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1.2.4.2 Näıve Bayes Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Topological Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5.1 Self-Organizing Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5.2 Generative Topographic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.6 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.6.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.6.2 Treemap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.6.3 Hyperbolic Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.6.4 Phylogenetic Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 EnsembleMatrix and ManiMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Systematic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 iVisClassifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 ParallelTopics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.5 VisBricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.6 WHIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.7 Text Document Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Introduction

Extracting meaningful knowledge from very large datasets is a challenging task which
requires the application of machine learning methods. This task is called data mining, the
aim of which is to retrieve, explore, predict and derive new information from a given dataset.
Given the complexity of the task and the size of the dataset, users should be involved in
this process because, by providing adequate data and knowledge visualizations, the pattern
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recognition capabilities of the human can be used to drive the learning algorithm [6]. This
is the goal of Visual Data Mining: to present the data in some visual form, allowing the
human to get insight into the data, draw conclusions, and directly interact with the data [18].
In [75], the authors define visual data mining as “the process of interaction and analytical
reasoning with one or more visual representations of an abstract data that leads to the
visual discovery or robust patterns in these data that form the information and knowledge
utilised in informed decision making”.

Visual data mining techniques have proven to be of high value in exploratory data analy-
sis and they also have a high potential for exploring large databases [31]. This is particularly
important in a context where an expert user could make use of domain knowledge to either
confirm or correct a dubious classification result. An example of this interactive process is
presented in [83], where the graphical interactive approaches to machine learning make the
learning process explicit by visualizing the data and letting the user ‘draw’ the decision
boundaries. In this work, parameters and model selection are no longer required because
the user controls every step of the inductive process.

By means of visualisation techniques, researchers can focus and analyse patterns of data
from datasets that are too complex to be handled by automated data analysis methods. The
essential idea is to help researchers to examine the massive information stream at the right
level of abstraction through appropriate visual representations and to take effective actions
in real-time [47]. Interactive visual data mining has powerful implications in leveraging the
intuitive abilities of the human for data mining problems. This may lead to solutions which
can model data mining problems in a more intuitive and unrestricted way. Moreover, by
using such techniques the user also has much better understanding of the output of the
system even in the case of single test instances [1, 3].

The research field of Visual Data Mining has witnessed a constant growth and interest. In
1999, in a Guest Editor’s Introduction of Computer Graphics and Application Journal [85],
Wong writes:

All signs indicate that the field of visual data mining will continue to grow at
an even faster pace in the future. In universities and research labs, visual data
mining will play a major role in physical and information sciences in the study of
even larger and more complex scientific data sets. It will also play an active role
in nontechnical disciplines to establish knowledge domains to search for answers
and truths.

More than ten years later, Keim presents new challenges and applications [45]:

Nearly all grand challenge problems of the 21st century, such as climate change,
the energy crisis, the financial crisis, the health crisis and the security crisis,
require the analysis of very large and complex datasets, which can be done
neither by the computer nor the human alone. Visual analytics is a young active
science field that comes with a mission of empowering people to find solutions for
complex problems from large complex datasets. By tightly integrating human
intelligence and intuition with the storage and processing power of computers,
many recently developed visual analytics solutions successfully help people in
analyzing large complex datasets in different application domains.

In this chapter, we focus on one particular task of visual data mining, namely visual
classification. The classification of objects based on previously classified training data is an
important area within data mining and has many real-world applications (see Section 1.3).
The chapter is organized as follows: in this introduction, we present the requirements for Vi-
sual Classification (Section 1.1.1), a set of challenges (Section 1.1.3), and a brief overview of
some of the approaches organized by visualisation metaphors (Section 1.1.2); in Section 1.2,
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we present the main visualisation approaches for visual classification. For each approach, we
introduce at least one of the seminal works and one application. In Section 1.3, we present
some of the most recent visual classification systems which have been applied to real-world
problems. In Section 1.4, we give our final remarks.

1.1.1 Requirements for Visual Classification

Shneidermann defines the “Visual Information Seeking Mantra” as a set of tasks that the
user should perform [72]: overview first, zoom and filter, then details-on-demand. Along with
this concept, the author proposes a type by task taxonomy of information visualizations.
He lists seven tasks and seven data types. The tasks are: 1) to gain an overview of the
entire collection; 2) zoom in on items of interest; 3) filter out uninteresting items; 4) select
an item or group and get details when needed; 5) View relationships among items; 6) keep
a history of actions to support undo, replay, and progressive refinement; 7) allow extraction
of sub-collections and of the details when needed. The data types are: mono-dimensional,
two-dimensional, three-dimensional, temporal, multi-dimensional, tree, network.

In [6], Ankerst and others discuss the reasons of involving the user in the process of
classification: (i) by providing adequate data and knowledge visualizations, the pattern
recognition capabilities of the human can be used to increase the effectivity of the classifier
construction; (ii) the users have a deeper understanding of the resulting classifier; (iii) the
user can provide domain knowledge to focus the learning algorithm better. Therefore, the
main goal is to get a better cooperation between the user and the system: on the one hand,
the user specifies the task, focuses the search, evaluates the results of the algorithm and
feeds his domain knowledge directly into the learning algorithm; on the other hand, the
machine learning algorithm presents patterns that satisfy the specified user constraints and
creates appropriate visualizations.

In [9], a list of desired requirements for the visualization of the structure of classifiers
are discussed. This list addresses specific requirements for what the users should be able to
do when interacting with visual classification systems:

1. to quickly grasp the primary factors influencing the classification very little knowledge
of statistics;

2. to see the whole model and understand how it applies to records, rather than the
visualization being specific to every record;

3. to compare the relative evidence contributed by every value of every attribute;

4. to see a characterization of a given class, that is a list of attributes that differentiate
that class from others;

5. to infer record counts and confidence in the shown probabilities so that the reliability of
the classifier’s prediction for specific values can be assessed quickly from the graphics;

6. to interact with the visualization to perform classification;

7. the system should handle many attributes without creating an incomprehensible vi-
sualization or a scene that is impractical to manipulate.

1.1.2 Visualization metaphors

Representing objects in two- or three-dimensional spaces is probably the most ‘natural’
metaphor a visualization system can offer to model object relationships. This is how we
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perceive world as humans: two objects that are ‘close’ each other are probably more sim-
ilar than two objects far away. The interactive visualization and navigation of such space
becomes a means to browse and explore the dataset which match predetermined character-
istics. In this section, we present a brief overview of some of the approaches covered in this
chapter divided into two groups: approaches that represent objects using the metaphor of
proximity to indicate similarity between objects in a two-dimensional or three-dimensional
space, and other approaches which use more complex metaphors.

1.1.2.1 2D and 3D spaces

DocMINER [10] is a system which visualizes fine-granular relationships between single
objects and allows the application of different object analysis methods. The actual mapping
and visualization step uses a Self-Organizing Map (see Section 1.2.5.1). Given a distance
metric, objects are mapped into a two-dimensional space, so that the relative error of the
distances in this 2D space regarding the true distances of the objects is minimized. High-
dimensional data sets contain several attributes, and finding interesting projections can be
a difficult and time-consuming task for the analyst, since the number of possible projections
increases exponentially with the number of concurrently visualized attributes. VizRank [53]
is a method based on K-Nearest Neighbor distance [16] which is able to rank visual pro-
jections of classified data by their expected usefulness. Usefulness of a projection can then
be defined as a property that describes how well clusters with different class values are
geometrically separated. The system Bead [14] represents objects as particles in a three-
dimensional space and the relationships between objects are represented by their relative
spatial positions. In Galaxies [84], clusters of documents are displayed by reducing the high
dimensional representation to a three-dimensional scatterplot. The key measurement for
understanding this visualization is the notion of document similarity. ThemeScapes [84] is a
three dimensional plot that mimics terrain topology. The surface of the terrain is intended
to convey relevant information about topics and themes found within the corpus: eleva-
tion depicts theme strength, while valleys, cliffs and other features represent relationships
between documents. In [69], authors present the use of three-dimensional surfaces for visu-
alizing the clusters of the results of a search engine. The system lets users examine resulting
three-dimensional shapes and immediately see differences and similarities in the results.
Morpheus [62] is a tool for an interactive exploration of clusters of objects. It provides vi-
sualization techniques to present subspace clustering results such that users can gain both
an overview of the detected patterns and the understanding of mutual relationships among
clusters.

1.1.2.2 More complex metaphors

MineSet [9] provide several visualization tools that enable users to explore data and dis-
cover new patterns. Each analytical mining algorithm is coupled with a visualization tool
that aids users in understanding the learned models. Perception-Based Classification [6]
(PBC) was introduced as an interactive decision tree classifier based on a multidimensional
visualization technique. The user can selected the split attributes and split points at each
node and thus constructed the decision tree manually (see Section 1.2.6.1). This technique
not only depicts the decision tree but it also provides explanations why the tree was con-
structed this way. The Evidence Visualizer [8] can display Bayes model decisions as pies
and bar charts. In particular, the rows of pie charts represent each attribute, and each
pie chart represents an interval or value of the attribute. ExplainD [67] is a framework for
explaining decisions made by classifiers that use additive evidence. It has been applied to
different linear model such as support vector machines, logistic regression and Näıve Bayes.
The main goal of this framework is to visually explaining the decisions of machine-learned
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classifiers and the evidence for those decisions. The Class Radial Visualization [70] is an
integrated visualization system that provides interactive mechanisms for a deep analysis of
classification results and procedures. In this system, class items are displayed as squares
and equally distributed around the perimeter of a circle. Objects to be classified are dis-
played as colored points in the circle and the distance between the point and the squares
represent the uncertainty of assigning that object to the class. In [66], authors presents two
interactive methods to improve the results of a classification task: the first one is an inter-
active decision tree construction algorithm with a help mechanism based on Support Vector
Machines (SVM); the second one is a visualization method used to try to explain SVM
results. In particular, it uses a histogram of the data distribution according to the distance
to the boundary and linked, a set of scatter-plot matrices or the parallel coordinates. This
method can also be used to help the user in the parameter tuning step of SVM algorithm
and reduce significantly the time needed for the classification.

1.1.3 Challenges in Visual Classification

In [45], Keim and others discuss the challenges of the future of visualization systems.
Even though each individual application and task has its own requirements and specific
problems to solve, there are some common challenges that may be connected to the task
of visual classification. The challenges are six: scalability, uncertainty, hardware, interac-
tion, evaluation, infrastructure. Scalability is probably one of the most important future
challenges with the forthcoming ‘era of big data’. Visual solution needs to scale in size, di-
mensionality, data types, and levels of quality. The relevant data patterns and relationships
need to be visualized on different levels of details, and with appropriate levels of data and
visual abstraction. Dealing with uncertainty in visual analytics is nontrivial because of the
large amount of noise and missing values. The notion of data quality and the confidence of
the algorithms for data analysis need to be appropriately represented. The analysts need to
be aware of the uncertainty and be able to analyze quality properties at any stage of the
data analysis process. Efficient computational methods and powerful hardware are needed
to support near real time data processing and visualization for large data streams. In addi-
tion to high-resolution desktop displays, advanced display devices such as large-scale power
walls and small portable personal assistants need to be supported. Visual analytics systems
should adapt to the characteristics of the available output devices, supporting the visual
analytics workflow on all levels of operation. Novel interaction techniques are needed to fully
support the seamless intuitive visual communication with the system. User feedback should
be taken as intelligently as possible, requiring as little user input as possible. A theoretically
founded evaluation framework needs to be developed to assess the effectiveness, efficiency
and user acceptance of new visual analytics techniques, methods, and models. For a deeper
analysis of these challenges, we suggest [47].

Interaction, evaluation and infrastructure have been recently discussed in the ACM
International Conference of Tabletops and Surfaces. In [54], the authors present the devel-
opment of novel interaction techniques and interfaces for enhancing collocated multiuser
collaboration so as to allow multiple users to explore large amounts of data. They build
case studies where multiple users are going to interact with visualizations of a large data
set like biology datasets, social networks datasets, and spatial data.

1.1.4 Related works

In this section, we want to give the reader some complementary readings about surveys
on visual data mining. Compared to our, these surveys have different objectives and do not
focus on the specific problem of visual classification. These surveys discuss issues that are
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very important but go beyond the scope of this chapter. For example: how to choose the
appropriate visualization tool, advantages and disadvantages, strength and weaknesses of
each approach, how to extend basic visualization approaches.

In [18], an overview of the techniques available under the light of different categorizations
is presented. The role of interaction techniques is discussed, as well as the important question
of how to select an appropriate visualization technique for a task.

The problem of identifying adequate visual representation is also discussed in [57]. The
authors classify the visual techniques in two classes: technical and interactive techniques.
For each approach they discuss advantages and disadvantages in visualizing data to be
mined.

[11] presents how to integrate visualization and data mining techniques for knowledge
discovery. In particular, this work looks at strengths and weaknesses of information visual-
ization techniques and data mining techniques.

In [25], the authors present a model for hierarchical aggregation in information visual-
ization for the purpose of improving overview and scalability of large scale visualization. A
set of standard visualization techniques is presented and a discussion of how they can be
extended with hierarchical aggregation functionality is given.

1.2 Approaches

In this section, we present an overview of many of the most important approaches used
in data visualization that have been applied to visual classification. This survey is specifi-
cally designed to present only visual classification approaches. For each approach, we added
a reference to at least one of the seminal works and one example of an application for the
specific classification task. We did not enter into discussions on the appropriateness, advan-
tages and disadvantages of each technique, which can be found in other surveys presented
in Section 1.1.4. We present the approaches in alphabetical order: nomograms, parallel co-
ordinates, radial visualisations, scatter plots, topological maps, and trees. All the figures in
this Section were produced with R1, and the code to reproduce these plots can be freely
downloaded.2

1.2.1 Nomograms

A nomogram 3 is any graphical representation of a numerical relationships. Invented by
French mathematician Maurice d’Ocagne in 1891, the primary means of a nomogram was
to enable the user to graphically compute the outcome of an equation without doing any
calculus. Today, nomograms are often used in medicine to predict illness based on some
evidence. For example, [58] shows the utility of such a tool to estimate the probability of
diagnosis of acute myocardial infarction. In this case, the nomogram is designed in such a
way that it can be printed on paper and easily used by physicians to obtain the probability
of diagnosis without using any calculator or computer. There are a number of nomograms
used in daily clinical practice for prognosis of outcomes of different treatments especially in

1http://www.r-project.org/
2http://www.purl.org/visualclassification
3http://archive.org/details/firstcourseinnom00broduoft
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FIGURE 1.1: Nomograms. Given the age of a person and the level of cholesterol of the
patient, by drawing a straight line that connects these two points on the graph, it is possible
to read many information about survival probabilities (Y >= 1, Y >= 2, Y = 3) according
to different combinations of features.

the field of oncology [44, 81]. In Figure 1.1, an example of a nomogram for predicting the
probability of survival given factors like age and cholesterol level is shown. 4

The main benefit of this approach is simple and clear visualization of the complete model
and the quantitative information it contains. The visualization can be used for exploratory
analysis and classification, as well as for comparing different probabilistic models.

1.2.1.1 Näıve Bayes Nomogram

In [61], the authors propose the use of nomograms to visualize Näıve Bayes classifiers.
This particular visualisation method is appropriate for this type of classifiers since it clearly
exposes the quantitative information on the effect of attribute values to class probabilities
by using simple graphical objects (points, rulers and lines). This method can also be used
to reveal the structure of the Bayes classifier and the relative influences of the attribute
values to the class probability and to support the prediction.

4http://cran.r-project.org/web/packages/rms/index.html
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1.2.2 Parallel Coordinates

Parallel coordinates have been widely adopted for the visualization of high-dimensional
and multivariate datasets [39, 38]. By using parallel axes for dimensions, the parallel coor-
dinates technique can represent n-dimensional data in a 2-dimensional space; consequently,
it can be seen as a mapping from the space Rn into the space R2. The process to project
a point of the n-dimensional space into the 2-dimensional space is the following: on a two-
dimensional plane with cartesian coordinates, starting on the y-axis, n copies of the real
line are placed parallel (and equidistant) to the y-axis. Each line is labeled from x1 to xn.
A point c with coordinates (c1, c2, ..., cn) is represented by a polygonal line whose n vertices
are at (i− 1, ci) for i = 1, ..., n.

Since points that belong to the same class are usually close in the n-dimensional space,
objects of the same class have similar polygonal lines. Therefore, one can immediately see
groups of lines that correspond to points of the same class. Axes ordering, spacing and
filtering can significantly increase the effectiveness of this visualization, but these processes
are complex for high dimensional datasets [86]. In [78], the authors present an approach to
measure the quality of the parallel coordinates view according to some ranking functions.

In Figure 1.2, an example of parallel coordinates to classify the Iris Dataset 5 is shown.
The four-dimensional object has been projected onto four parallel coordinates. Flowers of
the same kind show similar polygonal patterns; however, edge cluttering is already a problem
even with this small number of objects. 6

1.2.2.1 Edge Cluttering

Although parallel coordinates is a useful visualization tool, edge clutter prevents effective
revealing of underlying patterns in large datasets [89]. The main cause of the visual clutter
comes from too many polygonal lines. Clustering lines is one of the most frequently used
methods to reduce the visual clutter and improve the perceptibility of the patterns in
multivariate datasets. The overall visual clustering is achieved by geometrically bundling
lines and forming patterns. The visualization can be enhanced by varying color and opacity
according to the local line density of the curves.

Another approach to avoid edge cluttering is angular histogram [29]. This technique con-
siders each line-axis intersection as a vector, then both the magnitude and direction of these
vectors are visualised to demonstrate the main trends of the data. Users can dynamically
interact with this new plot to investigate and explore additional patterns.

1.2.3 Radial Visualizations

A radial display is a visualization paradigm in which information is laid out on a circle,
ellipse, or spiral on the screen. Perhaps, the earliest use of a radial display in statistical
graphics was the pie chart. However, the pie chart has some limitations. In particular, when
the wedges in a pie chart are almost the same size, it is difficult to determine visually
which wedge is largest. A bar chart is generally better suited for this task. For example,
the Evidence Visualizer [13, 8] can display Bayes model decisions as pies and bar charts. In
particular, the rows of pie charts represent each attribute, and each pie chart represents an
interval or value of the attribute.

Many radial techniques can be regarded as projections of a visualization from a Cartesian
coordinate system into a polar coordinate system. The idea behind a radial visualization is
similar to the one of parallel coordinates; however, while the space needed for Parallel Co-

5http://archive.ics.uci.edu/ml/datasets/Iris
6http://cran.r-project.org/web/packages/MASS/index.html
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FIGURE 1.2: Parallel Coordinates. In this example, each object has four-dimensions and
represent the characteristic of a species of Iris flower (petal and sepal width an length in
logarithmic scale). The three types of lines represent the three kinds of Iris. With parallel
coordinates, it is easy to see common patterns among flowers of the same kind; however,
edge cluttering is already visible even with a small dataset.

ordinates increases with the number of dimensions, the space used by a radial visualisation
remains fixed by the area of the circle. An example is Radviz [35, 36] where n-dimensional
objects are represented by points inside a circle. The visualized attributes correspond to
points equidistantly distributed along the circumference of the circle. [24] presents a survey
on radial visualisation, while [22] discusses advantages and drawbacks of these methods
compared to classical Cartesian visualisation.

1.2.3.1 Star Coordinates

Star Coordinates represents each dimension as an axis radiating from the center of a
circle to the circumference of the circle [41]. A multi-dimensional object is mapped onto one
point on each axis based on its value in the corresponding dimension. StarClass [79] is a
visualisation tool allows users to visualize multi-dimensional data by projecting each data
object to a point on 2D display space using Star Coordinates.

In Figure 1.3, three five-dimensional objects are mapped on a star coordinate plot. Each
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FIGURE 1.3: Star Coordinates. Three five-dimensional objects are mapped on this star
plot. Each coordinate is one of the axis radiating from the center. In this examples, the
three objects are cars described by features like: number of cylinders, horse power, miles
per gallon. The number at the end of each axis represent the maximum value for that
dimension. Cars with similar features, have similar polygons too.

coordinate is one of the axis radiating from the center. Objects that are similar in the
original pace, have similar polygons too.

Star coordinates have been successfully used in revealing cluster structures. In [88, 87],
an approach called Hypothesis Oriented Verification and Validation by Visualization (HOV)
ioffers a tunable measure mechanism to project clustered subsets and non-clustered subsets
from a multidimensional space to a 2D plane. By comparing the data distributions of the
subsets, users not only have an intuitive visual evaluation but also have a precise evaluation
on the consistency of cluster structure by calculating geometrical information of their data
distributions.

1.2.4 Scatter Plots

Scatter plots use Cartesian coordinates to display the values of two- or three-dimensional
data. Since most problems in data mining involve data with a large number of dimensions,
dimensionality reduction is a necessary step to use this type of plots. Reduction can be
performed by keeping only the most important dimensions, that is only those that hold
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the most information and by projecting some dimensions onto others. The reduction of
dimensionality can lead to an increased capability of extracting knowledge from the data
by means of visualization, and to new possibilities in designing efficient and possibly more
effective classification schemes [82]. A survey on the methods of dimension reduction that
focus on visualizing multivariate data can be found in [26].

In Figure 1.4, a matrix of scatterplots shows all the possible combinations of features
for the Iris Dataset. Even though the three species of flowers are not linearly separable,
it is possible to study what pairs of features allow for a better separation. Even with this
relatively few number of items, the problem of overlapping points is already visible.

In [46], the authors discuss the issue of the high degree of overlap in scatter plots in
exploring large data sets. They propose a generalization of scatter plots where the analyst
can control the degree of overlap allowing the analyst to generate many different views
for revealing patterns and relations from the data. In [78], an alternative solution to this
problem is given by presenting a way to measure the quality of the scatter plots view
according to some ranking functions. For example, a projection into a two-dimensional
space may need to satisfy a certain optimality criterion that attempts to preserve distances
between the class-means. In [20], a kind of projections that are similar to Fishers linear
discriminants, but faster to compute, are proposed. In [7], a type of plot which projects
points on a two-dimensional plane called similarity-dissimilarity plot is discussed. This plot
provides information about the quality of features in the feature space and classification
accuracy can be predicted from the assessment of features on this plot. This approach has
been studied on synthetic and real life datasets to prove the usefulness of the visualisation
of high dimensional data in biomedical pattern classification.

1.2.4.1 Clustering

In [19], the authors compare two approaches for projecting multidimentional data onto
a two-dimensional space: Principal Component Analysis (PCA) and random projection.
They investigate which of these approaches fits best nearest neighbour classification when
dealing with two types of high-dimensional data: images and micro arrays. The result of
this investigation is that PCA is more effective for severe dimensionality reduction, while
random projection is more suitable when keeping a high number of dimensions. By using one
of the two approaches, the accuracy of the classifier is greatly improved. This shows that the
use of PCA and random projection, may lead to more efficient and more effective, nearest
neighbour classification. In [71], an interactive visualisation tool for high-speed power system
frequency data streams is presented. A k-median approach for clustering is used to identify
anomaly events in the data streams. The objective of this work is to visualize the deluge
of expected data streams for global situational awareness, as well as the ability to detect
disruptive events and classify them. [2] discusses a interactive approach for nearest neighbor
search in order to choose projections of the data in which the patterns of the data containing
the query point are well distinguished from the entire data set. The repeated feedback of the
user over multiple iterations is used to determine a set of neighbors which are statistically
significant and meaningful.

1.2.4.2 Näıve Bayes Classification

Näıve Bayes classifiers are one of the most used data mining approaches for classification.
By using Bayes’ rule, one can determine the posterior probability Pr(c|x) that an object x
belong to a category c in the following way:

Pr(c|x) =
Pr(x|c)Pr(c)

Pr(x)
(1.1)
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FIGURE 1.4: Scatter plots. In the Iris Dataset, flowers are represented by four-dimensional
vectors. In this figure, the matrix of scatterplots presents all the possible two-dimensional
combinations of features. The shade of grey of each point represents the kind of Iris. Some
combinations allows for a better separation between classes; nevertheless, even with this
relatively few number of items, the problem of overlapping points is already visible.

where Pr(x|c) is the likelihood function, P (c) the prior probability of the category c, and
P (x) the probability of an object x.

‘Likelihood projections’ is an approach which uses the likelihood function P (x|c) for
nonlinear projections [76]. The coordinates of this ‘likelihood space’ are the likelihood func-
tions of the data for the various classes. In this new space, the Bayesian classifier between
any two classes in the data space can be viewed as a simple linear discriminant of unit slope
with respect to the axes representing the two classes. The key advantage of this space is that
we are no longer restricted to considering only this linear discriminant. Classification can
now be based on any suitable classifier that operates on the projected data. In [68], the like-
lihood space is used to classify speech audio. The projection of the audio data results in the
transformation of diffuse, nebulous classes in high-dimensional space into compact clusters
in the low-dimensional space that can be easily separated by simple clustering mechanisms.
In this space, decision boundaries for optimal classification can be more easily identified
using simple clustering criteria
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In [21], a similar approach is used as a visualization tool to understand the relationships
between categories of textual documents, and to help users to visually audit the classier and
identify suspicious training data. When plotted on the Cartesian plane according to this
formulation, the documents that belong to one category have specific shifts along the x-axis
and the y-axis. This approach is very useful to compare the effect of different probabilistic
models like Bernoulli, multinomial or Poisson. The same approach can be applied to the
problem of parameters optimization for probabilistic text classifiers, as discussed by [63].

1.2.5 Topological Maps

Topological maps are a means to project an n-dimensional input data into a two-
dimensional data by preserving some hidden structure or relation among data [49]. The auto-
matic systems which make this projection can automatically form two- or three-dimensional
maps of features that are present in sets of input signals. If these signals are related met-
rically in some structured way, the same structure will be reflected in the low dimensional
space. In [64], the authors show how traditional distance-based approaches fail in high-
dimensional spaces and propose a framework that supports topological analysis of high
dimensional document point clouds. They describe two-stage method for topology-based
projections from the original high dimensional information space to both 2D and 3D visu-
alizations.

1.2.5.1 Self-Organizing Maps

A Self-Organizing Map (SOM) is a kind of neural network which preserve the topological
properties of the input space by means of a neighborhood function [50]. It consists of units
arranged as a two-dimensional or hexagonal grid where each unit represent a vector in the
data space. During the training process, vectors from the dataset are presented to the map in
random order and the unit with the highest response to a chosen vector and its neighborhood
are adapted in such a way as to make them more responsive to similar inputs. SOMs are
very useful for visualising multidimensional data and the relationships among the data on
a two-dimensional space. For example, [60] presents a typical result from the application of
self-organizing maps to the problem of text classification. The grid of units represent the
document collection, each unit being a class. Once the network has been trained, the grid
shows how the different classes are ‘similar’ to each other in terms of the distance on the
grid.

In Figure 1.5, the result of the training of a SOM on a dataset of wines is shown. Each
wine, described by a vector of thirteen features, has been projected on a 5 by 5 hexagonal
grid. The shape of each point (triangle, circle, cross) represent the original category of the
wine, the shade of grey of each activation unit is the predicted label. 7

Recently, SOMs have been used to study weather analysis and prediction. Since weather
patterns have a geographic extent, weather stations that are geographically close to each
other should reflect these patterns. In [28], data collected by weather stations in Brazil are
analysed to find weather patterns. Another important field of application of SOMs is DNA
classification. In [59], the authors present an application of the hyperbolic SOM, a Self-
Organizing Maps which visualises results on a hyperbolic surface. A hyperbolic SOM can
perform visualisation, classification and clustering at the same time as a SOM; hyperbolic
SOMs have the potential to achieve much better low-dimensional embeddings, since they
offer more space due to the effect, that in a hyperbolic plane the area of a circle grows
asymptotically exponential with its radius. Moreover, it also incorporates links between

7http://cran.r-project.org/web/packages/som/
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FIGURE 1.5: Self Organizing Maps. A 5 by 5 hexagonal SOM has been trained on a
dataset of wines. Each point (triangle, circle, or cross) represents a wine which originally is
described by a 13-dimensional vector. The shape of the point represents the category of the
wine, the shade of grey of each activation unit (the big circles of the grid) is the predicted
category. Wines that are similar in the 13-dimensional space are close to each other on this
grid.

neighbouring branches which, in this particular research area, are very useful to study gene
transfers in DNA.

1.2.5.2 Generative Topographic Mapping

Instead looking for spatial relations, like SOMs, one may think of correlations between
the variables of the dataset. One way to capture this hidden structure is to model the
distribution of the data in terms of hidden variables. An example of this approach is fac-
tor analysis, which is based on a linear transformation from data space to latent space.
In [12], the authors extend this concept of a hidden variable framework into a Generative
Topographic Mapping (GTM). The idea is very similar to the SOMs; however, the most
significant difference between the GTM and SOM algorithms is that GTM defines an ex-
plicit probability density given by the mixture distribution of variables. As a consequence,
there is a well-defined objective function given by the log likelihood, and convergence to
a local maximum of the objective function is guaranteed by the use of the Expectation
Maximization algorithm.

In [4], GTM is to cluster motor unit action potentials for the analysis of the behavior
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of the neuromuscular system. The aim of the analysis is to reveal how many motor units
are active during a muscle contraction. This work compares the strength and weaknesses of
GTM and principal component analysis (PCA), an alternative multidimensional projection
technique. The advantage of PCA is that the method allows the visualization of objects
in a Euclidian space where the perception of distance is easy to understand. On the other
hand, the main advantage of the GTM is that each unit may be considered as an individual
cluster, and the access to these micro-clusters may be very useful for elimination or selection
of wanted or unwanted information.

1.2.6 Trees

During the 1980s, the appeal of graphical user interfaces encouraged many developers to
create node-link diagrams. By the early 1990s, several research groups developed innovative
methods of tree browsing that offered different overview and browsing strategies. For a
history of the development of visualisation tools based on trees refer to [74]. In this section,
we present four variants of visualisation of trees: decision trees, tree maps, hyperbolic trees,
and phylogenetic trees.

1.2.6.1 Decision Trees

A decision tree, also known as classification tree or regression tree, is a technique for
partitioning data into homogeneous groups. It is constructed by iteratively partitioning the
data into disjoint subsets, and one class is assigned to each leave of the tree. One of the first
methods for building decision trees was CHAID [43]. This method partitions the data into
mutually exclusive, and exhaustive, subsets that best describe the dependent variables.

In Figure 1.6, an example of a decision tree is shown. The dataset contains information
about cars taken from the April, 1990 issue of Consumer Reports. 8 Each node of the tree
predicts the average car mileage given the price, the country, the reliability, and the car
type. 9 In this example, given the price and the type of the car, we are able to classify the
car in different categories of gas consumption by following a path from the root to a leaf.

Decision tree visualization and exploration is important for two reasons: (i) it is crucial
to be able to navigate through the decision tree to find nodes that need to be further
partitioned; (ii) exploration of the decision tree aids the understanding of the tree and the
data being classified. In [5], the authors present an approach to support interactive decision
tree construction. They show a method for visualising multi-dimensional data with a class
label such that the degree of impurity of each node with respect to class membership can
be easily perceived by users. In [56], a conceptual model of the visualization support to
the data mining process is proposed, together with a novel visualisation of decision tree
classification process with the aim of exploring humans pattern recognition ability and
domain knowledge to facilitate the knowledge discovery process. PaintingClass is a different
interactive approach where the user interactively edits projections of multi-dimensional data
and “paints” regions to build a decision tree [80]. The visual interaction of this systems
combines Parallel Coordinates and Star Coordinates by showing this ‘dual’ projection of
the data.

1.2.6.2 Treemap

The Treemap visualization technique [73] makes use of the area available on the display,
mapping hierarchies onto a rectangular region in a space-filling manner. This efficient use

8http://stat.ethz.ch/R-manual/R-devel/library/rpart/html/cu.summary.html
9http://cran.r-project.org/web/packages/rpart/
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FIGURE 1.6: Decision Trees. Each node of the tree predicts the average car mileage given
the price, the country, the reliability, and the car type according to the data of from April,
1990 issue of Consumer Reports. In this example, given the price and the type of the car,
we are able to classify the car in different categories of gas consumption.

of space allows large hierarchies to be displayed and facilitates the presentation of semantic
information. Each node of a tree map has a weight which is used to determine the size of a
nodes bounding box. The weight may represent a single domain property, or a combination
of domain properties. A nodes weight determines its display size and can be thought of as
a measure of importance or degree of interest [40].

In Figure 1.7, a tree map shows the gross national income per country. Each box (the
node of the tree) represents a country, the size of the box is proportional to the size of the
population of that country. The shade of grey of the box reflects the gross national income
of the year 2010. 10

Treemaps can also displayed in 3D [30]. For example, patent classification systems in-
tellectually organize the huge number of patents into pre-defined technology classes. To
visualize the distribution of one or more patent portfolios, an interactive 3D treemap can
be generated, in which the third dimension represents the number of patents associated
with a category.

1.2.6.3 Hyperbolic Tree

Hyperbolic geometry provides an elegant solution to the problem of providing a focus and
context display for large hierarchies [52]. The hyperbolic plane has the room to layout large
hierarchies, with a context that includes as many nodes as are included by 3D approaches
and with modest computational requirements. The root node in the center with first-level
nodes arranged around it in a circle or oval. Further levels are placed in larger concentric
circles or ovals,thus preserving a two-dimensional planar approach. To ensure that the entire
tree is visible, outer levels are shrunk according to a hyperbolic formula. In [37], hyperbolic

10http://cran.r-project.org/web/packages/treemap/index.html
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FIGURE 1.7: Treemaps. This plot represents a dataset of 2010 about population size and
gross national income for each country. The size of each node of the treemap is proportional
to the size of the population, while the shade of grey of each box represent the gross national
income of that country. The countries of a continent are grouped together into a rectangular
area.

trees are used for spam classification. The authors propose a Factors Hyperbolic Tree based
algorithm that, unlike the classical word and lexical matching algorithms, handles spam
filtering in a dynamic environment by considering various relevant factors.

1.2.6.4 Phylogenetic Trees

Phylogenetic trees are an alternative approach for the construction of object maps tar-
geted at reflecting similarity relationships [17]. By means of a distance matrix, the aim is
inferring ancestors for a group of objects and reconstructing the evolutionary history of
each object. The main advantages of the approach are improved exploration and more clear
visualization of similarity relationships, since it is possible to build an ancestry relation-
ships from higher to lower content correlation. In [65], the authors present a phylogenetic
tree to support image and text classification. They discuss some challenges and advantages
for using this type of visualization. A set of visualisation tools for visual mining of images
and text is made possible by the properties offered by these trees complemented by the
possibilities offered by multidimensional projections.
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1.3 Systems

One of the most important characteristic of a visual classification system is that users
should gain insights about the data [15]. For example, how much the data within each class
varies, which classes are close to or distinct from each other, see which features in the data
play an important role to discriminate one class from another, and so on. In addition, the
analysis of misclassified data should provide a better understanding of which type of classes
are difficult to classify. Such insight can then be fed back to the classification process in
both the training and the test phases.

In this section, we present a short but meaningful list of visual classification systems that
have been published in the last five years and that fulfil most of the previous characteristics.
The aim of this list is to address how visual classification systems support automated
classification for real-world problems.

1.3.1 EnsembleMatrix and ManiMatrix

EnsembleMatrix and ManiMatrix are two interactive visualisation systems that allow
users to browse and learn properties of classifiers by comparison and contrast and build
ensemble classification systems. These systems are specifically designed for Human and
Computer Interaction researchers who could benefit greatly from the ability to express user
preferences about how a classifier should work.

EnsembleMatrix [77] allows users to create an ensemble classification system by discov-
ering appropriate combination strategies. This system supplies a visual summary that spans
multiple classifiers and helps users understand the models’ various complimentary proper-
ties. EsnembleMatrix provides two basic mechanisms to explore combinations of classifiers:
(i) partitioning, which divides the class space into multiple partitions; (ii) arbitrary linear
combinations of the classifiers for each of these partitions.

The ManiMatrix (Manipulable Matrix) system is an interactive system that enables re-
searchers to intuitively refine the behavior of classification systems [42]. ManiMatrix focuses
on the manual refinement on sets of thresholds that are used to translate the probabilistic
output of classifiers into classification decisions. By appropriately setting such parameters
as the costs of misclassification of items, it is possible to modify the behavior of the algo-
rithm such that it is best aligned with the desired performance of the system. ManiMatrix
enables its users to directly interact with a confusion matrix and to view the implications
of incremental changes to the matrix via a realtime interactive cycle of reclassification and
visualization.

1.3.2 Systematic Mapping

Systematic mapping provides mechanisms to identify and aggregate research evidence
and knowledge about when, how, and in what context technologies, processes, methods or
tools are more appropriate for software engineering practices. [27] proposes an approach,
named Systematic Mapping based on Visual Text Mining (SM-VTM), that applies VTM
to support the categorization and classification in the systematic mapping.

The authors present two different views for systematic mapping: cluster view and chrono-
logical view. Users can explore these views and interact with them, getting information to
build other visual representations of a systematic map. A case study shows that there is a
significant reduction of effort and time in order to conduct text categorization and classi-
fication activities in systematic mapping if compared with manual conduction. With this
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approach, it is possible to achieve similar results to a completely manual approach without
the need of reading the documents of the collection.

1.3.3 iVisClassifier

The iVisClassifier system [15] allows users to explore and classify data based on Linear
Discriminant Analysis (LDA), a supervised reduction method. Given a high-dimensional
dataset with cluster labels, LDA projects the points onto a reduced dimensional representa-
tion. This low dimensional space provides a visual overview clusters structure. LDA enables
users to understand each of the reduced dimensions and how they influence the data by
reconstructing the basis vector into the original data domain.

In particular, iVisClassifier interacts with all the reduced dimensions obtained by LDA
through parallel coordinates and a scatter plot. By using heat maps, iVisClassifier gives
an overview about clusters relationships both in the original space and in the reduced
dimensional space. A case study of facial recognition shows that iVisClassifier facilitates
the interpretability of the computational model. The experiments showed that iVisClassifier
can efficiently support a user-driven classification process by reducing humans search space,
e.g., recomputing LDA with a user-selected subset of data and mutual filtering in parallel
coordinates and the scatter plot.

1.3.4 ParallelTopics

When analyzing large text corpora, questions pertaining to the relationships between
topics and documents are difficult to answer with existing visualisation tools. For example,
what are the characteristics of the documents based on their topical distribution? and what
documents contain multiple topics at once? ParallelTopics [23] is a visual analytics system
which integrates interactive visualization with probabilistic topic model for the analysis of
document collections.

ParallelTopics makes use of the Parallel Coordinate metaphor to present the probabilis-
tic distribution of a document across topics. This representation can show how many topics
a document is related to and also the importance of each topic to the document of inter-
est. ParallelTopics also supports other tasks, which are also essential to understanding a
document collection, such as summarizing the document collection into major topics, and
presenting how the topics evolve over time.

1.3.5 VisBricks

The VisBricks visualization approach provides a new visual representation in the form of
a highly configurable framework, that is able to incorporate any existing visualization as a
building block [55]. This method carries forward the idea of breaking up the inhomogeneous
data into groups to form more homogeneous subsets, which can be visualized independently
and thus differently.

The visualization technique embedded in each block can be tailored to different analysis
tasks. This flexible representation supports many explorative and comparative tasks. In
VisBricks, there are two level of analysis: the total impression of all VisBricks together
gives a comprehensive high-level overview of the different groups of data, while each VisBrick
independently shows the details of the group of data it represents.
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1.3.6 WHIDE

The Web-based Hyperbolic Image Data Explorer (WHIDE) system is a Web visual data
mining tool for the analysis of multivariate bioimages [51]. This kind of analysis spans from
the analysis of the space of the molecule (i.e. sample morphology) and molecular colocation
or interaction. WHIDE utilises hierarchical hyperbolic self-organizing maps (H2SOM), a
variant of the SOM, in combination with Web browser technology.

WHIDE has been applied to a set of bio-images recorded to show field of view in tissue
sections from a colon cancer study and we compare tissue from normal colon with tissue
classified as tumour. The result of the use of WHIDE in this particular context has shown
that this system efficiently reduces the complexity of the data by mapping each of the pixels
to a cluster, and provides a structural basis for a sophisticated multimodal visualization,
which combines topology preserving pseudo-coloring with information visualization.

1.3.7 Text Document Retrieval

In [33], the authors describe a system for the interactive creation of binary classifiers to
separate a dataset of text document into relevant and non-relevant documents for improving
information retrieval tasks. The problem they present is twofold: on the one hand, supervised
machine learning algorithms rely on labeled data, which can be provided by domain experts;
on the other hand, the optimisation of the algorithms can be done by researchers. However,
it is hard to find experts both in the domain of interest and in machine learning algorithms.

Therefore, the authors compare three approaches for interactive classifier training. These
approaches incorporate active learning to various degrees in order to reduce the labeling
effort as well as to increase effectiveness. Interactive visualization is then used for letting
users explore the status of the classifier in context of the labeled documents, as well as for
judging the quality of the classifier in iterative feedback loops.

1.4 Summary and Conclusions

The exploration of large data sets is an important problem which have many complica-
tions. By means of visualisation techniques, researchers can focus and analyse patterns of
data from datasets that are too complex to be handled by automated data analysis methods.
Interactive visual classification has powerful implications in leveraging the intuitive abilities
of the human for this kind of data mining task. This may lead to solutions which can model
classification problems in a more intuitive and unrestricted way.

The ‘Big Data Era’ poses new challenges for visual classification since visual solution
will need to scale in size, dimensionality, data types, and levels of quality. The relevant data
patterns and relationships will need to be visualized on different levels of details, and with
appropriate levels of data and visual abstraction.

The integration of visualization techniques with machine learning techniques is one of
the many possible research paths in the future. This is confirmed by a recent workshop
named “Information Visualization, Visual Data Mining and Machine Learning” [48] the
aim of which was to tighten the links between the two communities in order to explore how
each field can benefit from the other and how to go beyond current hybridization successes.
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