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Abstract

Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy
studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their
lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development
(blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates
and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses
structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose
into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two
reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and
Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the
Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration
of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define
the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual
development. We invite the scientific community to use this resource as a reference for the anatomy and developmental
ontology of B. schlosseri and encourage recommendations for updates and improvements.
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Introduction

Ascidiacea is a class of marine organisms belonging to the

chordate subphylum Tunicata, which is a sister group of

Vertebrata [1–3]. Ascidians species encompass solitary and

colonial forms, and can adopt different reproductive strategies to

develop an adult body through different ontogenetic pathways.

Following embryonic development, a swimming larva with

structural chordate characteristics - a notochord, dorsal neural

tube, segmented musculature and gill slits - settles on a suitable

substrate and metamorphoses into a sessile filter feeding zooid,

losing most of its morphological chordate characteristics [4]. After

metamorphosis, the oozooid (zooid derived from a fertilized egg)

begins a lifelong, recurring asexual reproduction through blasto-

genesis or budding, which eventually gives rise to genetically

identical individuals, the blastozooids (zooids derived from

blastogenesis) [5,6].

Among colonial ascidians, the species Botryllus schlosseri has been

described and comprehensively studied for more than half a

century [5–7]. In B. schlosseri, the larva already bears one bud,

which grows on one side of the newly settled oozooid and forms

the first adult blastozooid. The latter is then able to produce

several lateral buds. This modality of blastogenesis is called

‘‘palleal’’ budding. The colony of B. schlosseri is characterized by

synchronized waves of budding cycles accompanied by regression

and resorption of the filtering adults. After several blastogenetic

cycles, the colony organizes itself in star-shaped systems of 5–15

clonal blastozooids arranged around a common cloacal, excurrent

siphon. All blastozooids are embedded in a common tunic and

connected by a vascular system. Each adult blastozooid bears one

to several buds on which the new generation of young budlets is

developing (reviewed in [5]).

In the last couple of decades B. schlosseri has emerged as a model

because of its extraordinary regenerative plasticity [8–14], and its

peculiar allorecognition system, which makes it an ideal archetype

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e96434

http://creativecommons.org/licenses/by/4.0/
http://www.istruzione.it
http://www.unipd.it
http://ec.europa.eu/research/mariecurieactions/
http://www.afm-telethon.com/
http://www.upmc.fr/
http://www.jsps.go.jp/english/e-grants/
www.nih.gov
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0096434&domain=pdf


to explore the evolutionary origin of an adaptive immune system

[15–22]. The potential to track in vivo long-lived adult germ and

somatic stem cells has advanced B. schlosseri as a model to study the

biology of stem cell parasitism, chimerism [23–32], and ageing

related phenomena [33–37]. Due to its ability to maintain colony

homeostasis, B. schlosseri has also been studied as a reliable model

for in vivo studies of apoptosis and phagocyte dynamics [38–42].

Because of these intrinsic characteristics and the potential uses

of this model, numerous efforts have been combined to develop

and adapt techniques and protocols to facilitate the study of B.

schlosseri. The anatomy and histology of the blastozooid has been

described [40,43–50]; and basic molecular tools have been

developed, including development of genetically defined lines

[51,52]; morpholino and siRNA knockdown [9,13,18,19,53,54],

transplantation and in vivo tracking of cells [23,27,30,41]. In

addition, vast transcriptome datasets have been generated [3,55–

57], and genome has been assembled [3]. From these databases,

the initial gene ontology, annotation and assignment to chromo-

somes were presented, exponentially enriching the accessibility to

molecular markers.

The community of scientists interested in B. schlosseri as a model

organism has increased due to the availability of tools and the

applicability of topics like stem cell and regenerative biology,

ageing and immunity. However, despite the solid morphological

background available, the distinctiveness of the asexual develop-

ment of B. schlosseri lacks a straightforward and comprehensive key.

In an effort to standardize and define the life cycle of this

organism, a common staging system has been adopted by the

Tunicate community, published in a comprehensive review by

Manni et al. [5]. Based on these premises, and the knowledge

collected in the last decades we established the Botryllus schlosseri

Ontology of Development and Anatomy (BODA). BODA presents

the first ontology for an asexual model of development in

bilaterians and particularly in chordates. It follows the existing

examples of the embryonic anatomy and developmental ontologies

of the solitary ascidian species: Ciona intestinalis, Ciona savygni,

Halocynthia roretzi, and Phallusia mamillata̧ all widely used as models

for embryology [58–61].

The Botryllus ontology is presented as an open and implemen-

table automated retrieval system that can be integrated with

available biological information (for example gene expression

obtained by in situ hybridization) and improved and updated upon

the release of new data.

Materials and Methods

The BODA types, synonyms, definitions and information about

developmental events and anatomical entities have been accumu-

lated from textbooks, journals and scientific observations. This

information has been collected and formatted in two excel files:

one file on anatomy, the other on development. BODA was built

in OBO format by using the open source graphical ontology editor

OBO-edit ([62], Fig. 1). Top-level anatomical structures, devel-

opment events and corresponding definition are based on main

nodes of the Ciona intestinalis ontology [63].

Life Cycle of B. schlosseri
The ascidian Botryllus schlosseri (family Styelidae, order Stolido-

branchiata) forms colonies composed of several zooids embedded

in a common tunic (Figs. 2, 3). In adult zooids mature eggs ovulate

and move into the peribranchial chamber, where they are

fertilized by the sperm of another colony. Zooids are sequentially

hermaphroditic, i.e. testes mature later than eggs so self-

fertilization is usually prevented. Embryos develop in the

peribranchial chamber and are held in situ by a placental cup

(Fig. 2). After about a week of gestation (20uC; [46]), a swimming

tadpole larvae is released through the atrial aperture of the

parental zooid. Within 36–48 hours, the anterior papillae adheres

to a suitable substrate, resorbs the tail, and metamorphoses into a

fully functional oozooid, approximately 0.5 mm in length.

Through blastogenesis, the oozooid, which represents the founder

individual (Fig. 2), generates a colony composed of zooids, all of

which share the same genotype, and are in fact clones.

In a colony, three blastogenetic generations usually coexist: the

adult zooids, their buds, also called primary buds, and the

budlets, or secondary buds, sprouting from the primary buds. The

development of buds and budlets is highly synchronized within

the colony (Fig. 3): during the stage referred to as take-over, all

adults are synchronously resorbed and replaced by primary buds,

while secondary buds become primary buds and give rise to a

new budlet generation [14]. This cyclical colonial phase

represents the generation change. During take-over old zooids

contract and undergo massive, diffuse apoptosis of their tissues

[38]. The blastogenetic cycle starts with the opening of the

siphons of the new adult zooids and ends with the conclusion of

the take-over phase, when the next blastogenetic generation

reaches functional maturity. This time interval, in which buds

and budlets gradually grow, takes approximately one week at 18–

19uC [6,64].

Results

BODA can be downloaded as OBO file from OBO Foundry

portal [65], from the Ontology Bioportal (http://bioportal.

bioontology.org/ontologies/BODA) [66] or from the Tunicate

Portal (http://www.tunicate-portal.org/wordpress/

?page_id = 145). Users can also browse it directly using the

ontology bioportal and/or NISEED platform (Fig. 4).

The BODA tree is divided in two ‘‘classes’’: an anatomical
entity (BSA:0000034) and a development entity
(BSD:0000034). Identification codes are respectively indicated as

‘‘BSA’’, if entities are referred to the B. schlosseri anatomy, or

‘‘BSD’’, if entities are referred to the B. schlosseri development.

From now on, each entity is written in bold when introduced for

the first time, relations between entities in italics, with identifica-

tion codes between brackets and entity definitions between

quotation marks.

Since the oozooid, i.e. the zooid (BSA:0000040) derived from

the metamorphoses of the tadpole larva, is the founder of the

colony (BSA:0000041), some colonial anatomical entities of the

ontology find their origin (i.e., develops from) directly from oozooid or

larval structures. For instance, the colonial circulatory system
(BSA:0000044) is a structure part of the colony. The system

originates from the larval blood ampullae (BSA:0000045) and

extends into the tunic (BSA:0000042) forming the marginal
vessel (BSA:0000047) and radial vessels (BSA:0000048)

during metamorphosis and oozooid life.

In healthy colonies, and in normal conditions, budding always

occurs on stereotyped regions of the peribranchial epithe-
lium (BSA:0000115) of the parental zooid: anterior right side,

anterior left side, posterior right side and posterior left side. In

general, the anterior-right side has a higher blastogenic

potential than the other ones [5,6,67–69]. In order to stage a

colony, only the development of the anterior-right bud was

considered for the construction of the ontology of the anatomy

and development.

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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The Development Ontology of Botryllus schlosseri
Blastogenesis

The Development Ontology we propose is based on in vivo and

histological observations following the staging method introduced

by Berrill [70] and later modified by Sabbadin [6]. Most of

anatomical studies describing bud development follow this staging

method. According to this method, 11 stages identify the

blastozooids development (see Manni et al., 2007 for a detailed

description of the stages of blastogenesis; Figs. 3, 5–7).

The class developmental stage depicts the stages of blastogen-

esis. Each stage possesses further subdivisions expressing the

relationships between the anatomical structures and their devel-

opment.

Stages 1–6 characterizes the budlet development (Figs. 3, 5).

The first budlet rudiment appears as a thickened disc of the

peribranchial epithelium on the lateral body wall of a bud. The

budlet also comprises the overlying epidermis (stage 1,

BSD:0000012). The two epithelia delineate the mantle
(BSA:0000097). The two epithelia (and the mantle between them)

then organize into a double vesicle (an inner and an outer vesicle)

(stages 2, BSD:0000013, and 3, BSD:0000014) and from the

inner vesicle, most of the bud structures differentiate (stage 4,

BSD:0000015). At the same stage, the heart rudiment forms

ventrally on the right side of the branchial rudiment, as a compact

mass of mesenchymal cells. At stage 5(BSD:0000016), the

stomach becomes recognizable as posterior evagination of the

branchial rudiment, while a ventral extension of epidermis

penetrates the tunic forming the radial vessel (stage 6,

BSD:0000017). Stages 7–8 define the (primary) bud. The stigmata

rudiments begin to form and the rudiments of the new budlets

appear on the mantle of the bud at stage 7. The heart starts

beating at stage 8. The adult begins its functional activity at stage

9, upon the opening of the siphons. Stage 10 refers to sexually

mature zooids (see below). The sole difference with respect to stage

9 is related specifically to gonad and gamete differentiation, and as

far as blastogenetic development is concerned, stages 9 and 10 are

equivalent. Stage 11 refers to the take-over and is subdivided in

four phases [71]: 111, siphons retraction and closure; 112, general

shrinkage of zooids; 113, further contraction of zooids and

branchial dissolution; 114, heart beat stops.

Figure 1. The workflow adopted to build BODA. A. Schemes illustrating the workflow adopted to build BODA requiring strict collaboration
between experts in B. schlosseri biology and biocurators. B. An Excel page and its corresponding display on OBO-edit. In the latter, you can see
different visualization of the relationship ‘‘tunic is part of colony’’ (left panel of the OBO-Edit display); the definition and references of the term ‘‘tunic’’
are in the right panel (where you can also find synonyms, comments, etc, where introduced).
doi:10.1371/journal.pone.0096434.g001

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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In the BODA, we indicated:

i) secondary bud stages with a single number (from 1 to 6);

ii) primary bud stages with a combination of two numbers, the

first one (underlined) referring to primary buds and the

second to secondary buds: 7/1 (BSD:0000018), 8/2
(BSD:0000019), 8/3 (BSD:0000020), 8/4 (BSD:0000021),

8/5 (BSD:0000022), 8/6 (BSD:0000023);

iii) adult stages with a combination of three numbers, indicating

filtering zooids (underlined), primary, and secondary buds,

respectively 9/7/1 (BSD:0000024), 9/8/2 (BSD:0000025),

9/8/3 (BSD:0000026), 9/8/4 (BSD:0000027), 9/8/5
(BSD:0000028), 9/8/6 (BSD:0000029), and 11/8/6. As

stated above, the takeover phase is subdivided further in four

sub-s tages : 111/8/6 (BSD:0000030) , 112/8/6
(BSD:0000031), 113/8/6 (BSD:0000032), 114/8/6
(BSD:0000033).

Sometimes bud and budlet stages are indicated with the

combination of the three numbers, underlining the second or

third number, respectively.

The stage of the colony is indicated by three numbers

corresponding to the stage of each generation: the first to adult

filtering zooids, the intermediate to primary buds, and the last to

secondary buds. 11/8/6 (or 11/9/6, when the newly developed

adult coexists with the regressing adult and the budlet) indicates

the take-over stage.

BODA also allows the comparison between Sabbadin’s method

and the Watanabe (1953) staging method [72], subsequently

modified by Lauzon et al. 2002 [38] (Fig. S1). These staging

methods are introduced as ‘‘synonyms’’ of each Sabbadin stage.

The Watanabe staging method distinguishes four recurrent phases

(A to D), the latter corresponding to takeover (see [5], for a

detailed comparison among staging methods).

Botryllus schlosseri Organization and the Anatomy
Ontology

The Botryllus_anatomy class uses three high level terms to

construct the Anatomy Ontology: cell (BSA:0000035), organism
(BSA:0000038) and structure (BSA:0000037). The ‘‘cell’’ branch

includes the blood cell (BSA:0000128) and the tunic cell
(BSA:0000043). The ‘‘organism’’ branch describes the colony as a

whole, considered as a ‘‘super-individual’’, and the zooid. Within

the branches ‘‘colony’’ and ‘‘zooid’’, all the anatomical entities are

listed in alphabetical order (as in the high level term ‘‘structure’’).

Each entity is linked to the developmental stages of blastogenesis

by means of the following ‘‘relations’’: develops from, end stage, included

in, part of, preceded by and start stage (see successive paragraph). Each

anatomical entity has been defined according to the Annotated

Glossary by Kott [73,74] and other relevant papers on ascidian

anatomy [75].

Figure 2. Scheme of Botryllus schlosseri life cycle. Ozooid and blastozooids are shown in a dorsal view. The colony is represented as formed by a
single system of four adult blastozooids each bearing two buds, that in turn bear two budlets; all the other drawings represent zooids oriented with
the anterior region up; modified from [95].
doi:10.1371/journal.pone.0096434.g002

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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Further subdivisions define the colony into the tunic
(BSA:0000042), the colonial circulatory system
(BSA:0000044) and the system (BSA:0000049). The latter is a

star shaped group of two to several filter feeding, adult

blastozooids (BSA:0000050) with a central common cloacal
siphon (BSA:0000126), into which individual atrial siphons

Figure 3. Blastogenetic cycle of B. schlosseri. A. Scheme showing the colonial cycle and the corresponding stages of blastozooid development
(sketched in ventral view, irrespective of the true reciprocal per-lateral orientation between the three generations). Colony stages are indicated by a
combination of three numbers separated by slashes (black); stages of blastozooids of first, second and third generation are indicated in blue, purple
and orange, respectively. The blastozooid begins its life as a small secondary bud at stage 1, becomes a primary bud passing from stage 6 to 7/1, and
adult passing from stage 8/6 to 9/7/1. Its regression occurs at stage 11/8/6. The take-over represents the colonial phase in which changes of
generation occurs. In blastozooids, anterior at top and posterior at bottom (modified from [40]). B. Ventral view of a colony of B. schlosseri,
constituted of two systems. Scale bar: 1 mm. C. Scheme of a system (dorsal view) and details of its blastozooids (ventral view). In blastozooids,
anterior at top, posterior at bottom and irrespective of the true reciprocal per-lateral orientation between the three generations (modified from [5]).
doi:10.1371/journal.pone.0096434.g003

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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(BSA:0000056) open. The colonial circulatory system consists of a

network of vessels of epidermal origin, branching from the zooids

and buds, crossing the tunic, and connecting to a marginal vessel,

which runs along the periphery of the colony [76]. The vessels

terminate toward the tunic surface in oval-shaped blind ends: the

blood ampullae (BSA:0000045).

In BODA, the blastozooid is an entity which is part of a system,

together with the common cloacal siphon. The latter is a structure

formed by the convergence and fusion of the adult blastozooids at

the centre of the system, therefore it belongs to all the adult

blastozooids forming the system. The main anatomical entities of

B. schlosseri are summarized in Fig. 3.

Relations between Anatomy and Development in the
Ontology

The class development entity comprises the terms: meta_per-
iod (BSD:0000000), period (BSD:0000006) and stage

Figure 4. Schemes illustrating BODA in NISEED. BODA can be easily browsed using the NISEED platform (www.aniseed.cnrs.fr), which
represents the reference portal in the tunicate community. It is possible to access the ontologies through the menu ‘‘anatomy’’, select the stage of
interest and access to the corresponding definitions and relations.
doi:10.1371/journal.pone.0096434.g004

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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(BSD:0000011). The meta_period lists five high level terms: pre-
embryonic development (BSD:0000002), embryonic devel-
opment (BSD:0000003), metamorphosis (BSD:0000004),

post-metamorphosis/oozooid (BSD:0000005) and blasto-
genesis (BSD:0000001).

The blastozooid of first generation (the adult)

(BSD:0000009), the blastozooid of second generation (the

bud) (BSD:0000008), the blastozooid of third generation (the

budlet) (BSD:0000007) and the zooid regression
(BSD:0000010) are entities comprised in the meta_period blasto-

genesis and also in the entity period.

The ontological relationships between each anatomical entity

and its development have been built based on copious studies

produced over the last 60 years. This includes descriptions of the

development of specific organs such as the digestive system

[49,77,78], the circulatory system [10,48,76,79], the blood

Figure 5. Developmental timetable of B. schlosseri blastozooid. The life of each blastozooid lasts about three weeks at 18–19uC: the first week
involves the maturation of the budlet, from its appearance to organogenesis mostly concluded; the second week, preceeded by a change of
generation during which the budlet becomes a bud and form a new budlet, sees the bud growing, the heart beating, and the organs
cytodifferentiation; the third week, again preceded by a change of generation during which the bud become adult, is characterized by filter feeding
activity. See the text for details about staging method.
doi:10.1371/journal.pone.0096434.g005

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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Figure 6. Blastogenesis in B. schlosseri. A–G. Ventral views of colonies (i.e., ventral views of adults and primary buds, lateral views of secondary
buds). A’–G’. Sketches of images A–G; black lines, adult epidermis; dark gray lines, bud and budlet epidermis; pale gray lines, regressing adult
epidermis; red lines, budlet; yellow lines, branchial and peribranchial chambers in bud; orange, heart; pink, endostyle; green, ventral cell islands in
adult; brown, gut; dark blue, blood ampullae and vessels in tunic; pale blue, stigmata. A. Adult zooid, primary and secondary buds of a colony at
colonial stage 9/7/1. The primary bud (stage 7/1) has almost completed organogenesis; the secondary buds (stage 1) is recognizable as a thickening
of the atrial wall of the primary bud. B. Primary and secondary buds of a colony at stages 9/8/2 are outlined. C. In stage 8/3, the heart beats in the
primary bud and forms a closed sphere in the secondary bud (stage 3) that will soon begin, at stage 4 (not shown), a series of invaginations
reminiscent of gastrulation. Note a small secondary bud at stage 2 (arrow) posterior to the bud at stage 3 (which determines the stage of the colony).
D, E. Colonial stage 9/8/5 characterized by growth of the primary bud and organogenesis in the secondary bud (enlarged in E). F, G. In colonial stage
11/8/6, adult zooids shrink and are reabsorbed by means of apoptosis, while the primary buds mature and replace them. G: enlargement of the
secondary bud. ad, adult zooid. amp, ampulla; bc, branchial chamber; bv, blood vessel; ds, digestive system; endo, endostyle; h, heart; pb, primary
bud; pbc, peribranchial chamber, r-ad, resorbing adult zooid; sb, secondary bud; vi, ventral cell islands. Scale bars-100 mm.
doi:10.1371/journal.pone.0096434.g006

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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Figure 7. Schematised details of B. schlosseri blastogenesis and the relation to BODA. A. Schematic cross section of an adult blastozooid of
B. schlosseri at the branchial chamber level (modified from [75]). B. Scheme of gut development in B. schlosseri bud (lateral view, anterior on the left).
Each sketch shows the forming branchial chamber and the gut elongating posteriorly. Peribranchial chambers, epidermis and other organ rudiments
are omitted for clarity. Stages of development are indicated below each sketch: upper sketches refer to secondary buds (stages 4 and 5), bottom
sketches to primary buds (stages 7/1 and 8/2). Modified from [49]. C. Scheme of main morphogenetic events of neural complex development. Left:
lateral view; anterior on the left; bud stages indicated by numbers. Right: scheme of the adult neural complex (modified from [47]). D. Graph
generated by the OBO-edit editor indicating anatomical entities referring to neural complex anatomy in BODA.
doi:10.1371/journal.pone.0096434.g007

Botryllus schlosseri Ontology of Development and Anatomy (BODA)
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[21,71], the heart [80], the branchial basket [81,82], and the

nervous system [7,47,50], as well as descriptions of biological

processes such as sexual reproduction [46,83–85] and take-over

[42,86,87].

The blastozooid of third generation: the budlet or

secondary bud. The development of the blastozooids (from

the appearance of the secondary bud to its regression) covers three

colony life-cycles and, at a temperature of 18u–19uC, lasts around

three weeks (Fig. 5) [6,64].

In BODA, the blastozooid of the third generation starts at stage

1 as a small disc-like thickening of the peribranchial epithelium

(i.e., ‘‘epithelium delimiting the peribranchial cavities’’), overlaid

by epidermis (BSA:0000073). The bud primordium folds into a

hemisphere (stage 2), and then its inner peribranchial layer folds

into a sealed vesicle enclosed by an epidermal vesicle (double

vesicle stage, stage 3). From this stage, the bud remains connected

to the parent by a short epidermal peduncle (BSA:0000127).

Intermediate stages can also been recognized and used to better

define these early developmental phases: 1+, initial arching of bud

primordium; 2+, skewing of the hemisphere from its lateral

orientation toward the anterior end of the parent; and 3+,

elongation and expansion of the inner vesicle along the

anteroposterior axis of the parent.

During budlet development (Figs 3, 5, 6), heart (BSA:0000088),

gonad (BSA:0000079), blood sinuses (BSA:0000057), body
wall muscles (BSA:0000058), neural complex (BSA:0000099)

and nerves (BSA:0000098) develop from mesenchymal cells and are

located in the mantle. In the inner vesicle, two long parallel

invaginations of the prospective ventral side grow dorsally, to

divide the original, inner vesicle into a central branchial cavity
(BSA:0000113) flanked by two peribranchial cavity
(BSA:0000114). A dorsal median thickening of the inner vesicle

represents the region from which the neural complex, cerebral
ganglion (BSA:0000100) and neural gland complex
(BSA:0000101), later develop. A medio-posterior evagination of

the inner vesicle represents the rudiment of the gut. The heart

primordium appears in the form of a compact mass located in the

mantle, ventrally on the right side of the branchial vesicle, close to

the gut rudiment. Therefore, the branchial and peribranchial

chambers, the neural complex, the gut and the heart start at stage 4

(Fig. 7 B,C). Successively (stage 5), the endostyle (BSA:0000064)

begins to form on the branchial ventral surface (Fig. 7 B). The gut

rudiment sprouts from the posterior part of the central branchial

cavity and forms a rounded evagination, i.e. the stomach
(BSA:0000123) rudiment (Fig. 7 B). Its base progressively narrows,

and the esophagus (BSD:0000074) becomes recognizable as a

dorsal canal between the branchial chamber and the stomach. At

this stage, the heart primordium becomes a roundish vesicle,

which progressively elongates into a tubular structure defined by a

single layer of cubical cells. At stage 6, the peribranchial cavities

progress to completion i.e. they come into contact with one

another dorsally and posteriorly, and fuse into the atrial cavity
(BSA:0000056) (Fig. 7 C). The oral (BSA:0000106) and atrial
(BSA:0000051) siphon rudiments are also recognizable (Fig. 7 C).

During these morphogenetic movements, the peribranchial

epithelium follows gut growth, and form a series of perivisceral

blood sinuses (BSA:0000057). Two evaginations of the stomach

wall grow backward, bending to the left side of the branchial

basket: the main evagination forms the intestine (BSA:0000129)

rudiment; the smaller one forms the pyloric caecum
(BSA:0000124) and the pyloric gland (BSA:0000125) rudiments.

The intestinal evagination grows towards the cloacal siphon. The

neural gland opens anteriorly in the prospective prebranchial
pharynx (BSA:0000117). Posteriorly, the neural gland tube

extends over the forming atrial cavity. The epithelial wall of the

vesicular heart begins to invaginate along a dorsolateral line,

forming the myocardial folds. The two lips of the myocardial folds

divide the external pericardium (BSA:0000090) from the

internal myocardium (BSD:0000089). At stage 6, the primor-

dium of the radial vessel appears as a ventrally located evagination

of the bud epidermis.

The blastozooid of second generation: the bud or primary

bud. From stage 6 to 7, the budlet rotates counter-clockwise,

assuming the same antero-posterior and dorso-ventral axis of its

parent zooid. At stage 7/1, the branchial and peribranchial

epithelia merge in thick zones aligned on a stereotyped pattern,

forming the stigmata primordia. At the same time, the primordia

of the three pairs of longitudinal branchial vessels
(BSD:0000077) become recognizable as the thickened folds of

the branchial epithelium. The dorsal lamina (BSA:0000062) is

now recognizable on the roof (dorsal side) of the branchial sac
(BSD:0000111). The pyloric gland rudiment is now split into two

branches, each one bearing smaller branches which flank the

intestinal wall and forms the rudiment of tubules and ampullae of

the gland. The original connection with the stomach wall becomes

the gland duct, which opens at the base of the pyloric caecum. The

stomach wall begins to fold longitudinally. The cerebral ganglion

is now identifiable as a distinct cell mass, ventral to the neural

gland rudiment. The first nerves become recognizable in the bud,

derived from branching of the two couples of anterior and

posterior roots emerging directly from the ganglion.

Stage 8/2 is characterized by a beating heart. Initially, the heart

beat is slow (stage 89), but progressively reaches its normal rhythm

(stage 80) [69,88]. It is coordinated by the heart of the adult

generation, since it reverses the direction of its contractions soon

after cardiac reversion has taken place in the adult. The neural

gland rudiment begins to separate from the dorsal organ
(BSA:0000103), homologous of the dorsal strand typical of other

ascidians (see [47]).

During stage 8/3, branchial and peribranchial chambers

become connected via a perforation of the stigmata which

progresses from front to back. The rudiments of the oral velum
(BSA:0000110) and tentacles (BSA:0000109) are recognizable as

short evaginations of presumptive oral epithelium. The cerebral

ganglion and the neural gland begin cytodifferentiation [47].

Successively (stage 8/4), in the branchial basket the stigmata

enlarge and extend along the antero-posterior axes and assume an

elliptical shape. At stage 8/5 the cells forming the stigmata narrow

their apical side and elongate around the gill slits
(BSA:0000075), while numerous rudimentary cilia begin to form

and extend into the branchial fissure. These cilia progressively

elongate and arrange themselves into a single row per cell. The gut

regions become better defined: the stomach folds deepen, and the

pyloric gland extends so that three intestinal regions, proximal
intestine (BSA:0000096), mid intestine (BSA:0000095) (en-

crusted by the pyloric gland) and distal intestine
(BSA:0000094), are now recognizable. At this stage, the peripheral

nervous network reaches its maximal complexity [7].

At stage 8/6 buds are ready to substitute their adult parental

zooid, which undergo take-over. This stage triggers the change of

generation, i.e. stage 11/8/6, characterized by siphon aperture in

buds (which become the new filtering adults at stage 9) and the full

absorption of the ‘‘old’’ parental zooids.

The blastozooid of first generation: the filter-feeding

adult stage. Two main morphogenetic processes occur in

adults; the beginning of their filtering activity (stage 9/7/1) and

their re-absorption (stage 11/8/6). After several blastogenic cycles

following larval metamorphosis, the ventral cell islands
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(BSA:0000128), which are a cluster of cells flanking the endostyle

appear in the mantle of the adult zooids, (stage 9/7/1 or 9/8/2).

In stage 9/8/5, the ventral cell islands are no longer visible in

adult zooids. Their cells migrate into the colonial circulatory

system prior to takeover to colonize new sites belonging to the

buds of the subsequent generation [30,41].

The oral siphon opens firstly (91), followed shortly after by the

atrial siphon (92); in succession, the adults of a system modify their

position and meet one another to form the common cloacal siphon

(93). Water flows into the branchial chamber propelled by

branchial ciliary activity, and both active oxygen exchange and

feeding begins [69]. The dorso-posterior regions of the blasto-

zooids grow backward and rise to form the cloacal lips
(BSA:0000055) defining the common cloacal chamber. Stage 10

defines a colony with sexually mature zooids. Since sexual

maturity occurs in the colony after several blastogenic cycles in

healthy colonies [67], this stage is considered separately (see

below).

The zooid regression: the take-over. The take-over is

initially identified by the unresponsiveness of the oral siphons to

mechanical stimuli followed by the closure of the oral and then the

cloacal siphons, and the consequent end of filtration (stage 111).

The zooid then undergoes a general shrinkage and agglutination

of branchial cilia (stage 112), and while resorption continues, a

functional heart persists (113). The heart stops beating and the

zooid becomes a piknotic vesicle in the center of each system (stage

114). Stage 11/8/6 represents the end stage for the anatomical

structures within the adult blastozooids.

Relationships between Sexual and Asexual Reproduction:
the Gonads Development

In B. schlosseri, new colonies go through an asexual juvenile

phase and reach full sexuality after several blastogenetic genera-

tions, starting with the development of testis (BSA:0000085) [64].

Bilateral gonadal primordia starts in the secondary bud as clumps

of undifferentiated cells on either side of the inner vesicle at stage 3

[83]. The medial portion of this primordium differentiates into a

testis, in the form of a coherent structure which reaches maturity

in adults and discharges most of the sperm one to two days after

ovulation, thus avoiding self-fertilization [83,89–91]. The lateral

portion of the gonadal primordium becomes an ovary
(BSA:0000080). Only one or a few eggs (BSD:0000081) ripen

on either side. Oocytes appear in secondary buds, ripen in the

primary buds and ovulate when the primary buds are about to

pass to the adult stage (10/7/1). Fertilization occurs just after the

siphon opens, and the larvae are released when the adults are

almost at the end of their life-cycle.

During its growth, the oocyte is surrounded by three egg
envelopes (BSA:0000082): test cells, inner and outer follicle cells,

all deriving from primary follicle cells [84,85]. Test cells are

separated from follicle cells by a fibrous layer, the vitelline coat (or

chorion). At ovulation, the egg hatches from the outer follicle cells,

which may persist for several hours as an analogue of the

vertebrate corpus luteum. The inner follicle cells participate in

forming the placental cup (BSA:0000084), together with the

parental peribranchial and oviductal epithelia, and the embryo is

held in the peribranchial chamber [46].

Although in BODA, the gonad is an anatomical structure part of

the blastozooid, it is important to note that the germinal cells

should be considered part of the colony. It has long been known

that oocytes and male elements can be captured by the

bloodstream within the tunic vessels and conveyed to other

zooids. Their recycling through successive generations has been

regarded as the necessary condition for their maturation [25,83].

Exploiting the BODA: the Development of the Nervous
System

The study of the development of the nervous system offers a

good example on how to exploit the potential of BODA (Fig. 7 C–

D). In the oozooid, the nervous system is derived directly from the

anterior neural plate [92], while in the blastozooid it originates

from the inner vesicle of the bud [47]. Nevertheless, it has the

same organization in both oozooid and blastozooid. As some adult

neural components show a placodal derivation in embryogenesis

[8,93,94] B. schlosseri offers an interesting opportunity to under-

stand how structures which are fundamental for chordate

evolution are produced by an alternative developmental process

(blastogenesis).

The neural complex is defined as ‘‘constituted of the cerebral

ganglion and the neural gland complex (dorsal to the former); it is

located in the dorsal mantle between the two siphons’’. The neural

complex is part of the blastozooid and comprises two subdivisions;

both are part of the neural complex. The subdivisions are the

cerebral ganglion (‘‘organized in a cortex of neuronal somata and

an inner medulla of neurites continuous with nerves’’) and the

neural gland complex. The neural gland complex is a ‘‘gland in

the form of a blind sac, located in the dorsal mantle beneath the

epidermis and opened in the branchial chamber; it is located in the

dorsal mantle between the two siphons’’. The neural gland

complex entity possesses, as subdivisions, the ciliated funnel
(BSA:0000102) (the ‘‘funnel-like duct of the neural gland opening

into the prebranchial pharynx’’), neural gland body
(BSA:0000104) (the ‘‘elongated gland body constituted of spon-

geous cells’’) and the dorsal organ (the ‘‘organ posterior to the

dorsal gland body, homologous to the dorsal strand’’).

The neural complex is part of the blastozooid and it develops from

the ‘‘dorsal tube’’ (BSA:0000063). The latter is the ‘‘neural

complex rudiment’’. The dorsal tube is part of the blastozooid (as

the neural complex). It develops from the bud inner vesicle; its start

stage is 9/8/4, when the inner vesicle begins morphogenetic

movements. The dorsal tube’s end stage is 7/1; this is the start stage of

the two entities deriving from the dorsal tube (i.e., the cerebral

ganglion and the neural gland complex). The three subdivisions of

the neural gland complex, the ciliated funnel, the neural gland

body and the dorsal organ, have as a start stage the stages 9/8/3, 9/

8/3 and 9/8/2, respectively. The end stage of the neural complex

(and all its subdivisions) is stage 11 (zooid regression).

Burighel and collaborators (1998) [47] have described in detail

the development of the neural complex during the blastogenesis of

B. schlosseri. The sources and the bibliographical details regarding

the morphogenesis of the central nervous system, and all the

anatomical entities listed in the Ontology, can be found in the

literature cited in the BODA.

Discussion

Using the rules defined by the Open Biomedical Ontologies

(OBO) Foundry [65] we have built the BODA with the final goal

of gathering and formalizing the existent data about the anatomy

and blastogenesis of B. schlosseri.

The BODA features will allow the users: 1) to easily search and

identify anatomical structures in colony and zooid, 2) to define the

correct developmental stage and 3) to follow the morphogenetic

events of a tissue and/or organ of interest throughout asexual

development.
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Why an Ontology for Botryllus schlosseri Asexual
Reproduction?

B. schlosseri reproduces both sexually and asexually. During

sexual reproduction, the fertilization and the development are

internal [46] and only a small amount of eggs/embryos per zooid

reach maturation. Embryogenesis lasts five days at 18–19uC and

late developmental stages are mainly identified by means of tail

length of embryos that grows below the vitelline coat. There is an

established correlation in timing between sexual and asexual

development. When the colony is at stages 10/8/2, 10/8/3, and

10/8/4–5, the embryo respectively reaches: i) the early tail bud

stage about 3 days before hatching with the tail making a three-

quarter turn around the trunk, ii) mid-tail bud stage about 2 days

before hatching with the tail making one turn around the trunk,

and iii) late tail bud stage about 1 day before hatching with the tail

at its maximum extension (1.5 turns around the trunk) [92]. It

appears clear that these staging parameters are not sufficiently

defined, neither temporarily nor morphologically, for a develop-

mental ontology.

Embryos are brooded inside the parental peribranchial cham-

ber, attached to it by a placental-like cup, and after in vitro

fertilization, embryos usually do not survive the first mitoses,

suggesting that the contribution of the parent is essential for

embryonic development. As a consequence, B. schlosseri embryo-

genesis is a more difficult and complex study compared to solitary,

oviparous ascidians with external fertilization, such as C. intestinalis.

For these reasons, the embryonic development, well studied in C.

intestinalis where complete cell lineage has been determined and

precisely temporized [61], has not yet been properly described in

B. schlosseri.

Conversely, easy access to an ontology illustrating asexual

reproduction and valorised by a well-characterized description of

the anatomy and development of budding will be an important

resource for the study of the nature of the asexual reproduction in

B. schlosseri. B. schlosseri has the recognized potential to facilitate

basic research on stem cells [11,13,24,25,30,32], and can provide

insights on the evolution, and loss, of regenerative abilities in

vertebrates. At the moment, migrating cells belonging to ventral

cell islands represent a good candidate to explore these hypothesis

[11,13,25,30]. Recent studies suggest that ventral cell islands

contain different kinds of cells. Their function seems to be linked to

a phagocyte and/or to a putative stem cell dynamic [30,41]. The

development of transgenic animals will be crucial to determine the

origin and differentiation of tissues in the new bud, and to clarify

whether they originate from stem cell driven processes and/or

trans/de-differentiation of adult somatic epithelia. The addition of

these studies to BODA will provide a valuable tool for scientists

interested in the origin of cells, tissues and the biology of

regeneration.

It is also notable that sexual and asexual ontogenies in B.

schlosseri give rise to essentially the same adult body plan [37,95].

For this reason, B. schlosseri has been used to investigate similarities

and differences between two development pathways, within the

same species [8,44,93,95,96]. Recent studies have shown that

genes involved in the differentiation of neural placodes in

vertebrates are expressed in both the developmental pathways of

B. schlosseri [93]. This suggests that fundamental genes for the

differentiation of the vertebrate sensory system were present in the

common ancestor to tunicates and vertebrates, and were recruited

in the evolution of asexual development of tunicates. Therefore,

the ontology of a chordate species able to reproduce both sexually

and asexually turns out to be particularly relevant in a

comparative and evolutionary perspective.

In existing ontologies, the OBO Foundry’s suite and principles

have been adopted to describe the ontology and development of

asexually reproducing Eukariota, including plants [97], social

amoeba [98] and yeast [99]. Ontologies for animal species

commonly refer to embryogenesis and related anatomy. Excep-

tions occur in the Kingdom Animalia - for example, in one species

of porifera, asexual fragmentation is simply introduced as an entity

(i.e., term) related to biological proprieties (https://code.google.

com/p/porifera-ontology/). In the polychete Platynereis, the

ontology is not yet available for its asexual morph (the epitoke),

but the developmental stages have been described, (http://4dx.

embl.de/platy/). Therefore, BODA represents the first fully built

anatomical and developmental ontology resource available for an

asexual reproducing bilaterian, and is an encouraging starting

point for the formalization of other ontologies based on ‘‘non-

canonical’’ modes of development, such as blastogenesis.

Structure of BODA, Its Implementation and Integration
BODA can be accessed freely from the Ontology Bioportal

(http://bioportal.bioontology.org/ontologies/BODA) [66] and/

or NISEED platform (Fig. 4), or downloaded from OBO Foundry

portal [65], from the Ontology Bioportal [66] or from the

Tunicate Portal (http://www.tunicate-portal.org/wordpress/

?page_id = 145).BODA is integrated on the NISEED platform

[63] i.e. the reference portal in the tunicate community, which has

already assembled data from several ascidian species such as Ciona

intestinalis, Halocynthia roretzi and Phallusia mammillata. The integra-

tion on this common platform facilitates comparative analysis

across species. In this respect, the BODA is the first ascidian

ontology to be enriched with definitions of anatomical entities.

Definitions were acquired consulting a number of publications

(cited in the Results section). Some definitions specifically describe

structures properly belonging to B. schlosseri, but many are general

and can be used as a guideline by researchers working on other

ascidians.

For example, BODA does not contain some anatomical entities

included in C. intestinalis Ontology, such as the dorsal strand and

the dorsal strand plexus, simply because they are not present in B.

schosseri. Vice versa, BODA lists anatomical entities that are not

possessed by C. intestinalis (such as the dorsal organ or the colonial

circulatory system). Other entities, even if possessed by C.

intestinalis, are not inserted at the moment in the C. intestinalis

Ontology (e.g., sperm, egg, coronal organ); this is mainly due to

the fact that C. intestinalis Ontology is based on embryonic cell

lineage. As a consequence, the anatomical entities for which the

exact embryonic derivation is not known were not included in the

Ontology.

The structure of BODA allows the system to be easily

implemented with new heterogeneous data and metadata. For

example, sexual development definition, gene expression profiles,

transcriptomic data, phenotypes generated by knock-down exper-

iments, drug treatment tests and all the related literature could be

easily introduced once available. This will facilitate the ability to

find integrated information. For example, by editing keywords or

searching for sequences, a specific gene can be easily related to the

anatomical entities and developmental stages in which it is

expressed, representing its spatio-temporal expression profile.

In conclusion, we encourage the tunicate community to use

BODA, to provide feedback, and to update this resource with an

upload of its latest discoveries.
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Supporting Information

Figure S1 Botryllus schlosseri staging flowchart for
asexual development. Flowchart for asexual development of

B. schlosseri that help to individuate in vivo, under a dissection

microscope, the stage of the colony, and permit also to easily

compare the staging methods by Sabbadin [6] and Lauzon [38].

(PDF)
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