
but resembles our idea of visualizing the line of the decision of the classifier. In [Poulet,
2008], authors presents two interactive methods to improve the results of a classification
task: the first one is an interactive decision tree construction algorithm with a help mecha-
nism based on SVM; the second one is a visualization method used to try to explain SVM
results. In particular, it uses a histogram of the data distribution according to the distance
to the boundary and linked, a set of scatter-plot matrices or the parallel coordinates. This
method can also be used to help the user in the parameter tuning step of SVM algorithm
and reduce significantly the time needed for the classification.

3 Motivations and Requirements

Two or three-dimensional representation is probably the most ‘natural’ metaphor a visual-
ization system can offer to model object relationships. This is how we perceive world as
humans: two objects that are ‘close’ each other are probably more similar than two objects
far away. The interactive visualization and navigation of such space becomes a means to
browse and explore the corpus which match predetermined characteristics [Chalmers and
Chitson, 1992,Wise et al., 1995,Wise et al., 1995,Becker, 1997,Rohrer et al., 1999,Becks
et al., 2000,Kohonen, 1995,Ankerst et al., 2000,Harrell, 2006,Mozina et al., 2004,Leban
et al., 2006, Poulin et al., 2006, Poulet, 2008, Seifert and Lex, 2009].
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In [Becker, 1997], a list of desired requirements for the visualization of the structure of
probabilistic classifiers are discussed. We summarize the main points here since we use
them as a basis for the design of our visualization tool. In particular, users should be able:

(1) to quickly grasp the primary factors influencing the classification,
(2) to see the whole model and understand how it applies to classification objects, rather

than the visualization being specific to a single object,
(3) to compare the relative evidence contributed by every value of every attribute,
(4) to see a characterization of a given class, that is a list of attributes that differentiate

that class from others,
(5) to infer record counts and confidence in the shown probabilities so that the reliability

of the classifier’s prediction for specific values can be assessed quickly from the
graphics,

(6) to interact with the visualization to perform classification.

Moreover, there is one last requirement which concerns the system:

(7) the system should handle many attributes without creating an incomprehensible vi-
sualization or a scene that is impractical to manipulate.

In this chapter we present a state-of-the-art visualization tool for Bayesian classifiers that
can help the user understand why a classifier makes the predictions it does given a vector
of parameters in input [Di Nunzio and Sordoni, 2012]. The user can interact with the clas-
sifier by: (i) selecting different parametric distributions, (ii) choosing different smoothing
methods (iii) changing models’ parameters.

During the requirements analysis, we analyzed the possible alternatives currently avail-
able for interactive R plots. The first choice was RGGobi which is one of the most pow-
erful R tools for interactive data analysis [Lang et al., 2011]. However, in our case it was
not possible to adapt it to the particular two-dimensional visualization model. A possi-
ble option could have been the RStudio 2 environment with its very useful “manipulate”
package [RStudio, 2011]. Unfortunately, this package is available only within the RStudio
environment and we did not want to force a user to install the whole IDE. For these rea-
sons, we decided to create our own data visualization system based on R packages which
are available on the Comprehensive R Archive Network (CRAN). 3 In particular, we make
use of the ggplot2 plotting system for R that has a strong underlying model which supports

2 http://www.rstudio.org/
3 http://cran.r-project.org/
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the production of any kind of statistical graphic. 4

3.1 R Packages Requirements

The code developed for this chapter requires the following R packages:

• gWidgets: it provides a toolkit-independent API for building interactive GUIs [Verzani,
2012];
• gWidgetsRGtk2: it allows the gWidgets API to use the RGtk2 package allowing the use

of the GTK libraries within R [Lawrence and Verzani, 2012];
• cairoDevice: it allows the user to embed an R plot in a GTK user interface constructed

with RGtk2 [Lawrence, 2011];
• ggplot2: it is an implementation of the grammar of graphics in R [Wickham, 2009];
• tm: a text mining framework in R [Feinerer et al., 2008];
• Matrix: implementation of dense and sparse matrices and fast operations on them using

Lapack and SuiteSparse [Bates and Maechler, 2007].

4 Probabilistic Framework of NB Classifiers

In this section we present the Bayesian framework which characterizes the nature of the
classification problem. This framework is based upon two commonly used assumptions:
the data is produced by a mixture model, and there is a one-to-one correspondence between
mixture components and classes [Domingos and Pazzani, 1997, Nigam et al., 1998].

In Section 1, we described machine learning as the problem of guessing the process
that explains the data we observe. In the classification problem we want to character-
ize, every object is generated according to a probability distribution given by a mixture
model. In later subsections, we address the problem of choosing the parametric form of
the model (Section 4.1). For the moment, we can generically assume that all the param-
eters of interest are stored into a vector θ . Mixture components are encoded in a ran-
dom variable C = {c1, ...,cn} and objects in a random variable O = {o1, ...,od}. The gen-
erative process for a classification object o j consists in selecting a component accord-
ing to the class probabilities P(C = ci;θ) ≡ P(ci;θ), then picking o j with probability

4 http://had.co.nz/ggplot2/
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P(O = o j|ci;θ) ≡ P(o j|ci;θ). Thus, the probability of generating o j can be found by
marginalizing out the class variable:

P(o j;θ) =
n

∑
i=1

P(o j|ci;θ)P(ci;θ) . (1)

Let us suppose that an ‘oracle’ tells us the optimal estimate θ̂ of the parameters of this
problem. How do we find the class c∗ of an unlabeled object o j? One straightforward
solution consists in selecting the mode of the posterior probability distribution of the class
variable given the object:

c∗ = argmax
ci

P(ci|o j; θ̂) = argmax
ci

P(o j|ci; θ̂)P(ci; θ̂)
P(o j; θ̂)

= argmax
ci

P(o j,ci; θ̂) , (2)

which is obtained by a simple application of the Bayes’ rule and by considering that
P(o j;θ) does not depend on ci. In pattern classification problems, objects usually belong
to more than one class (this problem is usually known as multi-label classification). For
practical and efficiency reasons, instead of building one classifier able to “attach” n labels
it is easier to build n binary classifiers able to decide whether the object belong to class ci
or not, c̄i = C− ci. This is called binary classification.

Before digging into more details, we shall present the very core “object” of our system:
the nb function reported in Listing 1.

1 nb <- function(model = "bernoulli", smoothing = "laplace") {
2 # Initialize a simple Naive-Bayes binary classifier
3 #
4 # Args:
5 # model: The parametric form of the features distribution.
6 # smoothing: The smoothing method to be used for the estimation.
7 #
8 # Returns:
9 # A Naive-Bayes classifier ready to be estimated.

10
11 # Initialize the object and the basic structures
12 inst <- list()
13 class(inst) <- c("nb", model)
14 inst$type <- model
15 inst$smoothing <- smoothing
16 inst$classes.names <- list()
17 inst$features.num <- 0
18 inst$examples.num <- 0
19 # Create distributional parameters
20 inst$smoothing.params <- list()
21 inst$features.params <- list()
22 inst$classes.params <- list()
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23 # Sufficient statistics for the objects’ parametric distribution
24 inst$features.freq <- list()
25 # Data structure to speed-up computation
26 inst$features.freq.tot <- list()
27
28 return(inst)
29 }

Listing 1. nb function (file nb.R)

This function creates a generic empty “object” (the list inst, line 12) that contains all
the informations about the model: its parametric form and smoothing type, feature counts,
sufficient statistics and estimated parameters. It is valuable to consider the step done in line
13: the parametric form specified in the variable model is added to the object class. This
enables us to use R powerful “generic” function paradigm which turns out to be useful in
dealing with the estimation phase (see Section 4.1).

In the following subsections, we describe in more detail some parts of the classification
model that we believe important for the visualization tool:

• How do we choose the parametric form of our model?
• Can we tune the estimate θ̂ of the optimal parameters θ?
• Once we have the estimate, can we measure how far we are from the optimal decision?

4.1 Choosing the model

Choosing the model of our problem means finding the right mathematical description ac-
cording to some hypotheses we can make. Actually, there are two things to consider: how
to model the distribution of the classes P(ci;θ) and how to model the distribution of the
objects in a class P(o j|ci;θ).

The choice of the model for the first point is easier when we consider the binary classifi-
cation problem: the class we observe can be either ci or c̄i. This binary setting can well be
modeled by a Bernoulli random variable:

ci ∼ Bern(θc) , (3)

where the notation θc is used to specify the parameters relevant to the class distribution.

In the nb.R file (line 22), the parameters of the mixture are stored under the list key
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classes.params. The estimation of the Bernoulli parameter θc calculated by Maxi-
mum Likelihood Estimation (MLE) is simply the number of examples of that class divided
by the total number of examples (see Section 4.2 for a discussion about smoothing). The
R code for this estimation process is given in Listing 2.

55 # Bernoulli parameter for each class
56 x$classes.params <- as.vector(table(labels)[x$classes.names]) / x$examples.num

Listing 2. Parameters of the mixture (file nb.R)

Here, x is the nb model under estimation, x$examples.num is the total number of
examples, labels a vector which specifies which objects belong to that category and
x$classes.names the name of the classes for this classification problem. Constructing
a table from the labels vector is a useful trick to automatically count the number of
examples in each class.

The choice of the mathematical model for the distribution of the objects requires more
attention. Hereafter, we present three possible models to parametrize the conditional prob-
ability P(o j|ci;θ).

4.1.1 Multivariate Bernoulli model

In the multivariate Bernoulli model, an object is a binary vector over the space of features.
Given a set of features F , |F |= m, each object o j is represented as a vector of m Bernoulli
random variables o j ≡ ( f1, ..., fm) such that:

fk ∼ Bern(θ fk|c) . (4)

We can write the probability of an object by using the NB conditional independence as-
sumption which states that features variables are independent given the class variable.
Formally:

P(o j|ci;θ) =
m

∏
k=1

P( fk|ci;θ) =
m

∏
k=1

θ
xk
fk|ci

(1−θ fk|ci)
1−xk , (5)

where xk is either 0 or 1 indicating whether feature fk is present or absent in object o j.
When the number of features is very large, this product goes quickly to zero. For this
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reason, a monotonic transformation such as a log transformation is usually performed:

log(P(o j|ci;θ)) = log

(
m

∏
k=1

P( fk|ci;θ)

)
=

m

∑
k=1

xk log

(
θ fk|ci

1−θ fk|ci

)
+

m

∑
k=1

log(1−θ fk|ci) ,

(6)
This last equation is not only a way to avoid arithmetical anomalies but also a very efficient
implementation of the same calculation: the last sum on the RHS can be precomputed and
the first term ranges only over the features appearing in the current object (xk = 1).

4.1.2 Multinomial model

In contrast to the multivariate Bernoulli model, in the multinomial model we have one
single random variable F which can take values over the set of features. By assuming that
each feature event is independent of each other, an object o j is represented as a vector of
frequencies whose entries correspond to features. This vector is drawn from a multinomial
distribution:

o j ≡ (N1, j, ...,Nm, j)∼Multinomial(θ f |c) . (7)

where Nk, j indicates the number of times feature fk appears in the object o j. The probabil-
ity is proportional to:

P(o j|ci;θ) ∝

m

∏
k=1

θ
Nk j
fk|ci

. (8)

Again, we can use a monotonic transformation to avoid zero-probabilities:

log
(
P(o j|ci;θ)

)
∝

m

∑
k=1

Nk j log(θ fk|ci) . (9)

4.1.3 Poisson model

In the Poisson model, an object is generated by a multivariate Poisson random variable.
Each object o j is represented as a m-dimensional vector of frequencies, o j≡ (N1, j, ...,Nm, j),
and each feature count is governed by a Poisson random variable:

Ni,· ∼ Pois(θ fi|c) . (10)
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Using the NB conditional independence assumption, we can write the probability of the
object as:

P(o j|ci;θ) ∝

m

∏
k=1

θ
Nk j
fk|ci

e−θ fk |ci , (11)

and, by taking the logs we obtain:

log
(
P(o j|ci;θ)

)
∝

m

∑
k=1

(
Nk j log

(
θ fk|ci

)
−θ fk|ci

)
. (12)

With these concepts in hand, we can easily apply Equation 2 in order to calculate the
posterior distribution P(ci|o j;θ) and classify the unlabeled object o j. The generic func-
tion nbClassify allows you to call the correct classification function according to the
class of the object x that is passed as argument. An example of the implementation of the
classification function using Bernoulli model (Equation 6) is reported in Listing 3.

204 nbClassify.bernoulli <- function(x, dataset) {
205 dataset <- prepareDataset(x, dataset)
206
207 # precompute the sum over features of log(1 - param)
208 sumnegative <- colSums(log(1 - x$features.params))
209
210 # compute p(d, c)
211 logfeatures <- log(x$features.params)
212 lognfeatures <- log(1 - x$features.params)
213 scores <- dataset %*% (logfeatures - lognfeatures)
214 scores <- t(t(scores) + sumnegative + log(x$classes.params))
215
216 return(scores)
217 }

Listing 3. Classification function for Bernoulli model (file nb.R)

The methods returns the joint probabilities P(o j,ci; θ̂) for the two classes ci, c̄i, for all the
objects’ vectors contained in the dataset matrix.

4.2 Estimating the parameters

When the model and the features which characterize the objects are defined, the next step
is to estimate the parameters of our model θ . In the examples of the previous sections, we
let an ‘oracle’ to tell the vectors of estimates of the parameters. In a realistic situation, how
can we estimate these parameters?
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In general, there are two main paths you may follow to accomplish this task: the MLE
or the Bayesian approach to estimation. 5 With MLE, under the hypothesis that the data
D contains observations which are independent and identically distributed, the estimate
θ̂ MLE is calculated by maximizing the likelihood of the data with respect to the parameter:

θ̂
MLE = argmax

θ

P(D|θ) = argmax
θ

∏
j∈D

P(o j|θ) (13)

For many models, like the ones we presented in this paper, a maximum likelihood esti-
mator can be found as an explicit function of the observed data. However, due to data
sparseness, the MLE of the probability of unseen features tend to be zero [Gelman et al.,
2003]. To prevent this undesirable “zero-probability” behavior, we need to smooth the
estimates of our parameters: the estimation of a parameter is strongly tied to smoothing
techniques.

In a Bayesian framework, smoothing is implicitly considered by treating model parame-
ters θ as random variables governed by a probability distribution, or prior, indicated as
P(θ). The prior can be seen as encoding our “beliefs” about how θ should behave. In-
tuitively, this solves the problem of zero probability features because we relax the strict
dependency of the estimates upon the statistics gathered from data. The parameters con-
trolling the prior are usually called hyper-parameters. 6 Being bayesian means adjusting
the prior distribution upon observed data, as known as computing the posterior given the
data P(θ |D). This is achieved through the application of the Bayes’ rule:

posterior︷ ︸︸ ︷
P(θ |D) =

likelihood︷ ︸︸ ︷
P(D|θ)

prior︷︸︸︷
P(θ)

P(D)
, (14)

where D represent our data, and P(D) is the probability of the particular instance D ac-
cording some generative model of the data.

The bayesian estimator θ̂ B of the parameter is the posterior mean:

θ̂
B = Eθ |D [θ ] =

∫
θP(θ |D)dθ . (15)

5 Actually, there is a third way of estimating the probabilities which is the Maximum a Posteriori
(MAP) estimator and a complete account of it falls outside the scope of this paper.
6 The prefix “hyper” is used to distinguish the parameters of the prior from the parameters of the
original model, like θ .
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Table 1
Differences between the MLE and the Bayesian approach where nk,i is the number of objects be-
longing to ci in which feature fk appears and ni the total number of objects in ci, Nk,i the frequency
of feature fk in ci, αk the k-th component of vector ~α .

model θ̂ MLE θ̂ B

Bernoulli nk,i
ni

nk,i+α

ni+α+β

Multinomial Nk,i

∑k(Nk,i)
Nk,i+αk

∑k(Nk,i+αk)

Poisson Nk,i
ni

Nk,i+α

ni+α+β

Equation 15 can be mathematically hard to solve because of the integration over a prod-
uct of two functions, P(θ |D) and P(θ). One way to approach this problem is to find the
“conjugate” prior of the likelihood function P(D|θ) which makes the posterior function
P(θ |D) come out with the same functional form as the prior. If the likelihood belongs to
the exponential family there always exists a conjugate prior. NB models have a likelihood
of this type:

• The multivariate Bernoulli model conjugate prior is the Beta distribution Beta(θ ;α,β ),
• The Multinomial model conjugate prior is the distribution Dir(θ ;~α),
• the multi-variate Poisson conjugate prior is the Gamma distribution Gamma(θ ;α,β ).

where α , β are hyper-parameters, and ~α = α1, ...,αm is a vector of hyper parameters, one
for each features.

A comparison of the two estimation methods is given in Table 1. We can easily see that
the zero-probability behavior arises in MLE when the counts nk,i or Nk,i are zero. On the
contrary, Bayesian estimation adds “pseudo-counts” that avoid the problem. Our visual-
ization tool implements three kind of smoothing methods: Laplace, Bayesian and Fixed
Interpolation. The Laplace method is a special case of the Bayesian estimation and is ob-
tained by setting the hyper parameters α = 1, β = 1 and αk = 1, for each k. The Fixed
interpolation method solves the problem by interpolating the MLE estimator with a “col-
lection” model, in which the statistics are gathered regardless the class variable. A Fixed
interpolation estimator θ I

fk|ci
for a Bernoulli model would be:

θ
I
fk|ci

= λ
nk,i

ni
+(1−λ )

∑i nk,i

∑i ni
, (16)

where λ ∈ [0,1] is a free parameter.
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The generic function nbEstimate (Listing 4) gathers the sufficient statistics from the vec-
tors contained in the variable dataset and selects the correct estimation function ac-
cording to the class of model x we have chosen. Specifically this two steps are: (i) count
the occurrences of the dataset and store them in the model (Listing 4); (ii) call the generic
function nbUpdatewhich computes posterior estimate by plugging the hyper-parameters
(Listing 5).

1 # Estimate Bernoulli parameters
2 nbEstimate.bernoulli <- function(x, dataset, labels, params) {
3 # Preprocess dataset for Bernoulli
4 dataset <- prepareDataset(x, dataset)
5
6 # Initialize dataset specific variables
7 # Sorted class names
8 x$classes.names <- sort(unique(labels), decreasing=TRUE)
9 x$smoothing.params <- params

10
11 # Number of unique features
12 x$features.num <- dim(dataset)[2]
13 x$examples.num <- dim(dataset)[1]
14
15 # Compute sufficient statistics for each class
16 # features.freq is a features x class matrix
17 # features.freq.tot is a tot_features x class matrix for the current model
18 x$features.freq <- sapply(x$classes.names,
19 function(r) colSums(dataset[c(labels == r),]))
20 x$features.freq.tot <- as.vector(table(labels)[x$classes.names])
21
22 # Bernoulli parameter for each class
23 x$classes.params <- as.vector(table(labels)[x$classes.names]) / x$examples.num
24
25 # Compute probability estimates
26 x <- nbUpdate(x, params)
27 return(x)
28 }

Listing 4. Estimation of Bernoulli model parameters (file nb.R)

117 # Update estimates
118 nbUpdate <- function(x, ...) {
119 UseMethod("nbUpdate")
120 }
121
122 # Update Bernoulli estimates
123 nbUpdate.bernoulli <- function(x, params) {
124 # Laplace smoothing for Bernoulli
125 if (x$smoothing == "laplace") {
126 x$features.params <- t(t(x$features.freq + 1) / (x$features.freq.tot + 2))
127 }
128 # Beta prior
129 else if (x$smoothing == "prior") {
130 x$smoothing.params$alpha <- (alpha <- params$alpha)
131 x$smoothing.params$beta <- (beta <- params$beta)
132 x$features.params <- t(t(x$features.freq + alpha) /

14



133 (x$features.freq.tot + (alpha + beta)))
134 }
135 # Jelinek-Mercer interpolation
136 else if (x$smoothing == "interpolation") {
137 x$smoothing.params$lambda <- (lambda <- params$lambda)
138 features.freqs <- rowSums(x$features.freq)
139 collection.freqs <- sum(x$features.freq.tot)
140 x$features.params <- (1 - lambda) * t(t(x$features.freq) / x$features.freq.tot) +
141 lambda * (features.freqs / collection.freqs)
142 }
143 return(x)
144 }

Listing 5. Updating Bernoulli parameters (file nb.R)

5 Two-Dimensional Visualization System

The model which upholds the visualization tool defines a direct relationship between the
probability of an object given a category of interest and a point on a two-dimensional
space [Di Nunzio, 2009]. The idea is to associate each object of the dataset to a point in
the two-dimensional space: the abscissa reflects how much the object is relevant to the cat-
egory, the ordinate reflects how much the object is not relevant to the category. In this light,
it is possible to graph entire collections of objects on a Cartesian plane. Remembering that
in a binary classification setting, we classify the object o j under category ci if

P(ci|o j; θ̂) > P(c̄i|o j; θ̂) , (17)

we can get the two coordinates of a NB classifier in the following way:

P1︸︷︷︸
x

> P0︸︷︷︸
y

, (18)

where P1 = P(ci|o j; θ̂), P0 = P(c̄i|o j; θ̂), ci = c1, c̄i = c0. In Figure 1(a) three points in this
two-dimensional space are shown together with the decision line. The visual metaphor is
immediate: if the point is ‘below’ the decision line, the object is classified under category
c1 (because x > y), if the point is ‘above’ the line, the object is classified under category c0
(because x < y). Points that lie exactly on the line are those for which we need to take an
explicit decision (because they have the same chance of belonging to either category). 7

7 In this paper we classify these documents under category c0.
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The further distant the point from the line, the higher confidence in the classification. In
this figure, the point highlighted with a triangle would be classified under c0.

5.1 Design Choices

The two-dimensional visualization described earlier there may present the following prob-
lems:

• In a binary classification problem P0 = 1−P1 and all the points are on the segment
(0,1)-(1,0), see Figure 1(a). With datasets of the size of thousands of objects, points
may result too cluttered.
• There may be arithmetical anomalies given the fact that the product of the probability

of the features goes rapidly to zero 8 . Either P0 or P1 can be approximated to zero given
an insufficient number of bits.

To avoid points cluttering, we take the non-normalized probabilities:

P(o j|c1; θ̂)P(c1; θ̂) > P(o j|c0; θ̂)P(c0; θ̂) (19)

which means not dividing by the probability of the data P(o j|θ). This does not change
the result of the decision as it was justified in Equation 2. To eliminate the arithmetical

8 If we have 50 features and the probability of each feature given a class is 0.5, the product is
0.550 ∼ 10−15.
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anomaly, we take the logarithm of both sides of the equation:

log(P(o j|c1;θ))+ log(P(c1;θ)) > log(P(o j|c0;θ))+ log(P(c0;θ)) (20)

Figure 1(a) shows the result of this transformation. Note that we are now in the third
quadrant of the cartesian plane, since we are adding logarithm of probabilities, therefore
logarithms of number between 0 and 1.

5.2 Visualization Design

The system we propose consists of several visual components that correspond to the points
addressed in Section 4. The main components of the system are:

• View Panel: displays the two-dimensional plot of the dataset according to the choices of
the user.
• Interaction Panel: allows for the interaction between the user and the parameters of the

probabilistic models.
• Performance Panel: displays the performance measures of the model.

Figure 1 shows the Main window and the panels. The interactivity of the plot is realized
by means of the gWidgets package and the layout is realized by grouping widgets together.

The link between the interactive window and the probabilistic model starts when the hndle-
CreateModel function is called. This function is mainly the automated version of the cre-
ation of a naı̈ve bayes model we showed in the previous section in Listing 10.

13 hndleCreateModel <- function (h, ...) {
14
15 # Get selected model
16 model <- svalue(combo.model)
17 # Get selected smoothing method
18 smoothing <- svalue(combo.smooth)
19
20 # Delete parameters layouts
21 for (w in list.layouts) {
22 delete(frm.params, w)
23 }
24
25 # Build widgets according to prior and model
26 if (smoothing == "prior") {
27 if (model == "bernoulli") {
28 names(frm.params) <- "Adjust Beta Prior"
29 add(frm.params, list.layouts$bernprior)
30 } else if (model == "poisson") {
31 names(frm.params) <- "Adjust Gamma Prior"
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Fig. 1. Visualization tool: main window

32 add(frm.params, list.layouts$bernprior)
33 } else {
34 names(frm.params) <- "Adjust Dirichlet Prior"
35 add(frm.params, list.layouts$multiprior)
36 }
37 } else if (smoothing == "interpolation") {
38 names(frm.params) <- "Adjust Interpolation Factor"
39 add(frm.params, list.layouts$interp)
40 }
41
42 # Initialize parameters
43 params <<- lapply(list.sliders, svalue)
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44
45 # Create the model
46 nbmodel <<- nb(model, smoothing)
47 nbmodel <<- nbEstimate(nbmodel, dataset, labels, params)
48
49 # Update everything
50 fireUpdate()
51
52 # Update status bar value
53 svalue(status.bar) <- paste("Parametric model:", model, "/ Smoothing:", smoothing)
54 }

Listing 6. Initialize model by calling the hndleCreateModel function (file twodm.R).

Note that from line 21 to line 41 we first hide the interactive widgets that are used to tune
the prior hyper-parameters and then we build them according to the desired model.

When the “Estimate Mode” button is clicked, the window requests an update of the coor-
dinates to the model. The model computes the estimates of the probabilities according to
the new parameters and sends the scores to the view, as shown in Listing 7.

57 fireUpdate <- function() {
58 # Update the value of the parameters
59 params <<- lapply(list.sliders, svalue)
60
61 # Update the model
62 nbmodel <<- nbUpdate(nbmodel, params)
63 # Update scores
64 scores <<- nbClassify(nbmodel, dataset)
65 # Update plot and performances
66 updatePlot()
67 updatePerformances()
68 }
69
70 # Update the plot
71 updatePlot <- function(...) {
72 # Update dataframe
73 df$x <<- scores[, 1]
74 df$y <<- scores[, 2]
75
76 pp <- p
77 pp <- (pp %+% df)
78 # Add layers
79 if (svalue(chk.points))
80 {
81 pp <- pp + geom_point(alpha = 0.2)
82 }
83 if (svalue(chk.smooth))
84 {
85 pp <- pp + geom_smooth()
86 }
87 # Add decision line
88 pp <- pp + geom_abline(colour = "green")
89
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90 # Adjust coordinate
91 pp <- pp + coord_cartesian(xlim = c(svalue(slider.coord), 0),
92 ylim = c(svalue(slider.coord), 0))
93 # Plot
94 print(pp)
95 }

Listing 7. Update probabilities and plot results (file twodm.R).

5.3 A Case Study: Text Classification

The task of text classification is to assign one or multiple pre-defined class labels to a tex-
tual document. It has been a very popular research topic at the end of the ’90s with the
rapid increase of text in digital form such as web pages, newswire and scientific literature
and the need of organize them. Today, classification has witnessed a new wave of inter-
est due to new technologies that user can perform or new specific tasks such as: query
classification, blog classification, patent classification, medical document classification.

For this case study, we used the Reuters-21578 collection which consists of 21,578 news
stories appeared on the Reuters newswire in 1987. The documents manually assigned to
categories are actually 12,902.

5.3.1 Creating Document Term Matrices

When dealing with text collections, there are a number of steps that are necessary to clean
noisy documents and obtain a nicely formatted machine readable dataset. We used the tm
package, a text mining package in R that gives many options to process of raw text files
into document-term matrices. Listing 8 shows the sequence of steps to load the Reuters
dataset.

1 require(tm)
2
3 # Use TextMining package to load and preprocess documents
4 loadReutersDataset <- function() {
5 cat(sprintf("load dataset...\n"))
6 reuters <- Corpus(DirSource("./data/reuters21578/"),
7 readerControl = list(reader = readReut21578XML))
8 return(reuters)
9 }

10
11 # This function preprocess an XML Corpus (tm package) into a plain text dataset.
12 preprocessDataset <- function(dataset) {
13 # Transform XML into plain text
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14 cat(sprintf("transform into plain text...\n"))
15 dataset_plain <- tm_map(dataset, as.PlainTextDocument)
16
17 # Remove extra white spaces
18 cat(sprintf("remove extra white spaces...\n"))
19 dataset_plain <- tm_map(dataset_plain, stripWhitespace)
20
21 # To lower case
22 cat(sprintf("letters to lower case...\n"))
23 dataset_plain <- tm_map(dataset_plain, tolower)
24
25 # Remove stopwords
26 cat(sprintf("remove stopwords...\n"))
27 dataset_plain <- tm_map(dataset_plain, removeWords, stopwords("english"))
28
29 # Stem words (currently not working on MAC OS X Lion)
30 # dataset_plain <- tm_map(dataset_plain, stemDocument)
31
32 return(dataset_plain)
33 }

Listing 8. Case study: load Reuters collection (file preprocess dataset.R).

In Listing 9, we show the sequence of commands to initialize a collection before starting
the two-dimensional view.

1 > source("twodm.R")
2 > # load dataset
3 > dataset <- loadReutersDataset()
4 load dataset...
5 > # transform XML documents into plain documents
6 > dataset_plain <- preprocessDataset(dataset)
7 transform into plain text...
8 remove extra white spaces...
9 letters to lower case...

10 remove stopwords...
11 > # build document-term matrix
12 > dtm <- createDocumentTermMatrix(dataset_plain)
13 > # extract matrix from corpus
14 > dataset_matrix <- extractDocumentTermMatrix(dtm)
15 > # extract labels
16 > labels <- extractLabels(dataset, "acq")
17 > # start two dimensional visualization
18 > twodm(dataset_matrix, labels)

Listing 9. Case study: loading Reuters dataset (file preprocess dataset.R)
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5.3.2 Loading Existent Term Document Matrices

Depending on the type of hardware available and on the size of the document collection,
it might be more convenient to process the dataset outside R and produce a dataset in a
sparse format: our system can handle datasets encoded in row-column-value triplets. For
example, the first lines of the reuters.matrix are shown hereby:

1 1 70 1
2 1 1020 1
3 1 1045 1
4 1 1104 1
5 1 1121 1
6 [...]

Listing 10. First line of the file reuters.matrix

This very compact representation can be loaded as a table and transformed into a sparse
matrix, as shown in Listing 11.

72 # Take in input a triplet form row,column,value
73 # and returns a sparse matrix
74 loadDataset <- function(dataset) {
75 t <- read.table(dataset)
76 return(sparseMatrix(t[,1], t[,2], x=t[,3]))
77 }

Listing 11. Case study: load reuters.matrix (file preprocess dataset.R).

5.3.3 Optimizing Parameters

The output of Listing 9 is shown in Figure 3. We intentionally left the beta prior parameters
equal to 1 to simulate a laplacian smoothing (in fact, α = β = 1 corresponds to a uniform
prior). The visualization tool immediately shows that in theory the two sets of documents
are well separated, but in practice they are misplaced with respect to the (green) decision
line (the line where P1 = P0)

By tweaking the two hyper-parameters, we can see the effects on both the plot and in the
performance panel. The results are immediately evident: the cloud of point is better aligned
with the decision line and all the performance measure have significantly increased. Note
that in this Figure we intentionally changed the transparency level of the points to highlight
the areas of higher density.
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Fig. 2. Case study: Bernoulli with Beta prior

5.3.4 Comparing Models

With the two-dimensional visualization it is possible to assess the quality of a model
quickly and compare it to other models. In Figure 4, Figure 5, the multinomial mod-
els and the Poisson model have been initialized with Laplacian smoothing (or uniform
prior). In these plots two fitted curves, one for each class, have been computed by the
geom smooth() function of the ggplot2 package. Listing 12 shows the function that
draws the actual plot.
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Fig. 3. Case study: Bernoulli with Beta prior, optimized

70 # Update the plot
71 updatePlot <- function(...) {
72 # Update dataframe
73 df$x <<- scores[, 1]
74 df$y <<- scores[, 2]
75
76 pp <- p
77 pp <- (pp %+% df)
78 # Add layers
79 if (svalue(chk.points))
80 {
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81 pp <- pp + geom_point(alpha = 0.2)
82 }
83 if (svalue(chk.smooth))
84 {
85 pp <- pp + geom_smooth()
86 }
87 # Add decision line
88 pp <- pp + geom_abline(colour = "green")
89
90 # Adjust coordinate
91 pp <- pp + coord_cartesian(xlim = c(svalue(slider.coord), 0),
92 ylim = c(svalue(slider.coord), 0))
93 # Plot
94 print(pp)
95 }

Listing 12. Case study: plot Reuters collection (file twodm.R).

In theory, when the hyper-parameters are close to the optimal values, the two lines should
be perfectly aligned and specular with respect to the decision line, for example Figure 4.

When one of the two lines (or both) intersects the decision line, it means that the model
has not been optimized. In these cases, a tweaking of the hyper-parameters, by setting the
smoothing method to prior, is required. Figure 6 shows the performance of an optimized
Poisson model. Note that at the bottom of the window how the two models are now very
close in terms of F1.
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