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1. Introduction.

1.1. Multiobjective optimization and Pareto optimality. Multiobjective op-
timization is concerned with the problem of optimizing several functions (or objectives)
simultaneously. A precise mathematical statement in an economics framework was first
given by Pareto [38], [39] in the 1880s. In recent years a strong interest has grown, as a
variety of problems in structural mechanics, automotive industry, aerospace, produc-
tion planning, environmental policy, and many others involve more than one objective
function, and different numerical strategies have been developed subsequently [34].

In the single objective case, an optimum is defined as a point x ∈ W ⊆ Rn, where a
given function u∶ W → R assumes its maximum, if the maximum exists. In multiob-
jective optimization we consider two or more functions, u1; : : : ; um∶ W → R, and in all
the nontrivial cases the optima for one function are distinct from the optima of the re-
maining ones. A key point is that one not only has to consider the optima of the indi-
vidual functions, but there usually arises an infinite number of so-called nondominated
points.1 They are defined precisely as follows.

DEFINITION 1 (Pareto optimality). Let W be an open subset of Rn, or an n-dimen-
sional manifold, and let u1; : : : ; um∶ W → R be smooth functions.2 A point x̄ ∈ W is
called a nondominated point, or a Pareto optimum, if there is no x ∈ W such that
uiðxÞ ≥ uiðx̄Þ for all i ¼ 1; : : : ;m and ujðxÞ > ujðx̄Þ for some j. If there exists a neigh-
borhoodV ⊆ W of x̄ where x̄ is Pareto optimum, then x̄ is called a local Pareto optimum.

1.2. The necessity for global representations of the Pareto sets. As pointed
out, for instance, in [9], the set of Pareto optima is in many cases a large and complicated
nonconvex set and most of the existing algorithms, being inspired by local search ideas
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from traditional linear and nonlinear programming, fail at giving a truly global repre-
sentation of the set of Pareto optima. Also, [12] stresses that “a whole collection of Pareto
optimal points, representative of the entire spectrum of efficient solutions” would be
helpful in facilitating design in engineering applications.

Recent multiobjective optimization literature tackled this issue focusing on defining
algorithms producing even distributions of Pareto points [12], [31], [32], [64], while an
alternative philosophy [43], [44], [45], [51] dealt with producing local meshes approxi-
mating Pareto sets, relying on continuation (homotopy) strategies. In the recent paper
[40], both topics are addressed. Alternative techniques aiming to approximate the entire
optimal set are described in the recent papers [19], [29], in the survey [46], and in the
references therein.

We want here to highlight a key feature of the Pareto set which makes it, in general
nonconvex cases, a complicated set. Its complexity is even amplified when the Pareto set
is viewed in the output space.

Indeed, the set of all global Pareto optima can be disconnected, i.e., composed of
separate portions of seemingly smooth surfaces (see Figure 1.1(a)). Furthermore, even
when the image of the set of global Pareto optima is a connected set, it could be com-
posed by cutting and sewing together different locally optimal branches (see Figure 1.1
(b)), coming from separate zones of the domain. We will illustrate in what follows that
this kind of behavior is not an artifact obtained with unrealistic functions but in a sense
represents a typical situation that is not destroyed by slight deformations of the func-
tions. Those situations are persistent, or more technically, structurally stable.3

We notice that the algorithms mentioned above are expected to work properly only
in a local sense, although they are intended to capture some of the global features of the
optimal set. Moreover, apart from the homotopy techniques, they are pointwise strate-
gies, in the sense that as an approximation of the Pareto optimal set they produce a
scatter of points; the evenness of the distribution of points is then estimated on the image

FIG. 1.1. Possible problems arising in the objectives space when ui are nonconvex functions. (a) The Par-
eto set is composed of separate branches. (b) A connected global Pareto set is composed of separate local
branches crossing each other.

3See section 1.3 below for a formal definition of structural stability.
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space. In some applications those points are joined together in a compound structure,
e.g., a Delaunay triangulation, but only a posteriori and in the output space. It should be
noted that because of the effects of mappings described above, defining such a structure
from the output space, i.e., joining nearby values of optimal points, is subject to failure:
the corresponding preimage points, indeed, are not necessarily nearby, or even con-
nected in the way suggested by the positions of their images. Conversely, the images
of nearby optimal points are nearby, because of continuity.

We propose instead that a faithful global representation of the Pareto set in general
nonconvex settings is obtained according to the following three steps. First, by shifting
the focus from the output space to the input space, second by approximating the full set
of the local Pareto optima, and third by adopting a setwise standpoint, namely, using
compound geometrical objects as simplicial complexes instead of scatters of points. The
first step unfolds the singularities (branches crossing, cusp points, and so on) occurring
as an effect of the mapping. Indeed, as illustrated in what follows, the preimage of the
Pareto set is nonsingular, as it exhibits in general a regular manifold structure. The
second step, because of possible superpositions of local branches, guarantees that every
portion of the global Pareto optimal set is represented. Simplicial complexes, i.e.,
meshes, faithfully reflect the manifold structures and explicitly offer the desired para-
metrization for each portion of the Pareto set, allowing one to perform “tradeoff studies”
among the conflicting objectives. Indeed, tradeoff studies may be the application of
greatest practical importance of multiobjective optimization. Nevertheless, from the
above discussion it is clear that trying to track the surface of the Pareto set by picking
points from the output space, as pointwise strategies are aimed to do, is supposed to
work correctly only throughout limited branches.

There are at least two reasons why our program has not yet been pursued in its
entirety. First of all, in a number of situations, the numerical techniques available in
literature are able to build sufficiently faithful representations of the Pareto set. For
example, when the functions at hand are convex, or relatively simple, or when the sin-
gularities are situated far away from interesting zones, a global investigation of the pro-
blem is not required. Moreover, typically, tradeoff studies are performed in the
neighborhood of a previously determined solution; therefore, they can be limited to
a nonproblematic branch of the Pareto set giving back as well the important informa-
tion. Second, it is clear that a global exploration of the domain is a demanding task
which could be far out of the scope of a typical design problem.

Nevertheless, faithful global representations of the Pareto set are a worthy goal to
pursue, because they complement existing local exploitation strategies in two senses:
they resolve the above-mentioned problematic superpositions, and they facilitate the
location of important zones, which could merit further investigation. It is clear that this
kind of program has to be implemented in an efficient way in order to be useful in ap-
plications. On the other hand, even a roughly sketched global picture of the whole si-
tuation can give crucial information on the problem at hand, suggesting correctly the
location of paramount zones.

1.3. Global analysis andmultiobjective nonlinear programming. With this
in mind, we have devised a novel numerical strategy for approximating Pareto sets,
theoretically based on the global analysis 4 framework established by Smale and others
in the early 1970s [13], [14], [16], [17], [57], [58], [65], [66], [67] and in more recent work

4See [56]. For brevity, we speak a bit loosely of global analysis also when referring to concepts of singularity
theory or differential topology.
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[35], [36]. Motivated by his discussions with Debreu,5 Smale investigated the problem of
optimizing several functions within the dynamical systems arena. In the series of works
that followed there emerged interesting topological and geometrical features of the sets
of the Pareto optima. The notion of Pareto critical set θ, generalizing the concept of
critical point for scalar functions, was introduced and furthermore, local Pareto optima
were characterized by means of first and second derivatives. Quoting Smale [57], “We
study the local and global nature of θ, as one uses freshman calculus to study the max-
imum of a single function.”

One of the basic facts highlighted in Smale’s global analysis framework is that under
the assumptions of second order differentiability and some generic transversality con-
dition, Pareto optimal sets are portions of (m− 1)-dimensional manifolds. It is funda-
mental that a slight deformation of the functions do not alter substantially the Pareto
set. Global analysis is the proper setting to study resilience properties. A mapping
u∶ W → Rm is said to be structurally stable6 if there exists a neighborhood NðuÞ in the
Cr topology such that every function ~u in NðuÞ is equivalent to u; i.e., there exist dif-
feomorphisms h, k, close to the identities of the respective spaces, such that the diagram

commutes. Clearly, if two mappings are equivalent, their Pareto sets are diffeomorphic.
One of the main results of global analysis is that there exists an open and dense set in
CrðW;RmÞ of structurally stable mappings.7 In other words, the Pareto set of almost
every mapping u is as close as desired to the Pareto set of any other mapping in a suffi-
ciently small neighborhood of u. This is clearly of fundamental importance for the ap-
plications: when functions are known only with a certain approximation, as is usual in
engineering design problems, the set of optimal points is guaranteed to be approximated
correctly by any convergent sequence of functions [7], [56], [62].8 Moreover, a general-
ization of Morse theory for several functions can be defined [57], [65].

The strategy presently proposed highlights and exploits the manifold structure un-
derlying the Pareto sets and precisely reproduces the hierarchy described in Smale’s
work among the singular set, the Pareto critical set, and the stable Pareto critical
set.9 These sets are approximated by means of simplicial complexes, and by exploiting
Newton-type estimates it is possible to prove quadratic convergence in a setwise sense,
adopting the Hausdorff measure. Because of this result the present method can be con-
sidered a setwise variant of multiobjective Newton methods, as in [18].

5Debreu won the Nobel Prize for Economics in 1983 “for having incorporated new analytical methods into
economic theory and for his rigorous reformulation of the theory of general equilibrium.” For an account of the
cooperation between Smale and Debreu, see [16], [17].

6To be precise, we should speak of stability of mappings, while structural stability is more often used when
speaking about differential equations. On the other hand, we must speak about stability of Pareto optima,
which is instead a concept deriving from the study of stability of equilibra and refers to critical points which
are maxima. Therefore, we will keep speaking of structural stability when dealing with typical singularities of
mappings.

7It is necessary that m < 7 and n ≠ 8, or m < 6 and n ¼ 8 [30].
8The original idea of structural stability is a joint work from an engineer, A. Andronov, and a mathema-

tician, L. Pontryagin; see [55], [56].
9See below section 2 for definitions.
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The algorithms of this paper can also be considered as a globalization and general-
ization to more than two objectives of the homotopy techniques, while the use of tes-
sellations can be thought of as the specialization of the techniques of simplicial pivoting
[3], [4], [5] to the problem of optimizing several functions. A strong similarity can be
found in the method proposed by [51], where the authors detect and progressively refine
the hypercubes containing the Pareto sets, relying on the standard Karush–Kuhn–
Tucker conditions instead of Pareto criticality.

2. The global analysis framework. We recall now Smale’s definitions and re-
sults. Let W ⊆ Rd be an open set or more generally a smooth n-dimensional manifold,
u∶ W → Rm a smooth vector function with m ≤ n.10 The singular set Σ ⊆ W is the col-
lection of singular points, i.e., the points where the rank of the Jacobian DuðxÞ is non-
maximal. If m ¼ 1, the singular set coincides with the set of critical, or stationary,
points, i.e., DuðxÞ ¼ 0. It can be proved that under generic conditions the singular
set is a smooth manifold.

Let Pos be the open positive cone in Rm, Pos ≔ fy ∈ Rmjyj > 0 ∀j ¼ 1; : : : ;mg,
and letCx be the corresponding open cone in the tangent space TxW , Cx ≔ Du−1ðPosÞ.

DEFINITION 2 (Pareto critical set θ). The set

θ ≔ fx ∈ W jCx ¼ ∅gð2:1Þ

is called the Pareto critical set.
We characterize θ in terms of the Jacobian of u.
PROPOSITION 3 (first order proposition). Let x ∈ W . Then, x ∈ θ if and only if
(a) fDujðxÞgj¼1; : : : ;m do not belong to a unique open half-space of the cotangent

space T⋆
xW .

(b) ∃λj ≥ 0, j ¼ 1; : : : ;m, not all zero such that
P

jλjDujðxÞ ¼ 0.
Remark 4. The meaning of Proposition 3 is that for x to be critical, first order re-

sults imply that there cannot exist paths along which all the objectives uj can be in-
cremented at the same time. If there were an open half-space containing all Duj, as
in condition (a), any direction in this half-space would be a direction of improvement
for every uj. Equivalently, condition (b) states that the gradients Duj should be linear
dependent and furthermore should “oppose” each other. In other words, moving in the
direction of steepest ascent according to one of the uj causes one or more of the remain-
ing ui to strictly decrease.

Remark 5. In the bi-objective case, m ¼ 2, Proposition 3 states that in Pareto cri-
tical points the two gradients are collinear and in opposition to each other. Also critical
points for one of the two objectives are Pareto critical.

In analogy with freshman calculus, (Pareto) criticality is a necessary condition for x
to be optimal. In order to discriminate the nature of the Pareto critical points we in-
troduce a notion of stability and point out its relation with the second derivatives of u.
This will give sufficient conditions for x to be Pareto optimal.

DEFINITION 6. A curve ða; bÞ ∋ t ↦ φðtÞ ∈ W is said to be admissible if

d

dt
uiðφðtÞÞ > 0; t ∈ ða; bÞ ∀i ¼ 1; : : : ;m:ð2:2Þ

Clearly, if a point is Pareto critical, there could not exist admissible curves passing
through it. In order to establish its optimality it is necessary to investigate the behavior

10The case m > n is less frequent. We will consider some aspect of this case in what follows.

GLOBAL ANALYSIS AND MULTIOBJECTIVE OPTIMIZATION 467

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



of the admissible curves in a neighborhood of a critical point. Admissible curves are
smooth paths along which every objective is incremented. Therefore, they move towards
local Pareto optima; conversely, if a critical point captures all neighboring admissible
curves, that point is a local Pareto optimum.

DEFINITION 7. A Pareto critical point x is said to be stable, x ∈ θS , if, given a neigh-
borhood Vx of x in W , there exists a neighborhood Ux of x in Vx such that every ad-
missible curve φ∶ ½a; bÞ → W with φðaÞ ∈ Ux satisfies Image ðφÞ ⊂ Vx.

Pareto stability can be fully decidable by carefully examining the second derivatives
of the objectives. In the single objective case, by virtue of Morse’s lemma, it is possible to
find a coordinate system where the objective u can be written as a quadratic polynomial
u ¼ �x21� · · · �x2d, which number of minus signs defines the Morse index, and therefore
decides the nature of the critical point (maximum, minimum, or saddle) [37]. With some
effort, results can be extended to multiple objectives: second derivatives are
not defined invariantly, but if we think about them as a symmetric bilinear form re-
stricted to the kernel of the differential DuðxÞ assuming values on the cokernel
Rm ∕ Image ðDuðxÞÞ, then this form is invariantly defined. It is called “second intrinsic
derivative” (see [30], [42]). The restriction to the kernel of the tangent map DuðxÞ has
also the following meaning. By investigating the attractive/repulsive behavior of admis-
sible curves in a neighborhood of a critical point, we will not be interested in what hap-
pens along the directions parallel to the critical set, while the orthogonal space will be
the arena where the stability of the critical points will be decided. The case of greatest
importance is where corankDuðxÞ is 1 (i.e., rankDuðxÞ ism− 1). In this case the second
intrinsic derivative assumes values in a 1-dimensional vector space. If we consider x ∈ θ,
we have Image ðDuðxÞÞ ∩ Pos ¼ ∅; thus Rm ∕ Image ðDuðxÞÞ has a canonical positive
ray. We call the second intrinsic derivative, in this case, the generalized Hessian Hx.
It makes sense to say that Hx is negative definite or positive definite, as well as to define
an index, as the index of the symmetric form Hx. We set

∂θ ¼ fx ∈ θj Image ðDuðxÞÞ ∩ fClðPosÞ \ f0gg ≠ ∅g;ð2:3Þ

where ClðPosÞ is the closure of Pos.
PROPOSITION 8 (second order proposition). Let u∶ W → Rm be a smooth map with

x ∈ θ, x ∈= ∂θ, and corank DuðxÞ ¼ 1. Then,
(a) if the generalized Hessian Hx is negative definite, then x ∈ θS ;
(b) let λj ≥ 0, j ¼ 1; : : : ;m be as in the first order proposition; then (up to a positive

scalar)

Hx ¼
Xm
j¼1

λjD
2ujðxÞ on ker DuðxÞ:ð2:4Þ

The proposition is proved in [58], while a discussion of the genericity of the hypoth-
eses on the rank assumption (rankDuðxÞ ≥ m− 1 a.e.) is given in [11], [27], [57].

Most importantly, Proposition 8 offers a useful and workable criterion for deciding
the stability of critical points. We will translate numerically this proposition in Algo-
rithm 2.

2.1. The structure of Pareto sets. We start by recalling the notion of Thom’s
stratification (see [60], [61], [62], [63]).

DEFINITION 9. Let A ⊂ W be a closed subset. A stratification S of A is a finite col-
lection of connected submanifolds of W satisfying the following properties:
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(1) ∪S∈S S ¼ A.
(2) If S ∈ S, then ∂S ¼ ClðSÞ \ S is a union of elements of S of lower dimension.
(3) If S ∈ S and U is a submanifold ofW transversal to S at x ∈ S, then U is trans-

versal to all elements of S in a neighborhood of x.
The following theorem has been proved in [13]. Consider the space C∞ðW;RmÞ en-

dowed with the C∞ topology. W is a compact manifold with dimension n ≥ m.
THEOREM 10 (θ is a stratified set of dimension m− 1). There is an open and dense

set G ⊂ C∞ðW;RmÞ such that if u ∈ G, then θ is a stratified set of dimension m− 1.
Remark 11. If m > n, it is possible to prove that, for a generic mapping u, θ is a

stratified set of dimension n.
From the point of view of the numerical applications, we state that in the generic case

the strata of thePareto critical set θ can be discretized bymeans of a collection of (m− 1)-
dimensional meshes. Obviously, we would like to refine this procedure to θS . Unfortu-
nately, the following conjecture has been proved only for m ¼ 2; 3 (see [14], [65]).

CONJECTURE 12. There is an open and dense set G ⊂ C∞ðW;RmÞ such that if u ∈ G,
then θ is a stratified set and θS is a union of strata.

Remark 13. The stable Pareto critical set θS is formed by all the local Pareto op-
timal points. The global Pareto optimal points cannot be distinguished from local op-
tima by means of differential features as in the statements presented above. Global
Pareto optima can only be filtered out a posteriori.

3. Numerical translation of the global analysis approach. In the following
sections we illustrate numerical methods for approximating Pareto sets on the basis of
Propositions 3 and 8. The procedure is reminiscent of contour plot algorithms for plot-
ting level sets of functions, and it is a special instance of general strategies for piecewise-
linear approximation algorithms for implicitly defined manifolds [1], [3], [5], [6]. The
method determines a simplicial complex approximating the singular set Σ and then re-
fines it to the critical set θ and to the stable critical set θs. Because the strategy proposed
consists of a continuation method focused on the manifold structure of Pareto optima
inherited by the singular set, we coined the term singular continuation.

3.1. First order search algorithm. Algorithm 1 translates numerically Proposi-
tion 3. We start by considering a set of data points D ¼ fP1; : : : ; PNg where we will
evaluate the Jacobian Du, and then we build a Delaunay tessellation having D as
nodes.11 We assume that the nodes P1; : : : ; Pn are in general position; i.e., they give
rise to a valid Delaunay tessellation. Better results are obtained if the simplexes are
“round”; i.e., they do not possess very thin or very large angles. Special tessellations,
e.g., Freuenthal–Kuhn, simplify the operation of “pivoting” from a simplex to the ad-
jacent, speeding up the process of glueing together the polytopes composing the impli-
citly defined manifold [5]. Hereafter, we also assume that the dataset is sufficiently dense
to resolve all the features of the singular manifold Σ. More precisely, we assume that
every connected component of Σ intersects at least one of the (n−m)-faces Δ of the
tessellation, and the intersection is unique and transversal; i.e., dim TxΣ

L
TxΔ ¼

n ¼ max. Doing so, Σ is guaranteed to be homeomorphic to its piecewise linear approx-
imation. We denote by Σ, θ, and θS the portions of the singular set, critical set,
and stable critical set, respectively, which possibly are contained in a simplex Δ of

11In the implementation considered in what follows we employed the qhull software [8], based on the
computation of convex hulls, and, in the 2-dimensional examples, we employed the TRIANGLE software [53],
[54]. For iterative schemes, an efficient alternative is offered by the Bowyer–Watson algorithm [10], [68], which
is incremental.
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the tessellation of the domain considered. Hatted symbols, Σ̂, θ̂, and θ̂S denote the cor-
responding piecewise-linear approximations. The details of the algorithm are discussed
in subsection 3.2.

ALGORITHM 1. FIRST ORDER ALGORITHM FOR APPROXIMATING THE PARETO CRITICAL

SET θ.
1: Consider a set of data points D ¼ fP1; : : : ; PNg;
2: evaluate the gradients of the uj on the data points;
3: build a Delaunay tessellation on the nodes D;
4: for all Delaunay simplex Δ ¼ hPi0 ; : : : ; Pini in the tessellation do
5: compute the (m− 1)-polytope Σ̂ where the first order approximation of the

Jacobian of u vanishes;
6: extract the subpolytope θ̂ where the vanishing linear combination

λ1Du1þ · · · þλmDum ¼ 0 has nonnegative coefficients;
7: end for
8: compose a simplicial complex glueing together adjacent polytopes θ̂

Remark 14. The algorithm assumes n ≥ m. Whenm > n things extend quite easily,
because the singular set is all of the input domain, and as recalled in section 2.1 the
critical set is a stratified set. More precisely, the gradients are always linearly dependent;
thus it is sufficient to skip step 5 of Algorithm 1.

3.2. Analysis of simplexes. We cycle through the tessellation simplexes
Δ ¼ hPi1 ; : : : ; Pinþ1

i and approximate the portion of the Pareto critical set θ possibly
contained in Δ. To determine the linear approximation θ̂s of the stable Pareto critical
portion θs ∩ Δ, we recall that θ is contained in the singular set Σ, i.e., the set where the
rank of the differential DuðxÞ is less than maximal:

θs ⊆ θ ⊆ Σ ⊆ W; ð⇒ θ̂s ⊆ θ̂ ⊆ Σ̂ ⊆ ΔÞ.ð3:1Þ

Adjacent approximate portions θ̂s are eventually sewed together.

3.2.1. Singular set Σ̂. We fix a cellΔ ≔ hP1; : : : ; Pnþ1i. The Jacobian is an n×m
matrix whose rank is nonmaximal on the singular set Σ. The rank of Du drops when the
rows are linearly dependent, i.e., when all of them-order minors are zero. In practice, it is
sufficient to consider only a suitable selection of square m×m submatrices, in a way
that each column of the Jacobian occurs at least once. We consider, for instance, the
following submatrices:

M 1 ¼

0
BBB@

∂u1

∂x1
: : : ∂u1

∂xm

..

. . .
. ..

.

∂um

∂x1
: : : ∂um

∂xm

1
CCCA; M 2 ¼

0
BBB@

∂u1

∂x2
: : : ∂u1

∂xmþ1

..

. . .
. ..

.

∂um

∂x2
: : : ∂um

∂xmþ1

1
CCCA; : : :

: : : ; Mn−mþ1 ¼

0
BBB@

∂u1

∂xn−mþ1
: : : ∂u1

∂xn

..

. . .
. ..

.

∂um

∂xn−mþ1
: : : ∂um

∂xn

1
CCCA:ð3:2Þ
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Remark 15. It could happen in degenerate cases that the chosen minors are all zero
while some of the discarded minors are nonzero. However, when the rank assumption
holds, for almost every point in Σ we have rankDuðxÞ ¼ m− 1. If the selected minors
are zero, there exists a unique vanishing linear combination (up to a multiplicative fac-
tor) for every column of the Jacobian matrix; therefore all the remaining minors are zero.

We denote the number of minors by r ≔ n−mþ 1 and set ωjðxÞ ≔ det MjðxÞ for
j ¼ 1; : : : ; r, and we consider all the (r þ 1)-faces of the cell Δ; i.e., for every
fi1; : : : ; irþ1g ⊆ f1; : : : ; nþ 1g with i1 < i2 < · · · < irþ1, we consider the simplex
hPi1 ; : : : ; Pirþ1

i. The solution (μ1; : : : ;μrþ1) of the system8>>><
>>>:

μ1ω1ðPi1Þþ · · · þμrþ1ω1ðPirþ1
Þ ¼ 0;

..

. ..
. ..

. ..
.

μ1ωrþ1ðPi1Þþ · · · þμrþ1ωrþ1ðPirþ1
Þ ¼ 0;

μ1þ · · · þμrþ1 ¼ 1

ð3:3Þ

leads to a singular vertex Q ≔ μ1Pi1þ · · · þμrþ1Pirþ1
of Σ̂ if all μj > 0, i.e., if Q is

contained in the (r þ 1)-face of Δ considered.
The (possibly empty) singular set Σ̂ is an (m− 1)-polytope defined as the convex

hull of the singular vertices Q.

3.2.2. Critical set θ̂. In the previous subsection we detected the singular set Σ, on
the basis of the fact that on the singular set the gradients are linearly dependent. On the
other hand, on the critical set θ there exists a positive linear combination of the gradients
giving zero. Thus we proceed by estimating the coefficients λj of the vanishing linear
convex combination of the gradients and cutting out the critical set θ from Σ by inter-
section with the half-spaces where the linear interpolations of the λ’s are positive.

More precisely, we solve the system�
λ1Du1ðPÞþ · · · þλmDumðPÞ ¼ 0;
λ1þ · · · þλm ¼ 1

ð3:4Þ

for λ1; : : : ; λm. The Jacobian of u has rank m− 1 in almost all the points of the singular
set (generic hypothesis); thus the system (3.4) has rank m, and by the implicit function
theorem λj are smooth functions of P. As a result the level sets fλjðPÞ ¼ 0g, which define
the boundary of θ, are smooth manifolds. At the first order we are working with, the re-
quests λjðPÞ ≥ 0 cut out half-spaces in Σ̂, defining possibly a critical subpolytope θ̂ in Δ.

We notice that we do not know the actual values of Du on the singular vertices,
i.e., the nodes of Σ̂. Nevertheless, we can estimate them by linearly interpolating the
values of Du on the data nodes Pi1 ; : : : ; Pirþ1

defining the vertex Q in Σ̂. By taking
the coefficients μ1; : : : ;μrþ1 solving the system (3.3), we are guaranteed that thecDujðQÞ ≔ μ1DujðPi1Þþ · · · þμrþ1DujðPirþ1

Þ are linearly dependent, and we are jus-
tified in solving for the vanishing linear combination λ1 cDu1ðQÞþ · · · þλm cDumðQÞ ¼ 0.

3.3. Convergence analysis for θ. Let us consider for this section a single simplex
Δ. Intuitively, it is clear that the approximation Σ̂ of Σ obtained by linear interpolation
is quadratically good because of Taylor’s theorem. We state more precisely this result in
the setwise context we have adopted.12 The distance between the sets A and B can be
measured in terms of Hausdorff distance:

12General estimates on the accuracy of piecewise-linear approximations of implicitly defined manifolds are
proved in [2].
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dHðA;BÞ ≔ max

�
sup
x∈A

inf
y∈B

dðx; yÞ; sup
y∈B

inf
x∈A

dðx; yÞ
�
:ð3:5Þ

THEOREM 16 (quadratic precision for Σ). Let P0; : : : ; Pn be in general position and
such that Du has maximum rank. We denote by Δ ¼ hP0; : : : ; Pni the n-simplex whose
vertices are those points. Let ω1ðxÞ; : : : ;ωrðxÞ be a selection of independent minors of
Du, and let ω̂jðxÞ be the first order interpolation of the values of ωj on the nodes Pi.
Assume 0 is a regular value for ω1; : : : ;ωr, that the zero levels of the ωj are transversal,
and that ωjðPiÞ ≠ 0 for all i, j. Then

Σ ¼ fω1ðxÞ ¼ 0g ∩ · · ·∩ fωrðxÞ ¼ 0g;ð3:6Þ

Σ̂ ¼ fω̂1ðxÞ ¼ 0g ∩ · · ·∩ fω̂rðxÞ ¼ 0g;ð3:7Þ
and there exists a constant C:

dHðΣ; Σ̂Þ ≤ Cδ2;ð3:8Þ
where δ > 0 is the diameter of the simplex Δ.

Proof. First of all, we notice that the ωkðxÞ are polynomials of the first derivatives
of u; thus they are smooth in our hypotheses. Inductively, consider r ¼ 1 and denote
ω ¼ ω1. By Taylor’s theorem,

ωðxÞ ¼ ω̂ðxÞ þOðjx− P0j2Þ; i:e:; jωðxÞ− ω̂ðxÞj ≤ Cδ2ð3:9Þ
for a suitable C > 0. Assume, without loss of generality, ω > 0 on P0; : : : ; Pk and ω < 0
on Pkþ1; : : : ; PN . Let ε ≔ Cδ2. (See panel (a) of Figure 3.1.) Thus the zero levels of ω
and ω̂ are comprised between the �ε levels of ω̂; i.e.,

fx ∈ ΔjωðxÞ ¼ 0g ⊆ fx ∈ Δj− ε ≤ ω̂ðxÞ ≤ εg:ð3:10Þ
By the compactness of Δ, there exist x0 ∈ fω̂ ¼ 0g, xε ∈ fω̂ ¼ εg such that

dHðfω̂ ¼ 0g; fω̂ ¼ εgÞ ¼ jx0 − xεj;ð3:11Þ

and it holds that

FIG. 3.1. Critical simplexes with representations of the critical set θ and its first order approx θ̂. Panel (a):
two functions in two dimensions. Panels (b) and (c): two functions in three dimensions. In panel (b) the the
thick line is the first order approximation θ̂; in panel (c) the critical set θ is the curve of intersection of the two
level surfaces ω1ðxÞ ¼ 0 and ω2ðxÞ ¼ 0.
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ω̂ðxεÞ− ω̂ðx0Þ ¼ jω̂ 0ðx0Þ · ðxε − x0Þj ¼
���� ∂ω̂∂w ðx0Þ

����jxε − x0j;ð3:12Þ

where w ¼ xε−x0
jxε−x0j. By means of an elementary linear algebra argument we have also that���� ∂ω∂w ðx0Þ

���� ≥ min
i¼1; : : : ;k;

i 0¼kþ1; : : : ;n

���� ω̂ðPiÞ− ω̂ðPi 0 Þ
Pi − Pi 0

���� ≕ B > 0;ð3:13Þ

so we can conclude

jx0 − xεj ≤
ε

B
¼ C

B
δ2 ¼ Cδ2ð3:14Þ

and eventually

dHðfω ¼ 0g; fω̂ ¼ 0gÞ ≤ Cδ2:ð3:15Þ

Consider now r > 1, and assume inductively that the Hausdorff distance between
the intersection of the zero levels of r − 1 transversal functions and the intersection of
the zero level of the respective linear interpolations on an n-simplex is quadratically
smaller than the simplex diameter. Thus we have

Σ− ¼ fω1ðxÞ ¼ 0g ∩ · · ·∩ fωr−1ðxÞ ¼ 0g;ð3:16Þ
Σ̂− ¼ fω̂1ðxÞ ¼ 0g ∩ · · ·∩ fω̂r−1ðxÞ ¼ 0g;ð3:17Þ

dHðΣ−; Σ̂−Þ ≤ Cδ2:ð3:18Þ

If we consider one more function ωrðxÞ on the linear space Σ̂−, we are in the previous
case, so there exists A > 0,

dHðΣ̂− ∩ fωrðxÞ ¼ 0g; Σ̂− ∩ fω̂rðxÞ ¼ 0gÞ ≤ Aδ2:ð3:19Þ

By transversality of the ω1; : : : ;ωr, the fact holding for the linear space Σ̂− holds also for
the compact manifold with boundary Σ− and the function ωr (see Lemma 17 for the
details). Thus there exists a B > 0 such that

dHðΣ− ∩ fωrðxÞ ¼ 0g; Σ− ∩ fω̂rðxÞ ¼ 0gÞ ≤ Bδ2:ð3:20Þ

On the other hand, for the intersection of the zero levels of the transversal functions
ω1; : : : ;ωr−1 on the linear space fω̂rðxÞ ¼ 0g, by the inductive hypothesis there exists
C > 0,

dHðfωrðxÞ ¼ 0g ∩ Σ−; fωrðxÞ ¼ 0g ∩ Σ̂−Þ ≤ Cδ2;ð3:21Þ

so the thesis is proved by the triangle inequality. ▯
LEMMA 17. Let Σ be a manifold with boundary diffeomorphic to an n-simplex Δ, and

let ω∶ Σ → R be differentiable and without critical points inside Σ. We have
ωðxÞ ¼ ω̂ðxÞ þOðδ2Þ, where ω̂ is an affine approximation and δ is the simplex diameter.
Thus we have that

dHðfωðxÞ ¼ cg; ω̂ðxÞ ¼ cgÞ ≤ Cδ2 for all c ∈ R:ð3:22Þ
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Proof. Let Δ→
φ
Σ be a diffeomorphism with ξ > jφ 0j > η > 0. Thus we have, for all

y ∈ Δ,
ω ∘ φðyÞ ¼ ω̂ ∘ φðyÞ þOðδ2Þ:

For any y⋆ in the zero level of ω ∘ φ we can find a line segment ½y1; y2�, with y1 being one
of the nodes of Δ where ω ∘ φ is negative and y2 is a point on a face of Δ where on the
forming nodes ω ∘ φ is positive. By continuity there exists a point ŷ on the line ½y1; y2�
where ω̂ ∘ ϕ is zero.

Thus,

ω ∘ φðy⋆Þ− ω ∘ φðŷÞ ¼ ω̂ ∘ φðy⋆Þ− ω̂ ∘ φðŷÞ þ oðδ2Þ ¼ ω̂ 0 ∘
∂φ
∂w

jy⋆ − ŷj þ oðδ2Þ;
ð3:23Þ
which gives

jy⋆ − ŷj ≤ Cδ2: ▯ð3:24Þ

Note 18. The hypotheses of Theorem 16 are generic in the sense that they hold for
an open and a dense set of functions. In particular, 0 is assumed to be a regular value for
ω1; : : : ;ωr because the set of the singular values has zero measure (Sard’s theorem). See
[7], [20], [28], [30], [33].

THEOREM 19. In the simplex Δ ¼ hP0; : : : ; Pni, if θ is the Pareto critical set and θ̂ is
its linear approximation, there exists C > 0 such that

dHðθ; θ̂Þ ≤ Cδ2:ð3:25Þ

Proof. The λj computed as described in Algorithm 1 are first order approximations
to smooth functions, apart from a measure zero set of points. Thus the conclusions of
Theorem 16 apply as well to the intersection of Σ with the half-spaces λjðPÞ ≥ 0. ▯

3.4. Second order algorithm. In Algorithm 2 we describe how to extract the
stable critical set θs, i.e., the set of locally Pareto optimal points, from the critical
set θ determined in the first order Algorithm 1.

ALGORITHM 2. SECOND ORDER ALGORITHM FOR THE STABLE PARETO CRITICAL SET θs.
1: Consider a set of data points D ¼ fP1; : : : ; PNg and proceed as in Algorithm 1.
2: for all Delaunay simplex Δ ¼ hPi0 ; : : : ; Pini in the tessellation do
3: compute the matrix of the second derivatives D2u on the nodes Pi0 ; : : : ; Pin ;
4: compute a basis w1; : : : ; wn−mþ1 for ker DuðQÞ, and set ĤðQÞ ≔ w⊤ ·

ðλ1ðQÞ dD2u1ðQÞþ · · · þλmðQÞ dD2umðQÞ · w;
6: compute the eigenvalues σ1; : : : ;σn−mþ1 of ĤðQÞ;
7: cut out from θ̂ the subpolytope θ̂s, where σk ≤ 0 for all k ¼ 1; : : : ; n−mþ 1;
8: end for
9: compose a simplicial complex glueing together adjacent polytopes θ̂s.

The second derivatives could also be approximated computing the finite differences
of the values of the gradients on the nodes of the n-simplex. Indeed, setting

vi ¼ Pi − P0; i ¼ 1; : : : ; n;
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we have

D2u ¼
�

∂2u
∂xi∂xj

�
i;j

¼
X
k

∂2u
∂vk∂xj

·
∂vk
∂xi

≃
X
k

ð∇uðPkÞ−∇uðP0ÞÞj · ðPk − P0Þi:ð3:26Þ

Using this formula, the quadratic precision cannot be guaranteed for locating
boundary points of the stable critical set. Furthermore, because the boundary faces
belong to different simplexes, the estimated boundary points for θs would jump from
simplex to simplex.

On the other hand, the formula will be correct for discriminating the nature of inner
stable critical points without extra computations. Boundary simplexes can thus be ana-
lyzed with second derivatives, allowing for the computation of the boundary of θ̂s.

4. Applications.

4.1. Two functions in 2-dimensional examples. A series of examples in two
dimensions is presented below. Via global analysis one sees that, for structurally stable
mappings, the Pareto critical set is a 1-dimensional manifold with boundary contained
in Σ. Critical points can only be of one of the following types:

1. fold; i.e., the mapping is locally equivalent to u1 ¼ x1, u2 ¼ x22;
2. cusp; i.e., the mapping is locally equivalent to u1 ¼ x1, u2 ¼ x1x2 − 1

3 x
3
2.

Therefore, the branches of Pareto critical points are composed by folds, which intersect
only pairwise and at nonzero angles. Some local branches terminate in cusps, where the
status of critical points can change from stable to unstable. Finally, images of folds and
cusps do not intersect [7], [65].

Function gradients are evaluated on a grid of regular triangles, and the critical set θ
is estimated according to the first order algorithm. Boundary points are marked with
black diamonds. The generalized Hessian is estimated on the nodes of the critical set,
computing second derivatives in the triangles where its index changes, allowing one to
estimate the position of the points separating stable from unstable branches. Cusps are
marked by a black star, stable branches are colored in red, unstable branches in orange,
and finally noncritical branches are gray.

Example 1. Consider two negative definite quadratic polynomials. The critical
stable set is a curve joining the two individual critical points. Other singular branches
occur in outer regions of the domain.

u1ðx; yÞ ¼ −1.05x2 − 0.98y2;

u2ðx; yÞ ¼ −0.99ðx− 3Þ2 − 1.03ðy− 2.5Þ2:ð4:1Þ
See Figure 4.1.

Example 2. This example is taken from [58].

u1ðx; yÞ ¼ −y;

u2ðx; yÞ ¼
y− x3

xþ 1
:ð4:2Þ

The critical set is a single curve split into a stable and an unstable branch, while the
separating point is a cusp. See Figure 4.2.

Example 3. In the following mapping there are two second order polynomials, one
negative definite and the other indefinite. The outcome is an (unbounded) global Pareto
front and a local unbounded front terminating in a cusp.
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u1ðx; yÞ ¼ −x2 − y2;

u2ðx; yÞ ¼ −ðx− 6Þ2 þ ðyþ 0.3Þ2.ð4:3Þ

See Figure 4.3.
Example 4. The following mapping is composed of a quadratic polynomial and a

bimodal function. The resulting singular set is composed of an unbounded branch
and two loops. One of the loops is critical and forms a local Pareto front delimited
by two cusps, while the other loop is noncritical.

FIG. 4.1. Pareto critical set (a) and the Pareto front (b) for Example 1.

FIG. 4.2. Example 2. Red line: stable critical set. Orange line: unstable critical set.
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u1ðx; yÞ ¼ −x2 − y2 − 4ðexpð−ðxþ 2Þ2 − y2Þ þ expð−ðx− 2Þ2 − y2ÞÞ;
u2ðx; yÞ ¼ −ðx− 6Þ2 − ðyþ 0.5Þ2:ð4:4Þ

See Figure 4.4.

4.2. Higher input dimension. Example 5. The followingmapping demonstrates
thecapabilitiesof themethod indistinguishing localandglobal featuresof theParetoset.A
widespreadoptimalbranch is surpassedbya localbranch.Thesharperbranch is composed
of an unstable part (orange) and a stable part (red) which is interrupted by noncritical

FIG. 4.3. Example 3.

FIG. 4.4. Example 4.
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insertions (gray). Nevertheless, as illustrated in Figures 4.5(a)–(b), the two separate
branches are properly recognized by the algorithm, and, moreover, the transitions among
critical/noncritical and stable/unstable intervals are detected. For comparison, the out-
come of the application of a commercial implementation of normal boundary intersection
byDas andDennis [12] is shown in Figures 4.5(c)–(d).13 The starting grid (green dots) was
10× 20× 10, and we considered 50 NBI subproblems. The sequence of NBI points is
marked by black stars. For this particular problem,NBI tracks correctly the broadPareto
optimal branch, in the sense that it produces a parametrization of it. However, the smaller

FIG. 4.5. Example 5. Panel (a): singular (gray), Pareto critical (orange), and Pareto stable (red) sets in
the problem domain. Green dots mark the nodes of the starting regular grid defining the tessellation. Octahe-
drons mark points separating critical and noncritical branches. Spheres separate stable from unstable branches;
i.e., they mark cusps. Panel (b): image of singular and Pareto sets. Diamonds separate critical from noncritical
branches, while stars mark the cusps. Panels (c)–(d): results obtained running the commercial implementation
of NBI–AFSQP available inmodeFRONTIERfi, courtesy of E. Rigoni. Small green points are a starting regular
grid, while marked points are the solutions of the 50 NBI subproblems.

13Applications of modeFRONTIERfi are courtesy of E. Rigoni at ESTECO.

478 ALBERTO LOVISON

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



branch ismissed, although some of the points of the starting grid were close to this critical
zone. It is clear thatpointwise strategies suffer at tracking theParetooptimal set and fail at
performing widespread tradeoff studies, apart from small intervals where different fronts
are far apart and do not change status (from critical to noncritical, stable to unstable,
and so on).

p0 ¼ ð0.0; 0.15; 0.0Þ⊤;
p1 ¼ ð0.0;−1.1; 0.0Þ⊤;

M ¼

0
B@

−1.0 −0.03 0.011

−0.03 −1: 0.07

0.011 0.07 −1.01

1
CA;

gðx; y; z;M; p;σÞ ¼
ffiffiffiffiffiffi
2π

σ

r
e

ððx;y;zÞ⊤−pÞ⊤M ððx;y;zÞ⊤−pÞÞ
σ2 ;

f ðx; y; zÞ ¼ gðx; y; z;M; p0; 0.35Þ þ gðx; y; 0.5z;M; p1; 3.0Þ;

u1ðx; y; zÞ ¼
ffiffiffi
2

p

2
xþ

ffiffiffi
2

p

2
f ðx; y; zÞ;

u2ðx; y; zÞ ¼ −
ffiffiffi
2

p

2
xþ

ffiffiffi
2

p

2
f ðx; y; zÞ:ð4:5Þ

Example 6. The following 6-dimensional example is a regularization of the third of
the ZDT problems [15], which has degenerate second derivatives. The Pareto fronts of
original and modified problems correspond to each other in output space. We used a
Delaunay tessellation defined on 300 randomly generated points. The results are pre-
sented in Figure 4.6. Critical and merely singular branches are correctly represented.
Note that the critical branches are correctly marked as unstable, being minima.

u1ðx1; : : : ; x6Þ ¼ x1;

u2ðx1; : : : ; x6Þ ¼ 1−
ffiffiffiffiffi
x1

p
− x1 sinð10πx1Þ þ x22 þ : : : þ x26;

x1 ∈ ½0.1; 0.425�; x2; : : : ; x6 ∈ ½−0.16; 0.16�:ð4:6Þ

FIG. 4.6. Example 6. Image of the singular (gray), Pareto critical (orange) sets for regularized ZDT3.
Green dots mark the nodes of the starting random distribution of points defining the tessellation.
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4.3. Three functions examples. Example 7. The simplest nontrivial nondegene-
rate example we can build in the 3-dimensional case is composed of three negative de-
finite second order polynomial functions f jðxÞ; j ¼ 1; 2; 3. Additionally, we introduce a
small nonpolynomial perturbation.

f jðxÞ ¼ ðx− CjÞ⊤ ·

0
BBB@

−αj;1 0 0

0 −αj;2 0

0 0 −αj;3

1
CCCA · ðx− CjÞ; j ¼ 1; 2; 3;

0
BB@

u1ðxÞ
u2ðxÞ
u3ðxÞ

1
CCA ≔

0
B@

f 1ðxÞ
f 2ðxÞ
f 3ðxÞ

1
CAþ

0
BBBBB@

0

β2 sin
�

π
γ2
ðxþ yÞ

�
β3 cos

�
π
γ3
ðx− yÞ

�

1
CCCCCA;ð4:7Þ

where x ¼ ðx1; x2; x3Þ⊤ ∈ R3, αj;i > 0, i; j ¼ 1; 2; 3, C 1; C 2; C 3 ∈ R3 are distinct, noncol-
linear points, while βj, γj are real numbers. In the generic case the singular set is a hy-
persurface of R3, while the critical set θ, which is stable, is diffeomorphic to a triangle;
i.e., θ is a compact connected manifold with boundary and three corners, corresponding
to the minima of the three functions u1, u2, u3. See Figure 4.7(a).

Example 8. We break the convexity of the previous example by adding a secondary
maximum to the first function. We define a further negative definite, second order poly-
nomial f 4ðxÞ and set uðxÞ as

0
BB@

u1ðxÞ
u2ðxÞ
u3ðxÞ

1
CCA ≔

0
BB@

f 1ðxÞ
f 2ðxÞ
f 3ðxÞ

1
CCAþ

0
BBBBB@

β1 exp
�

1
γ1
f 4ðxÞ

�
β2 sin

�
π
γ2
ðxþ yÞ

�
β3 cos

�
π
γ3
ðx− yÞ

�

1
CCCCCA:ð4:8Þ

The main portion of the Pareto set is slightly deformed while a new branch appears.
In Figure 4.7(b) is shown the resulting Pareto critical set θ obtained by iterative
application of Algorithm 1 as described in section 5.

FIG. 4.7. (a) Critical set θ of Example 7. (b) Critical set θ of Example 8.
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4.4. A constrained example. We briefly sketch here an adaptation of
Algorithm 1 to the case of equality constraints. Next we illustrate a simple application.
Let W ≔ fx ∈ RnjgðxÞ ¼ 0g, where g∶ Rn → Rn−d is a smooth function such that ∂gjW
has maximum rank.

ALGORITHM 3. EQUALITY CONSTRAINT CASE FOR THE FIRST ORDER ALGORITHM.
1: Determine a piecewise-linear approximation Ŵ of W , with nodes P1; : : : ; Pn;
2: for all simplex Δ in the tessellation Ŵ , do
3: determine a piecewise-linear approximation of the singular, critical, and stable

sets possibly crossing the simplex. This is done on the basis of the projections of
the gradients of the uj’s on the tangent space toW . In principle, a basis for TW
should be chosen respecting the orientation;

4: for all Node P of the simplex Δ do
5: compute DgðPÞ and project gradujðPÞ on kerDgðPÞ via πDgðPÞ;
6: compute an independent set of minors for the matrix ðπ gradu1ðPÞ; : : : ;

π gradumðPÞÞ; or, equivalently,
7: compute an independent set of minors for the matrix ðgrad g1; : : : ;

grad gn−d; gradu1; : : : ; gradumÞ;
8: end for
9: determine if all minors vanish inside the simplex S , and in that case locate Σ̂ via

inverse linear interpolation;
10: estimate λj and determine the critical set θ̂ as in Algorithm 1;
11: end for
12: eventually glue together adjacent portions of Σ̂ and θ̂.

Example 9. Maybe the simplest example of a constrained problem is when W ¼ S2

and the objectives are the first two coordinates, u1ðx1; x2; x3Þ ≔ x1, u2ðx1; x2; x3Þ ≔ x2.
14

Explicit algebraic computation gives that the singular set Σ is the equator of the sphere,
where the two curvilinear segments where x1x2 > 0 are the critical set θ, as illustrated in
Figure 4.8(a). By applying Algorithm 3, we start by approximating the sphere by an
icosahedron. At every node P ¼ ðx1; x2; x3Þ, 1

2 ðx21 þ x22 þ x23 − 1Þ ¼ 0, we have
DgðPÞ ¼ ðx1; x2; x3Þ; therefore, the projections of the gradients of uj are
ð1− x21;−x1x2;−x1x3Þ and ð−x1x2; 1− x22;−x1x3Þ. The singular set Σ passes through
the triangles where the pair of vectors π gradu1 and π gradu2 change orientation in
the tangent plane to S2. It is equivalent then to compute the determinant of the matrix
whose columns are grad g, gradu1, and gradu2 and to determine the line along which it
vanishes. This gives exactly the “equator” of the icosahedron. The signs of the λj depend
on the sign of the scalar product among π graduj, again giving as turning points the
intersections with the axes. The results are summarized in Figure 4.8(a) and (b).

5. Iterative schemes. The previously presented approach defines an approxima-
tion of the Pareto optimal set given any distribution of points in the domain. Here we
propose and discuss an iterative scheme. At every step a selection of points from the
approximated Pareto optimal set is added to the dataset D, the gradients in the
new points are evaluated, the tessellation is updated, and a refined approximation of
the Pareto set is built. The desired effect is obviously to get closer and closer to the
actual optimal set, but an efficient strategy should produce an as uniform as possible
discretization of the optimal set.

14This example is also discussed in [13].
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A naïve approach would suggest to insert in the set of the candidates for evaluation
all of the nodes of the complexes, i.e., all the stable admissible vertices computed and all
of the boundary points, both for criticality and stability. Nevertheless, a glance at the
examples of the previous section reveals that the sizes of the optimal complexes cover a
wide distribution; in particular, if Σ passes close to tessellation nodes, very small patches
are generated. Moreover, little experience shows that large patches are reduced sensibly
slowly if none of their internal points is introduced. With this criteria in mind we in-
troduce an iterative scheme for the case of two functions.

5.1. Two-function iterative scheme. In the two-function case the Pareto
optimal set is a 1-dimensional manifold with boundary, i.e., a collection of curved
intervals. The discrete approximation is a collection of polygonal curves. For every in-
terval a sequence of candidate points equally spaced along the polygonal curve is ex-
tracted. The number of points is chosen equal to the number of segments so that
approximately every triangle containing optimal points is split as close as possible to
the optimal set.

5.2. Higher number of functions. It seems reasonable to take into account
the stratified structure of θ in the design of an iterative strategy. In fact, strata should
be filled as uniformly as possible, where the uniformity is determined according to the
k-dimensional measure if k is the dimension of the stratum. So, taking, for instance, the
situation of Example 7, corners’ approximations are reevaluated at each iteration, uni-
formly spaced points are taken along boundary lines, exactly as in the two-functions
case, while internal points should be distributed proportionally to the area of the tri-
angles and polygons composing θ̂. This is more difficult to be defined precisely. Indeed,
the problem of uniformly filling a general n-dimensional region is a long-time crucial
issue for statistical applications [48]. Furthermore, in our problem we have to fill uni-

FIG. 4.8. (a) Singular and critical sets determined analytically for Example 9. (b) Piecewise-linear ap-
proximation of the sphere, of the singular set (green solid curves), and of the critical set (orange and thicker
curves).

482 ALBERTO LOVISON

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



formly a general n-dimensional manifold; thus we have to somehow take into account
the effects of the curvature on the measure of the volumes.

Taking inspiration from a Design of Experiments strategy called maximin distance
design [21], we proceed as described in Algorithm 4. This algorithm, because of point 6,
can lead to long and thin simplexes and to numerical instabilities when iterated many
times. This problem can be tackled by the application of mesh improvement strategies,
as described below for the case of 2-dimensional domains. However, to the author’s
knowledge, general dimension mesh improvement strategies are still not available at
present.

ALGORITHM 4. UNIFORMLY FILLING A SIMPLICIAL COMPLEX.
1: Tessellate in simplexes the polytopes of the mesh;
2: build the adjacency lists of the simplexes;
3: evaluate the volume of each simplex;
4: for every simplex define the accumulated volume as the sum of its volume and

the volume of the adjacent simplexes;
5: pick the simplex with the maximum accumulated volume;
6: add to the candidates stack the center of mass of this maximal simplex;
7: repeat
8: recompute the accumulated volumes excluding the already picked simplexes;
9: until the desired number of candidate points is collected.

5.3. Stopping criteria. Analogously to gradient-based methods of single function
optimization (nonlinear conjugate gradient, Newton, and Newton-like methods), a stop-
ping criterion could be based on the magnitude of the minors M 1; : : : ;Mr computed in
the points of the last iteration. The magnitude of the minors is analogous to the mag-
nitude of the gradients for single objective optimization.

In fact, we could define a different iterative strategy taking the rule of subdividing
only stable critical triangles contained in simplexes where the minors are larger than a
prescribed threshold.

5.4. Application. We show the behavior of the iterative scheme described above
applied to the mapping in Example 4. At each iteration we generate a number of evenly
spaced points along the approximate stable Pareto critical set. In order to exhibit the
claimed quadratic convergence, it is necessary to sample the approximated optimal set
by quadratically finer intervals, i.e., comparable to the precision gained. As a result the
density of points will grow exponentially w.r.t. the number of iterations. Such a density
of points rapidly deteriorates the mesh quality; i.e., skinny triangles suddenly appear
leading to numerical instability. Thus, at each iteration, a number of extra nodes
(namely, the circumcenters of the most skinny triangles) should be introduced in the
mesh in order to produce a nice grading. At this extent we have coupled our method
with Ruppert’s algorithm, as implemented in the triangular mesh refinement software
TRIANGLE by Shewchuk [53], [54].

Already at the fifth iteration the triangulation starts to suffer from numerical in-
stability; thus we consider θ̂ð4ÞS generated at the fourth iteration as the optimum and
evaluate the Hausdorff distances between θ̂ðiÞS and θ̂ð4ÞS for i ¼ 1; : : : ; 3. As can be seen
in Figure 5.2(a), the Hausdorff distances between the approximated Pareto sets and the
numerical optimum converge superlinearly. For reference also the convergence behavior
of the maximum and the mean minors magnitude is reported.
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FIG. 5.1. Iterative scheme for the mapping in Example 4.
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In Figure 5.1 is illustrated how the triangulation and the representation of the
Pareto set evolves from one iteration to the subsequent.

In Figure 5.3, the 3-dimensional problem of Example 7 is tackled by the procedure
described in Algorithm 4. The algorithm has been applied by introducing only a small
number (∼10) of new points on the sites with the largest magnitude of the minors.
In such a way it was possible to iterate 70 times the scheme reaching a very small mag-
nitude for the minors.

Because of the mentioned exponentially growing number of samples necessary to
exhibit quadratic convergence speed for the iterative scheme, the experiment described
for the 2-dimensional case becomes prohibitive in three dimensions.

On the other hand, a superlinear precision can be verified as well by means of a
sequence of approximations obtained from progressively finer regular meshes, corre-
sponding to a sequence of mesh sizes s ¼ 2.8; : : : ; 0.4. Because the Hausdorff distance
among the first s-approximation and the optimal set is already comparable to the largest
mesh size of the optimal set, we analyze the sequence of average distances between a
point of one set and the triangles of the other set, instead of considering the maximum
distances. These average distances decrease faster than linearly as it can be seen by
plotting the ratio of distances and mesh sizes versus the mesh sizes, as reported in
Figure 5.2(b).

FIG. 5.2. Convergence behavior for iterative schemes applied to Examples 4 and 7. (a) Iterative scheme
applied to Example 4. Stars represent the Hausdorff distance between the approximated Pareto set at each
iteration and the Pareto set obtained at the fourth iteration, which is employed as an optimum. Diamonds
and circles represent, respectively, the maximum and the mean absolute value of the minors of the Jacobian
matrix computed on the points of the approximated Pareto set. Log scale reveals the superlinear convergence
behavior. The horizontal dashed line represents the mesh size of the numerical optimum. (b) Algorithm 1 ap-
plied to Example 7 using progressively finer regular meshes. Stars represent the average distance between a
node of the optimal set and the triangles of the approximation and vice versa. The ratio between the distance and
the the mesh size decreases faster than linearly according to Theorem 16.
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FIG. 5.3. Algorithm 1 applied to Example 7 for progressively finer meshes. The blue surface is the numer-
ical optimum obtained with long application of the iterative scheme.
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6. Conclusions and perspectives. We have presented a novel multiobjective
optimization method which exploits the manifold structure underlying the set of Pareto
optimal points. Global analysis seems the proper setting where those structures arise
and can be studied. We approximate Pareto sets via simplicial complexes, specializing
simplicial pivoting techniques for detecting the singular manifold Σ and successively
cutting out critical and stable subsets θ and θS . By contrast, most of the available
strategies are aimed at producing a scatter of optimal points whose images should
be evenly distributed. We have illustrated some generic situations where this program
could not be successfully completed via such pointwise strategies because of nonconvex-
ities of the functions. Adopting the Hausdorff measure, Newton-type estimates lead to
quadratic convergence in a setwise sense.

Because of its global character, the method proposed here is demanding. Delaunay
tessellations, in particular, are defined for every possible input dimension, but they are
numerically workable only for cases of small dimension. The theory of singularities of
mappings also highlights further limitations encountered when dealing with a large
number of functions. Lastly, we have everywhere assumed the differentiability of the
functions. Therefore, the method is not suitable for nonsmooth optimization; instead
it is supposed to be applicable also via smooth surrogate functions when approximations
are consistent with the functions at hand. Possible extensions of the algorithms de-
scribed in this paper are conditioned by the issues enumerated below.

6.1. The curse of dimensionality. The first problem one encounters when trying
to apply these algorithms to industrial strength problems is the limitations to the input
dimension. The whole procedure is based on a Delaunay tessellation of the input domain,
whose complexity grows exponentially with dimension. As pointed out, for instance, in
the qhull documentation [8], building the convex hull of a 9-hypercube is computation-
ally exhaustive. Analogous limitations are encountered in global optimization, where the
search for optima in high-dimensional domains cannot realistically be performed on real
case problems. Indeed, typically, global search algorithms are rarely tested and com-
pared over dimensions larger than five (see [22], [23], [24], [41], [50], [52], [70]).
This problem is structural and cannot be resolved by augmenting the computational
resources. Therefore, the presented algorithms are best suited for low-dimensional pro-
blems. In fact, the curse of dimensionality is a strong motivation for reflecting carefully
on the necessity of introducing extra input variables when tackling new problems and
designing experiments. A possible exit strategy could be screening the input variables
[49], [59]. This practice can be surprisingly successful, because usually sparsity of effects
occurs, revealing a pronounced hierarchy among input variables, leading to sensible sim-
plification of the problem formulation.15

Alternatively, as described in the recent paper [6], it is possible to redefine any pro-
blem in n-dimensional space in an equivalent problem in a linear subspace of dimension
2ðm− 1Þ þ 1, if m is the number of objectives. This is because the singular set is an
(m− 1)-manifold, and by Whithney’s embedding theorem, in the compact case, almost
all projections on linear ð2ðm− 1Þ þ 1Þ-dimensional subspaces are diffeomorphisms.
This would mean that bi-objective problems could be equivalently discussed in a

15The sparsity of effects is an empirical law stating that in a generic physical experiment one usually ob-
serves that 80% of the effects are due to 20% of the factors. Related phenomena are that the first order con-
tributions are the most important, while higher order contributions decay fast. Finally, one observes that the
largest interactions (second order contributions) are a combination of the strongest factors. See, for in-
stance, [69].
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3-dimensional domain, 3 objectives would require only 5 input variables, and so on. This
would dramatically reduce the computational burden of the tessellations involved.

6.2. Surrogate models. In industrial applications, when the objective functions
at hand could be nondifferentiable, or may be computationally too expensive, prevent-
ing the computation of derivatives, we figure that the applicability of the algorithm
proposed here will be significantly extended by using surrogate models. There exists
an extensive literature developed in recent years on this subject (see [22], [23], [47],
[48], and the references therein), also with specific applications to multiobjective opti-
mization [25], [26].

The procedures of this paper can be adapted applying Algorithms 1 and 2 to a sur-
rogate model ~u fitted to the values of the true functions u computed on the given data
points. On the outcoming candidate points, new evaluations of u are to be computed,
and a new surrogate model is to be fitted to the increased dataset. This reduces the
computational effort for computing derivatives and furthermore prevents premature
stopping of the optimization process due to accidental failure of function evaluation
at some data point. Again, the convergence to the Pareto sets of the true functions
is guaranteed via global analysis.
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