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Abstract. For a non-cyclic finite group X let sðXÞ be the least number of proper subgroups
of X whose union is X . Precise formulas or estimates are given for sðS o CmÞ for certain non-
abelian finite simple groups S where Cm is a cyclic group of order m.

1 Introduction

For a non-cyclic finite group X let sðX Þ be the least number of proper subgroups of
X whose union is X . Let S be a non-abelian finite simple group, let S be a non-empty
subset of S, and let m be a positive integer. Let aðmÞ be the number of distinct prime
divisors of m. Let M be a non-empty set of maximal subgroups of S with the follow-
ing properties (provided that such an M exists):

(0) if M A M then Ms A M for any s A S;

(1) SVM0q for every M A M;

(2) SJ6
M AM M;

(3) SVM1 VM2 ¼ q for every distinct pair of subgroups M1 and M2 of M;

(4) M contains at least two subgroups that are not conjugate in S;

(5) md 2 and

max

�
ð1 þ aðmÞÞjSjm=l ; max

H BM
H<S

jSVHj jHjm�1

�

cmin

��X
jSVM1j jSVM2j

�
jSjm�2; min

M AM
jSVMj jMjm�1

�
;

where l is the smallest prime divisor of m and the sum is over all pairs
ðM1;M2Þ A M2 with M1 not conjugate to M2.
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Let N denote a covering for S, that is, a set of proper subgroups of S whose union
is S.

Theorem 1.1. Using the notation and assumptions introduced above we have

aðmÞ þ
X
M AM

jS : Mjm�1
c sðS o CmÞc aðmÞ þ min

N

X
M AN

jS : Mjm�1:

We state and prove two direct consequences of Theorem 1.1. Recall that M11 is the
Mathieu group of degree 11.

Corollary 1.2. For every positive integer m we have

sðM11 o CmÞ ¼ aðmÞ þ 11m þ 12m:

Let PSLðn; qÞ denote the projective special linear group of dimension n over a field
of order q.

Corollary 1.3. Let p be a prime at least 11 and m be a positive integer with smallest

prime divisor at least 5. Then

sðPSLð2; pÞ o CmÞ ¼ aðmÞ þ ðpþ 1Þm þ ðpðp� 1Þ=2Þm:

The ideas of the proof of Theorem 1.1 together with the ideas in [1] can be used
to find a formula for sðPSLðn; qÞ o CmÞ holding for several infinite series of groups
PSLðn; qÞ o Cm for nd 12. However, since such an investigation would be quite
lengthy, we do not pursue it in this paper.

Let An be the alternating group of degree n where nd 5. The ideas of the proof of
Theorem 1.1 together with the ideas in [9] can be used to find a formula and some
estimates for sðAn o CmÞ in various cases.

Theorem 1.4. With the notation and assumptions introduced above, let n > 12. If n is

congruent to 2 modulo 4 then

sðAn o CmÞ ¼ aðmÞ þ
Xðn=2Þ�2

i¼1
i odd

n

i

� �m

þ 1

2m

n

n=2

� �m

:

If n is not congruent to 2 modulo 4, then

aðmÞ þ 1

2

Xn

i¼1
i odd

n

i

� �m

c sðAn o CmÞ:
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In some sense Theorem 1.4 extends a theorem of [9], namely that 2n�2 c sðAnÞ if
n > 9 with equality if and only if n is congruent to 2 modulo 4.

Finally we establish the following result using the ideas of Theorem 1.1.

Theorem 1.5. With the notation and assumptions introduced above, let n be a posi-

tive integer with a prime divisor at most
ffiffiffi
n3

p
. Then sðAn o CmÞ is asymptotically equal

to

aðmÞ þ min
N

X
M AN

jAn : Mjm�1

as n goes to infinity.

Theorem 1.1 and Corollaries 1.2, 1.3 are independent of the classification of finite
simple groups (CFSG). Theorems 1.4 and 1.5 do depend on CFSG, but with more
work using [10] instead of [8] one can omit CFSG from the proofs.

There are many papers on the topic of covering of groups with proper subgroups,
beginning with [11] which appeared in 1926. The systematic study of the invariant
sðX Þ was initiated in [3]. More recent papers on this topic include [5], [7] and [12].

A finite group X is called s-elementary (or s-primitive) if for any proper, non-
trivial normal subgroup N of X we have sðX Þ < sðX=NÞ. The s-elementary groups
play a crucial role in determining when sðXÞ can equal a given positive integer n for
some finite group X . The groups that we consider in this paper are s-elementary.
Giving good lower bounds for sðXÞ for s-elementary groups X will help answer the
problem of determining the density of the set of positive integers n for which there
exists a finite group G with n ¼ sðGÞ.

2 On subgroups of product type

Let S be a non-abelian finite simple group, and let G ¼ S o Cm be the wreath product
of S with the cyclic group Cm of order m. Denote by g a generator of Cm. If M is a
maximal subgroup of S and g1; . . . ; gm are elements of S, the normalizer in G of

Mg1 � � � � �Mgm cSm ¼ socðGÞ

is called a subgroup of product type. A subgroup of product type is maximal in G

(but we will not use this fact in the paper). In the following we take the subscripts
of the elements gi and xi modulo m.

Lemma 2.1. Let M be a maximal subgroup of S, and let k A f1; . . . ;m� 1g. Let

g1; . . . ; gm be elements of S with g1 ¼ 1. Choose g :¼ ð1; 2; . . . ;mÞ. The element

ðx1; . . . ; xmÞgk belongs to NGðM �Mg2 � � � � �MgmÞ if and only if

xi�k A g�1
i�kMgi for all i A f1; . . . ;mg:
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In particular, if t is any positive integer at most m and ðx1; . . . ; xmÞgk belongs to

NGðM �Mg2 � � � � �MgmÞ, then

xtxkþtx2kþt . . . xðl�1Þkþt A Mgt ;

where l ¼ m=ðm; kÞ.

Proof. The element ðx1; . . . ; xmÞgk normalizes Mg1 �Mg2 � � � � �Mgm if and only if

ðMg1x1 �Mg2x2 � � � � �MgmxmÞg
k

¼ Mg1 �Mg2 � � � � �Mgm :

The permutation gk sends i to i þ k modulo m, so the condition becomes the fol-
lowing:

Mg1�kx1�k �Mg2�kx2�k � � � � �Mgm�kxm�k ¼ Mg1 �Mg2 � � � � �Mgm :

That is,

gi�kxi�kg
�1
i A M for all i A f1; . . . ;mg:

Multiplying on the right by gi and on the left by g�1
i�k we obtain

xi�k A g�1
i�kMgi for all i A f1; . . . ;mg:

Let t A f1; . . . ;mg. The inclusion with xt on the left-hand side says that
xt A g�1

t Mgkþt; the one with xkþt on the left-hand side says that xkþt A g�1
kþtMg2kþt,

and so on. By multiplying these together in this order we obtain that
xtxtþkxtþ2k . . . xtþðl�1Þk A Mgt , where l is the smallest number in f1; . . . ;mg such that
m divides lk, that is, l ¼ m=ðm; kÞ. r

3 An upper bound for s(S o Cm)

Proposition 3.1. Let S be a non-abelian finite simple group, let N denote a covering for

S, let m be a fixed positive integer, and let aðmÞ denote the number of distinct prime

factors of m. Then

sðS o CmÞc aðmÞ þ min
N

X
M AN

jS : Mjm�1:

Proof. The bound is clearly true for m ¼ 1. Assume that m > 1.
The idea is to construct a covering of S o Cm which consists of exactly

aðmÞ þ min
N

X
M AN

jS : Mjm�1

proper subgroups.
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There are aðmÞ maximal subgroups of the group S o Cm containing its socle.
Choose all of these to be in the covering. Then we are left to cover all elements of
the form ðx1; . . . ; xmÞgk with each xi in S, where Cm ¼ hgi, and k is coprime to m.
It su‰ces to show that such elements can be covered by the subgroups of the form

NGðM �Mg2 �Mg3 � � � � �MgmÞ

where M varies in a fixed cover N of S and the elements gi vary in S, because for
each fixed M in N we have jS : Mj choices for Mgi for each i A f2; . . . ;mg.

By Lemma 2.1, ðx1; . . . ; xmÞgk belongs to NGðM �Mg2 � � � � �MgmÞ if and only if

xi�k A g�1
i�kMgi for all i A f1; . . . ;mg;

with g1 ¼ 1. The first condition is x1�k A g�1
1�kM. Choose g1�k ¼ x�1

1�k. Then move
to the condition xj�k A g�1

j�kMgj with j ¼ 1 � k, i.e. x1�2k A g�1
1�2kMg1�k, and re-

write it using the information g1�k ¼ x�1
1�k to get x1�2kx1�k A g�1

1�2kM. Choose
g1�2k ¼ x�1

1�kx
�1
1�2k. Continue this process for m=ðm; kÞ ¼ m iterations, using Lemma

2.1 (recall that m is coprime to k). Choose

g1�jk ¼ x�1
1�kx

�1
1�2k . . . x

�1
1�jk for all j A f1; . . . ;m� 1g:

At the mth iteration we get the relation

x1�mkx1�ðm�1Þk . . . x1�2kx1�k A g�1
1�mkM:

But g1�mk ¼ g1 A M, so to conclude it su‰ces to choose an M from N which con-
tains the element x1�mkx1�ðm�1Þk . . . x1�2kx1�k. r

4 On subgroups of diagonal type

Let S be a non-abelian finite simple group. Let m be a positive integer at least 2 and
let t be a divisor of m which is less than m. For positive integers i and j with 1c ic t

and 2c jcm=t let ji; j be an automorphism of S. For simplicity, let us denote the
matrix ðji; jÞi; j by j. Let

Dj ¼ fðy1; . . . ; yt; y
j1; 2

1 ; . . . ; y
jt; 2

t ; . . . ; y
j1;m=t

1 ; . . . ; y
jt;m=t

t Þ j y1; . . . ; yt A Sg;

this is a subgroup of Sm ¼ socðGÞ where G ¼ S o Cm. The subgroup NGðDjÞ is called
a subgroup of diagonal type.

Consider the restriction to NGðDjÞ of the natural projection of G onto Cm. Any
element of Cm has preimage of size at most jDjjc jSjm=l where l is the smallest prime
divisor of m.

5 Definite unbeatability

The following definition was introduced in [9].
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Definition 5.1. Let X be a finite group. Let H be a set of proper subgroups of X , and
let PJX . Suppose that the following four conditions hold on H and P:

(1) PVH0q for every H A H;

(2) PJ6
H AH H;

(3) PVH1 VH2 ¼ q for every distinct pair of subgroups H1 and H2 of H;

(4) jPVK jc jPVHj for every H A H and K < X with K B H.

Then H is said to be definitely unbeatable on P.

For PJX let sðPÞ be the least cardinality of a family of proper subgroups of X
whose union contains P. The next lemma is straightforward so we state it without
proof.

Lemma 5.2. If H is definitely unbeatable on P then sðPÞ ¼ jHj.

It follows that if H is definitely unbeatable on P then jHj ¼ sðPÞc sðXÞ.

6 Proof of Theorem 1.1

By Proposition 3.1, to prove Theorem 1.1 it is su‰cient to establish the lower bound
of the statement.

Fix a positive integer m at least 2, let S be a non-abelian finite simple group, and
let S and M be as in the Introduction (satisfying Conditions (0)–(5)). As before, let
G ¼ S o Cm.

Let P1 be the set consisting of all elements ðx1; . . . ; xmÞg of G with the
property that x1 . . . xm A S and let H1 be the set consisting of all subgroups
NGðM �Mg2 � � � � �MgmÞ with the property that M A M. For fixed M A M put

SM ¼ SV

�
6
s AS

M s

�
:

Note that, by Conditions (0) and (3) of the Introduction, SM VSK ¼ q if M and
K are non-conjugate elements of M. Let P2 be the set consisting of all elements
ðx1; . . . ; xmÞgr of G with the property that r is a prime divisor of m and that
x1xrþ1 . . . xm�rþ1 is in SM and x2xrþ2 . . . xm�rþ2 is in SK , where M and K are not con-
jugate in S. Finally, let H2 be the set consisting of all maximal subgroups of G con-
taining the socle of G. Put P ¼ P1 UP2 and H ¼ H1 UH2. By Lemma 5.2 and the
remark following Lemma 5.2, the following proposition finishes the proof of Theo-
rem 1.1.

Proposition 6.1. The set H of subgroups of G is definitely unbeatable on P.

Proof. First let us prove Condition (1) of Definition 5.1. Let H be an arbitrary
subgroup in H1. Suppose that H ¼ NGðM �Mg2 � � � � �MgmÞ for some M A M
and g2; . . . ; gm A S. Let p be an element of SVM. (Such an element exists by Con-
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dition (1) of the Introduction.) Let x1 ¼ g2, x2 ¼ g�1
2 g3; . . . ; xm�1 ¼ g�1

m�1gm, and
xm ¼ x�1

m�1 . . . x
�1
2 x�1

1 p. Then, by Lemma 2.1, the element ðx1; . . . ; xmÞg is in H (and
also in P1). Let H be an arbitrary subgroup in H2. Let the index of H in G be r for
some prime divisor r of m. Then H contains every element of P2 of the form
ðx1; . . . ; xmÞgr.

Next let us prove Condition (2). Let ðx1; . . . ; xmÞg be an arbitrary element of P1.
We will show that there exists an H A H1 which contains ðx1; . . . ; xmÞg. We know
that x1x2 . . . xm A S. By Condition (2) of the Introduction, there exists an M A M
with the property that x1x2 . . . xm A M. Now let

g2 ¼ x1; g3 ¼ x1x2; . . . ; gm ¼ x1x2 . . . xm�1:

Then H ¼ NGðM �Mg2 � � � � �MgmÞ contains ðx1; . . . ; xmÞg by Lemma 2.1. Now
let ðx1; . . . ; xmÞgr be an arbitrary element of P2. This is contained in the maximal
subgroup H of index r in G containing the socle of G. We see that H is contained
in H2.

Now we show that Condition (3) is satisfied. Notice that, by construction (by the
second half of Lemma 2.1 and by Condition (4) of the Introduction), P1 VH2 ¼ q
and P2 VH1 ¼ q for all H1 A H1 and H2 A H2. Hence it is su‰cient to show
that P1 VH1 VH2 ¼ q for distinct subgroups H1 and H2 in H1 and also that
P2 VH1 VH2 ¼ q for distinct subgroups H1 and H2 in H2. The latter claim is clear
by considering the projection map from G to Cm, hence it is su‰cient to show the
former claim. First notice that if M and K are two distinct elements of M and
g2; . . . ; gm, k2; . . . ; km are arbitrary elements of S, then

P1 VNGðM �Mg2 � � � � �MgmÞVNGðK � Kk2 � � � � � KkmÞ ¼ q;

by Lemma 2.1 and by Condition (3) of the Introduction. Finally let M be fixed and
let

P1 VNGðM �Mg2 � � � � �MgmÞVNGðM �Mk2 � � � � �MkmÞ0q

for some elements g2; . . . ; gm, k2; . . . ; km of S. Then by Lemma 2.1, for every index i

with 2c icm, we have Mgi ¼ Mki ( just consider the products x1 . . . xj for all posi-
tive integers j with 1c jcm� 1 where ðx1; . . . ; xmÞg is in the intersection of P1

with the two normalizers) from which it follows that Mgik
�1
i ¼ M. This finishes the

proof of Condition (3) of Definition 5.1.
To show that Condition (4) of Definition 5.1 is satisfied, it is necessary to make

three easy observations based on the following folklore lemma.

Lemma 6.2. A maximal subgroup of G ¼ S o Cm either contains the socle of G, or is of
product type, or is of diagonal type.

If L is a maximal subgroup of G containing the socle of G then

jPVLj ¼
�X

jSVM1j jSVM2j
�
jSjm�2
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where the sum is over all pairs ðM1;M2Þ A M2 such that M1 is not conjugate to M2

in S. If L is of product type, then jPVLj ¼ jSVMj jMjm�1 where M is such that
L ¼ NGðM �Mg2 � � � � �MgmÞ for some elements g2; . . . ; gm of S. Finally if L is of
diagonal type, then jPVLjc ð1 þ aðmÞÞjSjm=l where l is the smallest prime divisor
of m. Putting these observations together, Condition (5) of the Introduction gives
Condition (4) of Definition 5.1. r

7 Proof of Corollary 1.2

Corollary 1.2 is clear for m ¼ 1 by [9], so let us assume that md 2.
Let M be the set of all 11 conjugates of the maximal subgroup M10 of M11 to-

gether with all 12 conjugates of the maximal subgroup PSLð2; 11Þ of M11. It is easy
to check that M is a covering for M11, hence, by the upper bound of Theorem 1.1, we
have sðM11 o CmÞc aðmÞ þ 11m þ 12m.

Let S be the subset of M11 consisting of all elements of orders 8 or 11. To prove
Corollary 1.2 it is su‰cient to show that S and M satisfy the six conditions of the
statement of Theorem 1.1.

By [6], the maximal subgroups of M11 are the following: M10, PSLð2; 11Þ, M9 : 2,
S5, and M8 : S3, and that for these we have the following:

� M10 has order 720, it contains 180 elements of order 8 and no element of order 11;
no element of order 8 is contained in two distinct conjugates of M10;

� PSLð2; 11Þ has order 660, it contains no element of order 8 and 120 elements
of order 11; no element of order 11 is contained in two distinct conjugates of
PSLð2; 11Þ;

� M9 : 2 has order 144, it contains 36 elements of order 8 and no element of order
11;

� S5 has order 120, it contains no element of order 8 and no element of order
11;

� M8 : S3 has order 48, it contains 12 elements of order 8 and no element of order
11.

This verifies the first five conditions of the statement of Theorem 1.1. Now let us
compute the four expressions involved in Condition (5):

� ð1 þ aðmÞÞjSjm=l
c ð1 þ aðmÞÞjSjm=2 ¼ ð1 þ aðmÞÞð

ffiffiffiffiffiffiffiffiffiffi
7920

p
Þm;

� maxH BM;H<SjSVHj jHjm�1 ¼ 36 � 144m�1;

� ð
P

jSVM1j jSVM2jÞjSjm�2 ¼ 2 � 132 � 180 � 120 � 7920m�2 since we have

2 � 12 � 11 ¼ 2 � 132

choices for the pair ðM1;M2Þ;
� minM AMjSVMj jMjm�1 ¼ 120 � 660m�1.
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We have then to prove that

maxðð1 þ aðmÞÞ7920m=2; 36 � 144m�1Þ

cminð2 � 132 � 180 � 120 � 7920m�2; 120 � 660m�1Þ:

Clearly the right-hand side is 120 � 660m�1 and it is bigger than 36 � 144m�1, so we
have to prove that

ð1 þ aðmÞÞ7920m=2
c 120 � 660m�1:

After rearranging, taking roots, and using the fact that ð1 þ aðmÞÞ1=m
c

ffiffiffi
2

p
we ob-

tain that it su‰ces to prove the inequality

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
7920

p

660
c

120

660

� �1=m

:

Since the right-hand side of the previous inequality is increasing with m, it su‰ces to
assume that m ¼ 2. But then the inequality becomes clear.

8 Proof of Corollary 1.3

Note that Corollary 1.3 is clear for m ¼ 1 by [2].
Let pd 11 be a prime and assume that the smallest prime divisor l of m is at

least 5.
Let M be the set of all pþ 1 conjugates of the maximal subgroup Cp zCðp�1Þ=2 of

PSLð2; pÞ together with all pðp� 1Þ=2 conjugates of the maximal subgroup Dpþ1 of
PSLð2; pÞ. It is easy to check that M is a covering for PSLð2; pÞ, hence, by the upper
bound of Theorem 1.1, we have

sðPSLð2; pÞ o CmÞc aðmÞ þ ðpþ 1Þm þ ðpðp� 1Þ=2Þm:

Let S1 JPSLð2; pÞ be a set of p2 � 1 elements each of order p with the prop-
erty that every element of S1 fixes a unique point on the projective line and that
ðS1 VMÞU f1g is a group of order p for every conjugate M of Cp zCðp�1Þ=2. Let S2

be the set of all irreducible elements of PSLð2; pÞ of order ðpþ 1Þ=2. Put S ¼ S1 US2.
To prove Corollary 1.3 it is su‰cient to show that S and M satisfy the six conditions
of the statement of Theorem 1.1.

By [4] the maximal subgroups of PSLð2; pÞ are the following:

� Cp zCðp�1Þ=2;

� Dp�1 if pd 13;

� Dpþ1;

� A5, A4, and S4 for certain infinite families of p.
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Since pd 11, no element of S is contained in a subgroup of the form A5, A4, or S4.
Moreover since ðpþ 1Þ=2 and p do not divide p� 1, no element of S is contained in
a subgroup of the form Dp�1. Similarly, it is easy to see that no element of S1 is con-
tained in a conjugate of Dpþ1 and no element of S2 is contained in a conjugate of
Cp zCðp�1Þ=2.

By the above and similar considerations, it follows that the first five conditions of
the statement of Theorem 1.1 hold.

Before computing the four expressions involved in Condition (5) let us note two
things. If M is a maximal subgroup of the form Dpþ1, then jSVMj ¼ jððpþ 1Þ=2Þ
where j is Euler’s function. Moreover, if M is conjugate to Cp zCð p�1Þ=2, then
jSVMj ¼ p� 1.

The following statements hold:

� ð1 þ aðmÞÞjSjm=l
c ð1 þ aðmÞÞðð1=2Þpðp2 � 1ÞÞm=5;

� max
H BM

jSVHj jHjm�1 ¼ 0;

�

�X
jSVM1j jSVM2j

�
jSjm�2

¼ 2ðpþ 1Þðpðp� 1Þ=2Þjððpþ 1Þ=2Þðp� 1Þðð1=2Þpðp2 � 1ÞÞm�2;

� min
M AM

jSVMj jMjm�1

¼ minðjððpþ 1Þ=2Þðpþ 1Þm�1; ðp� 1Þðpðp� 1Þ=2Þm�1Þ

¼ jððpþ 1Þ=2Þðpþ 1Þm�1:

We reduce easily to proving the inequality

ð1 þ aðmÞÞðpðp2 � 1Þ=2Þm=5
c jððpþ 1Þ=2Þðpþ 1Þm�1:

Using the fact that ð1 þ aðmÞÞ1=m
c

ffiffiffi
2

p
we obtain that it su‰ces to show that

ffiffiffi
2

p ðpðp2 � 1Þ=2Þ1=5

pþ 1
c

jððpþ 1Þ=2Þ
pþ 1

� �1=m

:

Since the right-hand side is increasing with m, it su‰ces to assume that m ¼ 5. By
taking 5th powers of both sides we obtain

2
ffiffiffi
2

p
pðp2 � 1Þc ðpþ 1Þ4:

But this is clearly true for pd 11.
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9 Alternating groups

From this section on we will deal with the special case when S is the alternating
group An. We will repeat some of the definitions in more elaborate form.

For each positive integer nd 5 which is not a prime we define a subset P0 of An

and a set H0 of maximal subgroups of An. (These sets P0 and H0 will be close to the
sets S and M of the Introduction.)

Let n be odd (and not a prime). In this case let P0 be the set of all n-cycles of An

and let H0 be the set of all maximal subgroups of An conjugate to ðSn=p o SpÞVAn

where p is the smallest prime divisor of n.
Let n be divisible by 4. In this case let P0 be the set of all ði; n� iÞ-cycles of An

(permutations of An which are products of two disjoint cycles one of length i and
one of length n� i) for all odd i with i < n=2 and let H0 be the set of all maximal
subgroups of An conjugate to some group of the form ðSi � Sn�iÞVAn for some odd
i with i < n=2.

Let n be congruent to 2 modulo 4. In this case let P0 be the set of all ði; n� iÞ-
cycles of An for all odd i with ic n=2 and let H0 be the set of all maximal subgroups
of An conjugate to some group of the form ðSi � Sn�iÞVAn for some odd i with
i < n=2 or conjugate to ðSn=2 o S2ÞVAn.

Theorem 9.1 (Maróti, [9]). With the notation above H0 is definitely unbeatable on P0

provided that nd 16.

10 Wreath products

Let m be a fixed positive integer (which can be 1). Let G ¼ An o Cm and let g be a
generator of Cm. Let P1 be the set consisting of all elements ðx1; . . . ; xmÞg of G with
the property that x1 . . . xm A P0 and let H1 be the set consisting of all subgroups
NGðM �Mg2 � � � � �MgmÞ with the property that M A H0. If m ¼ 1, then set
P ¼ P1 and H ¼ H1. From now on, only in the rest of this paragraph, suppose
that m > 1. For n odd let P2 be the set consisting of all elements ðx1; . . . ; xmÞgr of G
with the property that r is a prime divisor of m and that x1xrþ1 . . . xm�rþ1 is an n-cycle
and x2xrþ2 . . . xm�rþ2 is an ðn� 2Þ-cycle. For fixed M A H0 put

P0;M ¼ P0 V

�
6

g AAn

Mg

�
:

(Depending on M, and on the parity of n, P0;M is the set of n-cycles or the set of
ði; n� iÞ-cycles with ic n=2 contained in the union of all conjugates of some M in
H0.) For n even let P2 be the set consisting of all elements ðx1; . . . ; xmÞgr of G with
the property that r is a prime divisor of m and that x1xrþ1 . . . xm�rþ1 A P0;M and
x2xrþ2 . . . xm�rþ2 A P0;K where M and K are not conjugate in An. Finally, let H2 be
the set consisting of all maximal subgroups of G containing the socle of G. Put
P ¼ P1 UP2 and H ¼ H1 UH2.
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Proposition 10.1. If m ¼ 1, then H is definitely unbeatable on P for nd 16. If m > 1,
then H is definitely unbeatable on P for n > 12 provided that n has a prime divisor at

most
ffiffiffi
33

p
.

For m ¼ 1 there is nothing to show. Suppose that m > 1.
Using the ideas in Section 6, it is easy to show that P and H satisfy Conditions (1),

(2), and (3) of Definition 5.1. (Condition (3) of Definition 5.1 is satisfied since,
for example for n odd, no conjugate of ðSn=p o SpÞVAn contains an ðn� 2Þ-cycle
where p is the smallest prime divisor of n.) Hence, to prove Proposition 10.1, it is suf-
ficient to verify Condition (4) of Definition 5.1. This will be done in the next three
sections.

11 Some preliminary estimates

Some of the following lemma depends on the fact that a!ðn� aÞ!d b!ðn� bÞ! when-
ever a and b are integers with ac bc n=2.

Lemma 11.1. Let n be odd (and not a prime). Then

jPVH1j ¼ jP1 VH1j ¼ ð1=ð2m�1nÞÞððn=pÞ!pp!Þm

for H1 A H1 where p is the smallest prime divisor of n, and

jPVH2j ¼ jP2 VH2j ¼ ð2=ðnðn� 2ÞÞÞjAnjm

for H2 A H2. Let n be divisible by 4. Then

jPVH1j ¼ jP1 VH1jd ðððn=2Þ � 2Þ!Þððn=2Þ!Þ ðððn=2Þ � 1Þ!Þðððn=2Þ þ 1Þ!Þ
2

� �m�1

for H1 A H1. Let n be congruent to 2 modulo 4. Then

jPVH1j ¼ jP1 VH1jd ð1=2m�1Þðððn=2Þ � 1Þ!Þ2ððn=2Þ!Þ2m�2

for H1 A H1. Finally, let n be even. Then

jPVH2j ¼ jP2 VH2jd
4

3ðn� 1Þðn� 3Þ jAnjm

for H2 A H2.

Proof. This follows from the above and from the observations made when dealing
with Condition (4) of Definition 5.1 while proving Theorem 1.1. The last statement
follows from counting ð1; n� 1Þ-cycles and ð3; n� 3Þ-cycles (twice). r
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Lemma 11.2. Suppose that nd 5.

(1) If n is odd (and not a prime), then

ð1=ð2m�1nÞÞððn=pÞ!pp!Þm c ð2=ðnðn� 2ÞÞÞjAnjm;

hence minH AHjPVHj ¼ ð1=ð2m�1nÞÞððn=pÞ!pp!Þm.

(2) If n is divisible by 4, then

ðððn=2Þ � 2Þ!Þððn=2Þ!Þ ðððn=2Þ � 1Þ!Þðððn=2Þ þ 1Þ!Þ
2

� �m�1

c
4

3ðn� 1Þðn� 3Þ jAnjm;

hence

min
H AH

jPVHj ¼ ðððn=2Þ � 2Þ!Þððn=2Þ!Þ ðððn=2Þ � 1Þ!Þðððn=2Þ þ 1Þ!Þ
2

� �m�1

:

(3) If n is congruent to 2 modulo 4, then

ð1=2m�1Þðððn=2Þ � 1Þ!Þ2ððn=2Þ!Þ2m�2
c

4

3ðn� 1Þðn� 3Þ jAnjm;

hence

min
H AH

jPVHjd ð1=2m�1Þðððn=2Þ � 1Þ!Þ2ððn=2Þ!Þ2m�2:

Proof. (1) After rearranging, the inequality becomes n� 2c jSn : ðSn=p o SpÞjm which
is clearly true.

(2) After rearranging, the inequality becomes

6ðn� 1Þðn� 3Þ
ðnþ 2Þðn� 2Þ < 6c

jSnj
jSðn=2Þ�1 � Sðn=2Þþ1j

� �m

which is clearly true.
(3) After rearranging, the inequality becomes

6ðn� 1Þðn� 3Þ
n2

< 6 <
n

n=2

� �m

which is clearly true. r

12 The case when K is a subgroup of diagonal type

Let K be a subgroup of G of diagonal type. Note that K B H. We would like to show
that jPVKjc jPVHj for every H A H. We have jPVK jc ð1 þ aðmÞÞjAnjm=2.

We need Stirling’s formula.
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Theorem 12.1 (Stirling’s formula). For all positive integers n we have

ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞne1=ð12nþ1Þ < n! <

ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞne1=ð12nÞ:

The declared aim of proving the inequality jPVK jc jPVHj for every H A H is
achieved through the next lemma. We also point out that the right-hand sides of the
inequalities of the following lemma come from Section 11.

Lemma 12.2. Let md 2. The following hold.

(1) Let n be odd with smallest prime divisor p at most
ffiffiffi
n3

p
. Then

ð1 þ aðmÞÞðn!=2Þm=2
c ð1=ð2m�1nÞÞðððn=pÞ!Þpp!Þm:

(2) Let n be divisible by 4 and larger than 8. Then

ð1 þ aðmÞÞðn!=2Þm=2
c ðððn=2Þ � 2Þ!Þððn=2Þ!Þ ðððn=2Þ � 1Þ!Þðððn=2Þ þ 1Þ!Þ

2

� �m�1

:

(3) Let n be congruent to 2 modulo 4 and larger than 10. Then

ð1 þ aðmÞÞðn!=2Þm=2
c ð1=2m�1Þðððn=2Þ � 1Þ!Þ2ððn=2Þ!Þ2m�2:

Proof. (1) It is su‰cient to prove the inequality

n

2
ð1 þ aðmÞÞ

� �2=m

c
ððn=pÞ!Þ2p

p!2

2n!
:

For this it is su‰cient to see that

nð1 þ aðmÞÞ2=m
c

ððn=pÞ!Þ2p

n!
:

Substituting Stirling’s formula (Theorem 12.1) on the right-hand side, we see that it is
su‰cient to show that

nð1 þ aðmÞÞ2=m
c

ð2pðn=pÞÞpðn=peÞ2nffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞne1=ð12nÞ

:

Since 3c pc
ffiffiffi
n3

p
and e1=ð12nÞ < 2, it is su‰cient to prove

nð1 þ aðmÞÞ2=m
c

ð2pn2=3Þ3ðn2=3=eÞ2n

2
ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞn

:
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Since ð1 þ aðmÞÞ2=m
c 2 it is su‰cient to see that

ffiffiffiffiffiffi
2p

p

2p3
c

nð1=3Þnþð1=2Þ

en
:

But this is true for nd 27.
(2) After rearranging the inequality and taking roots we get

ð1 þ aðmÞÞ2=mðn!=2Þc 8

n2 � 4

� �2=m ððn=2Þ � 1Þ!ððn=2Þ þ 1Þ!
2

� �2

:

Since ð1 þ aðmÞÞ2=m
c 2 and 8=ðn2 � 4Þc ð8=ðn2 � 4ÞÞ2=m, it is su‰cient to see that

n2 � 4

2
n!c ðððn=2Þ � 1Þ!ððn=2Þ þ 1Þ!Þ2:

Since n
ðn=2Þ�1

� �
c 2n�1, it is su‰cient to prove

ðn2 � 4Þ2n�2
c ððn=2Þ � 1Þ!ððn=2Þ þ 1Þ!:

But this is true for nd 12.
(3) After rearranging the inequality and taking roots we see that it is su‰cient to

show

4ð1 þ aðmÞÞ2=mðn=2Þ4=mðn!=2Þc ððn=2Þ!Þ4:

Since ð1 þ aðmÞÞ2=m
c 2 and ðn=2Þ4=m

c ðn=2Þ2, it is su‰cient to see that

n2n!c ððn=2Þ!Þ4:

But this can be seen by induction for nd 14. r

13 The case when K is a subgroup of product type

Let K be a subgroup of G of product type such that K B H. We would like to show
that jPVKjc jPVHj for every H A H.

Suppose that K ¼ NGðM �Mg2 � � � � �MgmÞ where M is a maximal subgroup of
An. If M is an intransitive subgroup then PVK ¼ q, by construction of P and H,
hence there is nothing to show in this case.

In the next paragraph and in Lemma 13.3 we will make use of the following fact
taken from [8].

Lemma 13.1. For a positive integer n at least 8 we have

ððn=aÞ!Þaa!d ððn=bÞ!Þbb!

whenever a and b are divisors of n with ac b.
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Let M be a maximal imprimitive subgroup of An conjugate to ðSn=a o SaÞVAn for
some proper divisor a of n. Let n be odd (and not a prime). Then P2 VK ¼ q since
M does not contain an ðn� 2Þ-cycle. In this case

jPVK j ¼ jP1 VK j ¼ ð1=ð2m�1nÞÞðððn=aÞ!Þaa!Þm c ð1=ð2m�1nÞÞðððn=pÞ!Þpp!Þm

and we are done by Lemma 11.2 (1).
Now let n be even. In this case ad 3.

Lemma 13.2. Let n be even and let a be the smallest divisor of n larger than 2. If
n > 10, then nððn=aÞ!Þaa!c 2ððn=2Þ!Þ2

.

Proof. If n ¼ 2a, then we must consider the inequality 2a c ða� 1Þ!. This is clearly
true if a > 5, hence if n > 10. Thus we may assume that 3c ac n=4.

The lemma is true for 10 < nc 28 by inspection. From now on we assume that
nd 30.

Applying Stirling’s formula (see Theorem 12.1), we see that it is su‰cient to verify
the inequality

nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn=aÞ

p
Þaðn=aeÞnea2=ð12nÞ ffiffiffiffiffiffiffiffi

2pa
p

ða=eÞae1=ð12aÞ
c 2pnðn=2eÞne2=ð6nþ1Þ:

After rearranging factors we obtain

2nð2pðn=aÞÞa=2
ea

2=ð12nÞ ffiffiffiffiffiffiffiffi
2pa

p
ða=eÞae1=ð12aÞ

c an2pe2=ð6nþ1Þ:

After taking natural logarithms and rearranging terms we obtain

a
lnð2pÞ

2
þ ln n

2
þ ln a

2
þ a

12n
� 1

� �
þ ln a

2
þ 1

12a
� lnð2pÞ

2
� 2

6nþ 1

� �
c nðln a� ln 2Þ:

By the assumption 3c ac n=4 and by dividing both sides of the previous inequality
by ln n we see that it is su‰cient to prove

a 1 þ lnð2pÞ
2 ln n

þ 1

48 ln n
� 1

ln n

� �
þ 1

2
þ 1

36 ln n
� lnð2pÞ

2 ln n
� 2

ð6nþ 1Þ ln n

� �

c
n

ln n
ðln a� ln 2Þ:

Since

lnð2pÞ
2 ln n

þ 1

48 ln n
� 1

ln n
< 0 and

1

36 ln n
� lnð2pÞ

2 ln n
� 2

ð6nþ 1Þ ln n
< 0;

it is su‰cient to prove

aþ 0:5

ln a� ln 2
c

n

ln n
: ð1Þ
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This is true for a ¼ 3, 4, and 5 (provided that nd 30). Hence we assume that
7c ac n=4.

The function on the left in the inequality (1) increases when x > 6, hence it is suf-
ficient to prove the inequality when a ¼ n=4. But that holds for nd 30. The proof of
the lemma is now complete. r

By Lemma 2.1, we have jPVK jc ð1 þ aðmÞÞjMjm. The left-hand sides of Lem-
mas 13.3 and 13.4 are upper bounds for ð1 þ aðmÞÞjMjm in various cases.

Lemma 13.3. Let n be even and let a be the smallest divisor of n larger than 2. Let
md 2. Then for n > 10 we have the following.

(1) If n is divisible by 4, then

ð1 þ aðmÞÞ ððn=aÞ!Þaa!
2

� �m

c ðððn=2Þ � 2Þ!Þððn=2Þ!Þ ðððn=2Þ � 1Þ!Þðððn=2Þ þ 1Þ!Þ
2

� �m�1

:

(2) If n is congruent to 2 modulo 4, then

ð1 þ aðmÞÞ ððn=aÞ!Þaa!
2

� �m

c ð1=2m�1Þðððn=2Þ � 1Þ!Þ2ððn=2Þ!Þ2m�2:

Proof. By Lemma 13.2 it is su‰cient to show that both displayed inequalities follow
from the inequality

nððn=aÞ!Þaa!c 2ððn=2Þ!Þ2:

Indeed, the first displayed inequality becomes

ð1 þ aðmÞÞ ððn=aÞ!Þaa!
2

� �m

c
8

n2 � 4

ðððn=2Þ � 1Þ!Þðððn=2Þ þ 1Þ!Þ
2

� �m

:

Since ð1 þ aðmÞÞ1=m
c

ffiffiffi
2

p
and ð2

ffiffiffi
2

p
Þ=nc ð8=ðn2 � 4ÞÞ1=2

c ð8=ðn2 � 4ÞÞ1=m, it is
su‰cient to see that

ðn=2Þððn=aÞ!Þaa!c ððn=2Þ � 1Þ!ððn=2Þ þ 1Þ!:

But this proves the first part of the lemma since

ððn=2Þ!Þ2 < ððn=2Þ � 1Þ!ððn=2Þ þ 1Þ!:
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After rearrangement of the factors in the second displayed inequality of the state-
ment of the lemma, the inequality becomes

ð1 þ aðmÞÞðððn=aÞ!Þaa!Þm c ð8=n2Þðn=2Þ!2m:

Considerations like those in the previous paragraph show that this latter inequality
follows from the inequality nððn=aÞ!Þaa!c 2ððn=2Þ!Þ2. r

Now let M be a maximal primitive subgroup of An. We know that jMj < 2:6n by
[8]. The following lemma is necessary for our purposes.

Lemma 13.4. Let n > 12 and md 2.

(1) If n is odd with smallest prime divisor p at most
ffiffiffi
n3

p
then

ð1 þ aðmÞÞ2:6nm
c ð1=ð2m�1nÞÞððn=pÞ!pp!Þm:

(2) If n is divisible by 4, then

ð1 þ aðmÞÞ2:6nm
c ðððn=2Þ � 2Þ!Þððn=2Þ!Þ ðððn=2Þ � 1Þ!Þðððn=2Þ þ 1Þ!Þ

2

� �m�1

:

(3) If n is congruent to 2 modulo 4, then

ð1 þ aðmÞÞ2:6nm
c ð1=2m�1Þðððn=2Þ � 1Þ!Þ2ððn=2Þ!Þ2m�2:

Proof. By Lemma 12.2, there is nothing to prove for nd 17 since

ð1 þ aðmÞÞ2:6nm < ð1 þ aðmÞÞðn!=2Þm=2

holds for nd 17. One can check the validity of the inequalities for n ¼ 16 and n ¼ 14
by hand. r

The results of the previous three sections, together with Lemma 6.2, complete the
proof of Proposition 10.1.

14 A lower bound for s(An o Cm)

In this section we show that if n > 12 and n is not congruent to 2 modulo 4, then

aðmÞ þ 1

2

Xn

i¼1
i odd

n

i

� �m

< sðAn o CmÞ:
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To see this for n divisible by 4 and n > 12, notice that

aðmÞ þ 1

2

Xn

i¼1
i odd

n

i

� �m

¼ sðPÞc sðAn o CmÞ:

Let n > 12 be odd. By [9] we may assume that m > 1. In this case we clearly
have

aðmÞ þ 1

2

Xn

i¼1
i odd

n

i

� �m

< 2nm�m�1:

Hence it is su‰cient to show that 2nm�m�1 c sðAn o CmÞ.
We have jP1j ¼ ðn� 1Þ!ðn!=2Þm�1. Let H ¼ NGðM �Mg2 � � � � �MgmÞ for some

maximal subgroup M of An and some elements g2; . . . ; gm A An. If M is intransitive,
then P1 VH ¼ q. If M is imprimitive, then, by Lemma 13.1,

jP1 VHjc ð1=ðn2m�1ÞÞðn=pÞ!mpp!m

where p is the smallest prime divisor of n. If M is primitive, then, by the statement
just before Lemma 13.4, jP1 VHjc 2:6nm. Now let H be a subgroup of G of diago-
nal type. Then jP1 VHjc ðn!=2Þm=2. If H is a maximal subgroup of G containing the
socle of G, then P1 VH ¼ q. Let M be a minimal cover (a cover with least number
of members) of G containing maximal subgroups of G. Let a be the number of sub-
groups in M of the form NGðM �Mg2 � � � � �MgmÞ where M is imprimitive. Let b
be the number of subgroups in M of the form NGðM �Mg2 � � � � �MgmÞ where M

is primitive. Let c be the number of subgroups in M of diagonal type. Then

a � ð1=ðn2m�1ÞÞðn=pÞ!mpp!m þ b � 2:6nm þ c � ðn!=2Þm=2
d ðn� 1Þ!ðn!=2Þm�1:

From this we see that

ðn� 1Þ!ðn!=2Þm�1

maxfð1=ðn2m�1ÞÞðn=pÞ!mpp!m; 2:6nm; ðn!=2Þm=2g
c sðGÞ

if n is not a prime, and

ðn� 1Þ!ðn!=2Þm�1

maxf2:6nm; ðn!=2Þm=2g
c sðGÞ

if n is a prime. Hence to finish the proof of this section, we just need
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Lemma 14.1. Let n be odd with n > 12 and let m > 1.

(1) If p is the smallest prime divisor of n and p < n then

2nm�m�1
c

ðn!Þm

ðn=pÞ!mpp!m
:

(2) In general

2nm�2
c

ðn� 1Þ!ðn!Þm�1

2:6nm
;

(3) and

2nm�ðm=2Þ�2
c ðn� 1Þ!ðn!Þðm=2Þ�1:

Proof. (1) It is su‰cient to prove the inequality

2n�1
c

n!

ðn=pÞ!pp!

for nd 15. This is true by inspection for 15c n < 99. Hence assume that nd 99.
Applying Stirling’s formula (see Theorem 12.1) three times to both sides of the in-
equality

2n�1ðn=pÞ!pp!c n!

we obtain

2n�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn=pÞ

p p
ðn=peÞne1=ð12ðn=pÞÞ ffiffiffiffiffiffiffiffi

2pp
p

ðp=eÞpe1=12p
c

ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞne1=ð12nþ1Þ:

Since e1=ð12ðn=pÞÞe1=12p < 2 and e1=ð12nþ1Þ > 1, it is su‰cient to prove the inequality

2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn=pÞ

p p
ðn=peÞn

ffiffiffiffiffiffiffiffi
2pp

p
ðp=eÞp c

ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞn:

After rearranging factors and applying the estimate 3c pc
ffiffiffi
n

p
we see that it is suf-

ficient to prove

2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pn=3

p ffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffiffi
2p

ffiffiffi
n

pp
ð

ffiffiffi
n

p
=eÞ

ffiffi
n

p
c 3n

ffiffiffiffiffiffiffiffi
2pn

p
:

After taking logarithms of both sides of the previous inequality and rearranging
terms, we get

ð
ffiffiffi
n

p
=2Þ lnð2pn=3Þ þ ð1=2Þ lnð2p

ffiffiffi
n

p
Þ þ

ffiffiffi
n

p
lnð

ffiffiffi
n

p
=eÞc n lnð3=2Þ þ ð1=2Þ lnð2pnÞ:
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After further rearrangements we obtain

ð
ffiffiffi
n

p
� ð1=4ÞÞ ln nc lnð3=2Þnþ

ffiffiffi
n

p
ð1 � ðlnð2p=3Þ=2ÞÞ:

After dividing both sides of the previous inequality by
ffiffiffi
n

p
and evaluating the loga-

rithms we see that it is su‰cient to prove ln nc 0:4
ffiffiffi
n

p
þ 0:63 for nd 99. But this is

clearly true.
(2) After rearrangement the inequality becomes ðn=4Þ2nm c ðn!Þm=2:6nm. Hence it

is su‰cient to show that ð
ffiffiffi
n

p
=2Þ5:2n c n!. But this is true for nd 13.

(3) Rearranging the inequality we get ðn=4Þ2nm�ðm=2Þ c ðn!Þm=2. Hence it is su‰-
cient to see that ðn=8Þ4n c n!. But this is true for nd 13. r

15 Proofs of Theorems 1.4 and 1.5

Let us first show Theorem 1.4. Suppose that n is congruent to 2 modulo 4. If nd 10,
then sðAnÞ ¼ 2n�2, by [9]. Hence we may assume that m > 1 (and n > 10). In this
case, by Proposition 10.1, H is definitely unbeatable on P and H0 is a covering for
An. Hence

aðmÞ þ
X

M AH0

jAn : Mjm�1 ¼ jHj ¼ sðPÞc sðGÞc aðmÞ þ
X

M AH0

jAn : Mjm�1;

by Proposition 3.1. Finally, it is easy to see that

aðmÞ þ
X

M AH0

jAn : Mjm�1 ¼ aðmÞ þ
Xðn=2Þ�2

i¼1
i odd

n

i

� �m

þ 1

2m

n

n=2

� �m

:

This (together with the previous section) proves Theorem 1.4.
From now on assume that n is either at least 16 and divisible by 4 or odd with a

prime divisor at most
ffiffiffi
n3

p
. In this case H is definitely unbeatable on P by Proposition

10.1. This gives us the lower bound

aðmÞ þ
X

M AH0

jAn : Mjm�1
c sðGÞ:

Let the set H3 of maximal subgroups of An be defined as follows. If 4 divides n,
then let H3 be the set of all subgroups conjugate (in An) to ðSn=2 o S2ÞVAn. If n is
odd, then let H3 be the set of all subgroups conjugate (in An) to some subgroup
ðSk � Sn�kÞVAn for some k with kc n=3. Then H0 UH3 is a covering for An. Hence,
by Proposition 3.1, this gives us the upper bound

sðGÞc aðmÞ þ
X

M AH0

jAn : Mjm�1 þ
X

M AH3

jAn : Mjm�1:
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Hence to prove Theorem 1.5, it is su‰cient to see that the fraction

f ðn;mÞ ¼
P

M AH3
jAn : Mjm�1

P
M AH0

jAn : Mjm�1

tends to 0 as n tends to infinity.
If n is divisible by 4, then

f ðn;mÞ ¼
ð1=2Þ n

n=2

� �� �m

ð1=2Þ
Pn
i¼1
i odd

n
i

� 	m

which clearly tends to 0 as n tends to infinity.
Finally, if n is odd with smallest prime divisor p at most

ffiffiffi
n3

p
, then

f ðn;mÞ ¼
P½n=3�

i¼1
n
i

� 	m
ðn!=ððn=pÞ!pp!ÞÞm c

P½n=3�
i¼1

n
i

� 	m
2nm�m

c

�P½n=3�
i¼1

n
i

� 		m
2nm�m

which again tends to 0 as n tends to infinity.
This proves Theorem 1.5.
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