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Covering certain wreath products with proper subgroups

Martino Garonzi and Attila Maroti

(Communicated by C. W. Parker)

Abstract. For a non-cyclic finite group X let o(X) be the least number of proper subgroups
of X whose union is X. Precise formulas or estimates are given for o(S? C,,) for certain non-
abelian finite simple groups S where C,, is a cyclic group of order m.

1 Introduction

For a non-cyclic finite group X let o(X) be the least number of proper subgroups of
X whose union is X. Let S be a non-abelian finite simple group, let £ be a non-empty
subset of S, and let m be a positive integer. Let o(m) be the number of distinct prime
divisors of m. Let .# be a non-empty set of maximal subgroups of S with the follow-
ing properties (provided that such an .# exists):

(0) if M € .4 then M* € . for any s € S;

(1) XNM # & for every M € M;

2 2 < UpenM;

(3) 2N M, N M, = & for every distinct pair of subgroups M, and M, of .4,
(4) M contains at least two subgroups that are not conjugate in S;

(%)

5) m =2 and

max{(l + oc(m))|S\m/l,gl¢a>/</ IZNH| |H|’"—‘}
H<S

<minq ( D [ENM [N M| )[S|"2, min [£0M][M|""
Me.l

where / is the smallest prime divisor of m and the sum is over all pairs
(M, M) e .4/ with M| not conjugate to M.
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Let /" denote a covering for S, that is, a set of proper subgroups of S whose union
is S.

Theorem 1.1. Using the notation and assumptions introduced above we have

am)+ Y 1S M|" < a(SUC) < a(m) + min SIS M
Me.l T Mew

We state and prove two direct consequences of Theorem 1.1. Recall that M is the
Mathieu group of degree 11.

Corollary 1.2. For every positive integer m we have
o(Mi1 2 Cy) = a(m) + 11" 4 12",

Let PSL(n, ¢) denote the projective special linear group of dimension » over a field
of order g¢.

Corollary 1.3. Let p be a prime at least 11 and m be a positive integer with smallest
prime divisor at least 5. Then

a(PSL(2, )1 Cy) = a(m) + (p+ 1)" + (p(p — 1)/2)".

The ideas of the proof of Theorem 1.1 together with the ideas in [1] can be used
to find a formula for o(PSL(n, g) ! C,) holding for several infinite series of groups
PSL(n,q) 1 C, for n>12. However, since such an investigation would be quite
lengthy, we do not pursue it in this paper.

Let A, be the alternating group of degree n where n > 5. The ideas of the proof of
Theorem 1.1 together with the ideas in [9] can be used to find a formula and some
estimates for a(4, ! C,,) in various cases.

Theorem 1.4. With the notation and assumptions introduced above, let n > 12. If n is
congruent to 2 modulo 4 then

o(Ay 2 Cor) = () + (nsz(’l?)m o (n’;z )m.

i=1
iodd

If n is not congruent to 2 modulo 4, then

1 n n m
a(m) +§;(i> < (4,1 Cy).

iodd
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In some sense Theorem 1.4 extends a theorem of [9], namely that 2"~2 < a(4,,) if
n > 9 with equality if and only if # is congruent to 2 modulo 4.
Finally we establish the following result using the ideas of Theorem 1.1.

Theorem 1.5. With the notation and assumptions introduced above, let n be a posi-
tive integer with a prime divisor at most /n. Then a(A, C,,) is asymptotically equal
to

. . m—1
a(m) +min Y [Ay: M|

MeV
as n goes to infinity.

Theorem 1.1 and Corollaries 1.2, 1.3 are independent of the classification of finite
simple groups (CFSG). Theorems 1.4 and 1.5 do depend on CFSG, but with more
work using [10] instead of [8] one can omit CFSG from the proofs.

There are many papers on the topic of covering of groups with proper subgroups,
beginning with [11] which appeared in 1926. The systematic study of the invariant
o(X) was initiated in [3]. More recent papers on this topic include [5], [7] and [12].

A finite group X is called o-elementary (or g-primitive) if for any proper, non-
trivial normal subgroup N of X we have o(X) < 6(X/N). The g-elementary groups
play a crucial role in determining when o(X) can equal a given positive integer n for
some finite group X. The groups that we consider in this paper are o-elementary.
Giving good lower bounds for ¢(X) for g-elementary groups X will help answer the
problem of determining the density of the set of positive integers n for which there
exists a finite group G with n = a(G).

2 On subgroups of product type

Let S be a non-abelian finite simple group, and let G = S C,,, be the wreath product
of S with the cyclic group C,, of order m. Denote by y a generator of C,,. If M is a
maximal subgroup of S and ¢, ..., g, are elements of S, the normalizer in G of

M9 x o x M9 < S™ =s0c(G)
is called a subgroup of product type. A subgroup of product type is maximal in G
(but we will not use this fact in the paper). In the following we take the subscripts
of the elements g; and x; modulo m.
Lemma 2.1. Let M be a maximal subgroup of S, and let ke {l,...,m—1}. Let
gis---,gm be elements of S with g, = 1. Choose y:=(1,2,...,m). The element
(X1, .-+, %m)7* belongs to Ng(M x M9 x --- x M%) if and only if

Xi ) € g;]kMg,- Sforallie{l,...,m}.
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In particular, if t is any positive integer at most m and (xi,...,x,)y* belongs to
No(M x M9 x --- x M%), then

XeXkt 1 X2kt - - X(1- 1)kt € MY,
where | = m/(m, k).
Proof. The element (xi, ... ,xm)yk normalizes M9 x M9 x --- x M9 if and only if
(Mehxl X MIP2 e ooox Mgmxm)l’k = M9 x M9 x ... x M9,

The permutation y* sends i to i + k modulo m, so the condition becomes the fol-
lowing:

M IR S M9 s M IR = MU M2 e x M
That is,
gi_kxi_kgl.’l eM forallie{l,...,m}.
Multiplying on the right by g; and on the left by gl.jlk we obtain
Xix €g;yMg; forallie{l,...,m}.

Let ze{l,...,m}. The inclusion with x, on the left-hand side says that
X; € gt‘lMng; the one with xz,, on the left-hand side says that xj., € g,;',MgzkH,
and so on. By multiplying these together in this order we obtain that
Xi X4k Xi12k - - - Xy (1—-1)k € M9, where [ is the smallest number in {1,...,m} such that
m divides lk, that is, / = m/(m, k). O

3 An upper bound for (S C,,)

Proposition 3.1. Let S be a non-abelian finite simple group, let N~ denote a covering for
S, let m be a fixed positive integer, and let a(m) denote the number of distinct prime
factors of m. Then

O'(SZ Cm) < O((n’I) + mll}’l Z |S . M|m—1.

T Mew

Proof. The bound is clearly true for m = 1. Assume that m > 1.
The idea is to construct a covering of S C,, which consists of exactly

: . m—1
a(m) +min Z\S : M|
Mev

proper subgroups.
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There are «(m) maximal subgroups of the group S C, containing its socle.
Choose all of these to be in the covering. Then we are left to cover all elements of
the form (xi,...,x,)y* with each x; in S, where C,, = {y), and k is coprime to m.
It suffices to show that such elements can be covered by the subgroups of the form

N(;(Al)(Mgz)(Mg3 )(...XMgm)

where M varies in a fixed cover ./~ of S and the elements g; vary in S, because for
each fixed M in ./ we have |S : M| choices for M9 for each i € {2,...,m}.
By Lemma 2.1, (x1,...,X,)y* belongs to Ng(M x M9 x --- x M%) if and only if

xir €9, Mg; forallie{l,...,m},

with g; = 1. The first condition is xj_4 € g;!, M. Choose g = x7!,. Then move
to the condition x;_x €9, kMg] with j= 1 —k, ie. xi_xeg_ 2kMgl %, and re-
write it usmg the information g —x1 © to get xi_yXxi_x €97 2kM Choose
g1-2 = x7',x7 15, Continue this process for m/(m, k) = m iterations, using Lemma
2.1 (recall that m is coprime to k). Choose

Ji—jk = xflkxIJQk...xfljk forall je{l,...,m—1}.

At the mth iteration we get the relation
-1
X1—mkX1—(m—1)k - - - X1-2kX1-k € G1_ M.

But g1 = g1 € M, so to conclude it suffices to choose an M from .4/ which con-
tains the element x1_ X (n-1)k - - - X1-2%X1-%. [

4  On subgroups of diagonal type

Let S be a non-abelian finite simple group. Let m be a positive integer at least 2 and
let ¢ be a divisor of m which is less than m. For positive integers i and j with 1 <i<¢
and 2 < j < m/t let ¢; ; be an automorphism of S. For simplicity, let us denote the
matrix (¢, ;); ; by ¢. Let

1,2 P12 P1,m/t [

A(ﬂ:{(yh"'?ytvy] 7"'7yt 7"'?y1 7"'?.yt )|y17'~'7ytES};

this is a subgroup of S = soc(G) where G = S C,,. The subgroup Ng(4A,) is called
a subgroup of diagonal type.

Consider the restriction to NG(A ) of the natural pI‘O_]CCthH of G onto C,,. Any
element of C,, has preimage of size at most [A,| < |S |"/! where [ is the smallest prime
divisor of m.

5 Definite unbeatability

The following definition was introduced in [9].
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Definition 5.1. Let X be a finite group. Let # be a set of proper subgroups of X, and
let IT = X. Suppose that the following four conditions hold on s and IT:

(1) INH # & for every H € #;

2 De Uy, H:

(3) IINH, N H, = & for every distinct pair of subgroups H, and H, of &
(4) IINK| < |IINH| for every H € # and K < X with K ¢ .

Then 4 is said to be definitely unbeatable on IT.

For IT < X let o(IT) be the least cardinality of a family of proper subgroups of X
whose union contains IT. The next lemma is straightforward so we state it without
proof.

Lemma 5.2. If # is definitely unbeatable on 11 then o(I1) = | A|.

It follows that if J# is definitely unbeatable on I then |#| = o(I1) < o(X).

6 Proof of Theorem 1.1

By Proposition 3.1, to prove Theorem 1.1 it is sufficient to establish the lower bound
of the statement.

Fix a positive integer m at least 2, let S be a non-abelian finite simple group, and
let ¥ and .# be as in the Introduction (satistying Conditions (0)—(5)). As before, let
G=S1Cy.

Let IT; be the set consisting of all elements (xi,...,x,)y of G with the
property that xj...x, €X and let #] be the set consisting of all subgroups
Ng(M x M9 x --- x M%) with the property that M € .#. For fixed M € ./ put

Sy Zﬂ< U M‘)

seS
Note that, by Conditions (0) and (3) of the Introduction, X NZx = & if M and
K are non-conjugate elements of .#. Let I1, be the set consisting of all elements
(X1,-..,Xn)y" of G with the property that r is a prime divisor of m and that
X1Xp4] -« - Xm—ry1 1810 Xy and X2X,42 . .. X102 18 in X, where M and K are not con-
jugate in S. Finally, let 55 be the set consisting of all maximal subgroups of G con-
taining the socle of G. Put I1 = IT; UII, and »# = s U #5. By Lemma 5.2 and the
remark following Lemma 5.2, the following proposition finishes the proof of Theo-
rem 1.1.

Proposition 6.1. The set A of subgroups of G is definitely unbeatable on I1.

Proof. First let us prove Condition (1) of Definition 5.1. Let H be an arbitrary
subgroup in #]. Suppose that H = Ng(M x M9 x --- x M) for some M e .#
and ¢2,...,gm € S. Let = be an element of XN M. (Such an element exists by Con-
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dition (1) of the Introduction.) Let x| = g2, X2 =¢5'¢3,.,%m—1 = g, gm, and
Xm =x,'...x3'x7'n. Then, by Lemma 2.1, the element (x1,...,X,)y is in H (and
also in ITy). Let H be an arbitrary subgroup in #5. Let the index of H in G be r for
some prime divisor r of m. Then H contains every element of Il, of the form

(X1, oy Xm)y"
Next let us prove Condition (2). Let (xi,...,x,)y be an arbitrary element of IT;.
We will show that there exists an H € ] which contains (x,...,x,)y. We know

that xjx;...x, € . By Condition (2) of the Introduction, there exists an M € .#
with the property that x;x; ... x, € M. Now let

g2 = X1,93 = X1X2, - - -, gm = X1 X2 - - . Xppp—1-

Then H = Ng(M x M9 x --- x M%) contains (xy,...,x,)y by Lemma 2.1. Now
let (x1,...,x,)y" be an arbitrary element of IT,. This is contained in the maximal
subgroup H of index r in G containing the socle of G. We see that H is contained
in jfz.

Now we show that Condition (3) is satisfied. Notice that, by construction (by the
second half of Lemma 2.1 and by Condition (4) of the Introduction), IT; N H, = &
and II,NH, = & for all Hy € #4 and H, € #>. Hence it is sufficient to show
that IT{y N H; N H, = & for distinct subgroups H; and H, in s and also that
I, N Hy N Hy = & for distinct subgroups H; and H; in J#,. The latter claim is clear
by considering the projection map from G to C,, hence it is sufficient to show the
former claim. First notice that if M and K are two distinct elements of .# and
g2, 9ms k2, ..., ky are arbitrary elements of S, then

I N NG(M x M% x - x M%) Ng(K x K* x - x Kby = ¢,

by Lemma 2.1 and by Condition (3) of the Introduction. Finally let M be fixed and
let

M NNG(M x M% x - x MYNNg(M x M* x ... x M*) # &

for some elements g5, ..., gm, k2,...,kyn of S. Then by Lemma 2.1, for every index i
with 2 < i < m, we have My, = Mk; (just consider the products x; ...x; for all posi-
tive integers j with 1 < j <m — 1 where (x1,...,x,,)y is in the intersection of IT;

with the two normalizers) from which it follows that M 9% ' = M. This finishes the
proof of Condition (3) of Definition 5.1.

To show that Condition (4) of Definition 5.1 is satisfied, it is necessary to make
three easy observations based on the following folklore lemma.

Lemma 6.2. A maximal subgroup of G = S C,, either contains the socle of G, or is of
product type, or is of diagonal type.

If L is a maximal subgroup of G containing the socle of G then

INL|= (Z =N M| |ZﬂM2|> Nk
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where the sum is over all pairs (M, M>) € #* such that M, is not conjugate to M,
in S. If L is of product type, then [TINL| = [EN M]||M|™" where M is such that
L=Ng(M x M9% x ---x M%) for some elements g, ...,g,, of S. Finally if L is of
diagonal type, then |[TINL| < (1 + a(m))|S|™" where [ is the smallest prime divisor
of m. Putting these observations together, Condition (5) of the Introduction gives
Condition (4) of Definition 5.1. [

7 Proof of Corollary 1.2

Corollary 1.2 is clear for m = 1 by [9], so let us assume that m > 2.

Let .# be the set of all 11 conjugates of the maximal subgroup Mjy of M;; to-
gether with all 12 conjugates of the maximal subgroup PSL(2, 11) of M. It is easy
to check that .# is a covering for M1, hence, by the upper bound of Theorem 1.1, we
have (M1 Cy) < a(m) + 117 4127,

Let X be the subset of M7 consisting of all elements of orders 8 or 11. To prove
Corollary 1.2 it is sufficient to show that £ and .# satisfy the six conditions of the
statement of Theorem 1.1.

By [6], the maximal subgroups of M\, are the following: My, PSL(2,11), My : 2,
S5, and Mg : S5, and that for these we have the following:

« M, has order 720, it contains 180 elements of order 8 and no element of order 11;
no element of order 8 is contained in two distinct conjugates of M;

+ PSL(2,11) has order 660, it contains no element of order 8 and 120 elements
of order 11; no element of order 11 is contained in two distinct conjugates of
PSL(2,11);

+ My : 2 has order 144, it contains 36 elements of order 8 and no element of order
11;

+ S5 has order 120, it contains no element of order 8 and no element of order
11;

« Mg : S3 has order 48, it contains 12 elements of order 8 and no element of order
11.

This verifies the first five conditions of the statement of Theorem 1.1. Now let us
compute the four expressions involved in Condition (5):

o (14 a(m)[S]™" < (1 + a(m))|S|™? = (1 + a(m))(v/7920)"™;
s maxy¢ s pes|ENH|[H|" ' =36- 14471,
- (=N M| [ENM;))|S|" 2 = 2132180 - 120 - 79202 since we have

2-12-11=2-132

choices for the pair (M, M>);
- minge 4|[ENM||M|" " =120 660"
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We have then to prove that

max((1 + a(m))7920™/2,36 - 144™~1)
< min(2-132- 180 - 120 - 7920™ 2,120 - 660" 1).

Clearly the right-hand side is 120 - 660! and it is bigger than 36 - 144"~ so we
have to prove that

(1 4+ a(m))7920™/% < 120 - 660"

After rearranging, taking roots, and using the fact that (1 + a(m))"/™ < v/2 we ob-
tain that it suffices to prove the inequality

V7920 /120\'/"
T < == .
V2 660 (660)

Since the right-hand side of the previous inequality is increasing with m, it suffices to
assume that m = 2. But then the inequality becomes clear.

8 Proof of Corollary 1.3

Note that Corollary 1.3 is clear for m = 1 by [2].

Let p > 11 be a prime and assume that the smallest prime divisor / of m is at
least 5.

Let .# be the set of all p + 1 conjugates of the maximal subgroup C, > C,_y/, of
PSL(2, p) together with all p(p — 1)/2 conjugates of the maximal subgroup D, of
PSL(2, p). Tt is easy to check that .# is a covering for PSL(2, p), hence, by the upper
bound of Theorem 1.1, we have

a(PSL(2,p) 1 Cy) < a(m) + (p+1)" + (p(p — 1)/2)™.

Let ; < PSL(2, p) be a set of p> — 1 elements each of order p with the prop-
erty that every element of X; fixes a unique point on the projective line and that
(Z1NM)U {1} is a group of order p for every conjugate M of C, > C(,_)/». Let X,
be the set of all irreducible elements of PSL(2, p) of order (p +1)/2. Put X = %, U%,.
To prove Corollary 1.3 it is sufficient to show that X and .# satisfy the six conditions
of the statement of Theorem 1.1.

By [4] the maximal subgroups of PSL(2, p) are the following:

© G X Clpona
. Dp_l lfp > 13;
° Dp+1;

+ As, Ay, and Sy for certain infinite families of p.
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Since p > 11, no element of X is contained in a subgroup of the form A4s, A4, or Sy.
Moreover since (p + 1)/2 and p do not divide p — 1, no element of ¥ is contained in
a subgroup of the form D,_;. Similarly, it is easy to see that no element of ¥ is con-
tained in a conjugate of D,,; and no element of X, is contained in a conjugate of
Cp X Clp-y2-

By the above and similar considerations, it follows that the first five conditions of
the statement of Theorem 1.1 hold.

Before computing the four expressions involved in Condition (5) let us note two
things. If M is a maximal subgroup of the form D, , then ZN M| =9¢((p+1)/2)
where ¢ is Euler’s function. Moreover, if M is conjugate to C, > C(,_1)/, then
ZENM|=p-1.

The following statements hold:

(1+ a(m))[S™" < (1 + a(m))((1/2)p(p? — 1))

max [ENH|[H|"™" = 0;
Hé.

(220M1||20M2|>|S’”2
=2(p+D(p(p—1)/2)e((p+1)/2)(p — )((1/2) p(p*> — 1))"*;
Ar}nr}/|2ﬂM| |M|m—1

=min(p((p+1)/2)(p+ )", (p = D(p(p - 1)/2)" ")
=o((p+1)/2)(p+ 1"

We reduce easily to proving the inequality
(1 +a2(m)(p(p> = 1)/2)"F <p((p+ 1)/ (p+ 1",

Using the fact that (1 + «(m))"” < v/2 we obtain that it suffices to show that

A -0/ (¢<<p + 1>/2>)”’"
p+1 h p+1 '

Since the right-hand side is increasing with m, it suffices to assume that m = 5. By
taking Sth powers of both sides we obtain

2V2p(p* = 1) < (p+ )"

But this is clearly true for p > 11.
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9 Alternating groups

From this section on we will deal with the special case when S is the alternating
group A,. We will repeat some of the definitions in more elaborate form.

For each positive integer n > 5 which is not a prime we define a subset I1j of 4,
and a set # of maximal subgroups of 4,,. (These sets I1y and #, will be close to the
sets X and .# of the Introduction.)

Let n be odd (and not a prime). In this case let IT; be the set of all n-cycles of 4,
and let #; be the set of all maximal subgroups of 4, conjugate to (S,/, 1 S,) N4,
where p is the smallest prime divisor of n.

Let n be divisible by 4. In this case let I1j be the set of all (i,n — i)-cycles of A4,
(permutations of A4, which are products of two disjoint cycles one of length i and
one of length n — i) for all odd i with i < n/2 and let #; be the set of all maximal
subgroups of A4, conjugate to some group of the form (S; x S,_;) N 4, for some odd
i with i < n/2.

Let n be congruent to 2 modulo 4. In this case let I be the set of all (i,n — i)-
cycles of A4, for all odd i with i < n/2 and let 7, be the set of all maximal subgroups
of A, conjugate to some group of the form (S; x S,—;) N 4, for some odd i with
i < n/2 or conjugate to (S,/21S2) N A,.

Theorem 9.1 (Maroti, [9]). With the notation above #; is definitely unbeatable on 1
provided that n > 16.

10 Wreath products

Let m be a fixed positive integer (which can be 1). Let G = 4,1 C,, and let y be a
generator of C,,. Let IT; be the set consisting of all elements (xi,...,x,)y of G with
the property that xj...x, € Ilp and let #; be the set consisting of all subgroups
Ng(M x M9 x --- x M%) with the property that M e #y. If m =1, then set
IT1 =TI, and # = . From now on, only in the rest of this paragraph, suppose
that m > 1. For n odd let I1, be the set consisting of all elements (xi,...,x,)y" of G
with the property that r is a prime divisor of m and that xyx,.1 ... X,,_,.1 is an n-cycle
and x2X,12 ... Xpu—ry2 18 an (n — 2)-cycle. For fixed M € #; put

HO,M:HOH( U M”).

g€ A

(Depending on M, and on the parity of n, I1p s is the set of n-cycles or the set of
(i,n — i)-cycles with i < n/2 contained in the union of all conjugates of some M in
H#y.) For n even let TT, be the set consisting of all elements (xi, ..., x,)y" of G with
the property that r is a prime divisor of m and that x1x,11...X,—1 € Ilg s and
X2Xp12 . .. Xm—rs2 € Ilp k Where M and K are not conjugate in A,. Finally, let 25 be
the set consisting of all maximal subgroups of G containing the socle of G. Put
HZHIUHZ and%z,}flU,}%.
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Proposition 10.1. If m = 1, then A is definitely unbeatable on 11 for n = 16. If m > 1,
then A is definitely unbeatable on I1 for n > 12 provided that n has a prime divisor at

most \3/§

For m = 1 there is nothing to show. Suppose that m > 1.

Using the ideas in Section 6, it is easy to show that IT and # satisfy Conditions (1),
(2), and (3) of Definition 5.1. (Condition (3) of Definition 5.1 is satisfied since,
for example for n odd, no conjugate of (S,/,1S,)N A, contains an (n — 2)-cycle
where p is the smallest prime divisor of n.) Hence, to prove Proposition 10.1, it is suf-
ficient to verify Condition (4) of Definition 5.1. This will be done in the next three
sections.

11 Some preliminary estimates

Some of the following lemma depends on the fact that a!(n — a)! = bl(n — b)! when-
ever a and b are integers with a < b < n/2.

Lemma 11.1. Let n be odd (and not a prime). Then
LN Hy| = [T O Hi| = (1/(2" ")) ((n/p)!"p))"
for Hy € A1 where p is the smallest prime divisor of n, and
[TINH| = [T, N Hy| = (2/(n(n — 2)))[Aa]"

for Hy € #. Let n be divisible by 4. Then

m—1
10 ] = [T 1 A1 3 ((/2) = 20 /2y ({2 =200

for Hy € #. Let n be congruent to 2 modulo 4. Then
\HﬂH1| = |Hl ﬂH]| > (1/2171*1)(((,1/2) _ 1)!)2((}’1/2)!)2’"_2

for Hy € #A. Finally, let n be even. Then

|HﬂH2| =|H20H2| = 3

4 m
S

for H2 € 6%2.
Proof. This follows from the above and from the observations made when dealing

with Condition (4) of Definition 5.1 while proving Theorem 1.1. The last statement
follows from counting (1,7 — 1)-cycles and (3,n — 3)-cycles (twice). []
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Lemma 11.2. Suppose that n = 5.
(1) If n is odd (and not a prime), then
(1/@" ') ((n/p) )" < (2/ (n(n = 2)))] 4],
hence ming c »|TINH| = (1/(2™'n))((n/p)!"p")".
(2) If'n is divisible by 4, then

m—1
((1/2) = 2))((n/2))) ((((n/z) - 1)!)2(((71/2) + 1)!)) < mlfl”'m’
hence
m—1
guin 1110 A1 = (((n/2) = 2)) o/ (2= DR 00

(3) If'n is congruent to 2 modulo 4, then

(/27 (/) = D) (/2))™ € gy Al

hence

min [[TNH| > (1/2"71)(((n/2) - DY((n/2))™" 2.
Proof. (1) After rearranging, the inequality becomes n — 2 < [S,, : (S,/, 1 S,)|" which

is clearly true.
(2) After rearranging, the inequality becomes

6(n—1)(n—3)<6<< |Snl )
(n+2)(n-2) IS(n/2)-1 X S(n/2)+1]

which is clearly true.
(3) After rearranging, the inequality becomes

6(n — ;)z(n “3) (. <n,/12)m

which is clearly true. []

12 The case when K is a subgroup of diagonal type

Let K be a subgroup of G of diagonal type. Note that K ¢ #. We would like to show
that [TIN K| < |T1N H| for every H € #. We have [ITN K| < (1 + a(m))|4,|™*.
We need Stirling’s formula.
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Theorem 12.1 (Stirling’s formula). For all positive integers n we have
V2mn(n/e)" e/ 12D < ! < \2zn(n/e)"e!/ 12,
The declared aim of proving the inequality |[TIN K| < [TIN H| for every H € A is

achieved through the next lemma. We also point out that the right-hand sides of the
inequalities of the following lemma come from Section 11.

Lemma 12.2. Let m = 2. The following hold.

(1) Let n be odd with smallest prime divisor p at most /n. Then

(1+a(m)(n!/2)™ < (1/2" " m) (((n/p))"P)".

(2) Let n be divisible by 4 and larger than 8. Then

_ n ! m—1
(1 -+ o)) 01/2)"" < (((0/2) = 23 (o2 (2=

(3) Let n be congruent to 2 modulo 4 and larger than 10. Then

(1+a(m))(n!/2)" < (1/2"7)(((r/2) = DY ((n/2)) ™.

Proof. (1) It is sufficient to prove the inequality

/

2n!

For this it is sufficient to see that

o (/P

(1 + a(m)) L

Substituting Stirling’s formula (Theorem 12.1) on the right-hand side, we see that it is
sufficient to show that

m _ (Q2n(n/p))’ (n/pe)™
n(l + OC(m))2/ < \/2%(}’1/6)”6’1/(12”)

Since 3 < p < /n and /(12" < 2 it is sufficient to prove

2/m < (27_["2/3)3(”2/3/6)27!

n(l +a(m)) ™" < 2V27n(nfe)"
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2Im < 2 it is sufficient to see that

Sim a3
< .
273 e

Since (1 + a(m))

But this is true for n > 27.
(2) After rearranging the inequality and taking roots we get

8 4)2/’" (((n/Z) - DI((n/2) + 1)!>2.

n? — 2

(14 a(m))?™ (nl2) < (

Since (1 + a(m))*™ < 2 and 8/(n® — 4) < (8/(n* — 4))*™ it is sufficient to see that

”22_4;1! < ((n/2) = DI(n/2) + 1))

Since ((n /5)71) < 2" it is sufficient to prove
(n? —4)2"2 < ((n/2) — DY((n/2) + 1)!.

But this is true for n > 12.
(3) After rearranging the inequality and taking roots we see that it is sufficient to
show

4(1+ o(m))>™ (n/2) " (01 /2) < ((n/2)))".
Since (1 4 a(m))*™ < 2 and (n/2)*™ < (n/2)?, it is sufficient to see that
n’n! < ((n/2)1)*.

But this can be seen by induction for n > 14. []

13 The case when K is a subgroup of product type

Let K be a subgroup of G of product type such that K ¢ #. We would like to show
that |ITN K| < |TIN H| for every H € A

Suppose that K = Ng(M x M9 x --- x M9) where M is a maximal subgroup of
Ay. If M is an intransitive subgroup then ITN K = (F, by construction of IT and 7,
hence there is nothing to show in this case.

In the next paragraph and in Lemma 13.3 we will make use of the following fact
taken from [8].

Lemma 13.1. For a positive integer n at least 8 we have
((n/a))a! = ((n/b)!)"!

whenever a and b are divisors of n with a < b.
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Let M be a maximal imprimitive subgroup of 4, conjugate to (S,/, ! S,) N A, for
some proper divisor a of n. Let n be odd (and not a prime). Then IT, N K = ¢F since
M does not contain an (n — 2)-cycle. In this case

MNK| = [ NK| = (1/2" " m)((n/a))a)™ < (1/2"'n))(((n/p))" P)"

and we are done by Lemma 11.2(1).
Now let n be even. In this case a > 3.

Lemma 13.2. Let n be even and let a be the smallest divisor of n larger than 2. If
n > 10, then n((n/a)!)“a! < 2((n/2)!)".

Proof. If n = 2a, then we must consider the inequality 2¢ < (a — 1)!. This is clearly
true if @ > 5, hence if n > 10. Thus we may assume that 3 < a < n/4.

The lemma is true for 10 < n < 28 by inspection. From now on we assume that
n = 30.

Applying Stirling’s formula (see Theorem 12.1), we see that it is sufficient to verify
the inequality

n(/2a(n/a))" (n/ae)"e” "\ 2ra(a/e) e 1% < 2rn(n/2e)" e 1)
After rearranging factors we obtain
211(2n(n/a))a/Zeaz/(IZn)\/%(a/e)ael/(12a) < anzne2/(6n+l).

After taking natural logarithms and rearranging terms we obtain

In2z) Inn Ina a Ina 1 In(2n) 2
[ E e H I St v R _
“( > T2 T T 1)*(2 a2 engi) Srina-in2).

By the assumption 3 < a < n/4 and by dividing both sides of the previous inequality
by Inn we see that it is sufficient to prove

S LYC) NS S U WA S B 2 B
N 2mmn a8 nn) T\2736In 2lnn (6n+ D)inn

n
< — — .
< lnn(lna In2)

Since

n(2z) 1 Uy ang LM 2
2Inn ' 48Inn  Inn W 36mn 2mn (6n+ D)lnn

<0,

it is sufficient to prove

a+0.5 gi,
Ina—1n2 Inn
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This is true for a =3, 4, and 5 (provided that n > 30). Hence we assume that
7T<a<n/4.

The function on the left in the inequality (1) increases when x > 6, hence it is suf-
ficient to prove the inequality when a = n/4. But that holds for n > 30. The proof of
the lemma is now complete. []

By Lemma 2.1, we have |[ITNK| < (1 + a(m))|M|™. The left-hand sides of Lem-
mas 13.3 and 13.4 are upper bounds for (1 + a(m))|M|™ in various cases.

Lemma 13.3. Let n be even and let a be the smallest divisor of n larger than 2. Let
m = 2. Then for n > 10 we have the following.
(1) If'n is divisible by 4, then

(1 4+ o(m)) <W>m

m—1
< (((n/2) = 2)H((n/2)!) ((((”/2) - 1>!)2(((n/2) + 1)!)) |

(2) If'n is congruent to 2 modulo 4, then

(1o (Y < 072 (002 - 10320,

Proof. By Lemma 13.2 it is sufficient to show that both displayed inequalities follow
from the inequality

n((nfa))al < 2((n/2))*.

Indeed, the first displayed inequality becomes

n/a))“a\" 8 n/2) — DOH(((r/2) + DHN\"
a+amm<“/g> ) <n2_4<(<(/> () + n>.

Since (14 a(m))"/™ <2 and (2v2)/n < (8/(n* —4))"* < (8/(n* — 4))"/™ it is
sufficient to see that

(n/2)((n/a)))“a! < ((n/2) — D)((n/2) + 1)\

But this proves the first part of the lemma since

((n/2))? < ((n/2) = D((n/2) + 1)L
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After rearrangement of the factors in the second displayed inequality of the state-
ment of the lemma, the inequality becomes

(1 -+ am))(((n/a)l) al)" < (8/n)(n]2)!".

Considerations like those in the previous paragraph show that this latter inequality
follows from the inequality n((n/a)!)“a! < 2((n/2))?. O

Now let M be a maximal primitive subgroup of 4,. We know that |M| < 2.6" by
[8]. The following lemma is necessary for our purposes.

Lemma 13.4. Let n > 12 and m = 2.

(1) If n is odd with smallest prime divisor p at most </n then

(14 a(m))2.6™ < (1/(2"'n))((n/p)?"p)".

(2) If n is divisible by 4, then

m—1
(1 aom)26™ < (((0/2) ~ 2oy (2= D2 DY

(3) If'n is congruent to 2 modulo 4, then
(1+am))2.6™ < (1/2 ) (((n/2) = DY ((n/2))" 2,
Proof. By Lemma 12.2, there is nothing to prove for n > 17 since
(14 a(m))2.6™ < (1 + a(m))(n!/2)"?

holds for n = 17. One can check the validity of the inequalities for n = 16 and n = 14
by hand. [

The results of the previous three sections, together with Lemma 6.2, complete the
proof of Proposition 10.1.

14 A lower bound for ¢(A4, ! C,)

In this section we show that if » > 12 and n is not congruent to 2 modulo 4, then

o(m) +;2<7>m < 6(4, 1 Cp).

iodd
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To see this for n divisible by 4 and n > 12, notice that

1 n n m
— = <
+2;(i> o(I1) < (A, 21 Cp).

iodd

Let n > 12 be odd. By [9] we may assume that m > 1. In this case we clearly
have

Hence it is sufficient to show that 2"~"~! < (4,1 C,,).

We have [IT1| = (n — 1)!(n!/2)"". Let H = Ng(M x M% x --- x M%) for some
maximal subgroup M of 4, and some elements g, ..., ¢, € A,. If M is intransitive,
then I} N H = . If M is imprimitive, then, by Lemma 13.1,

I NH| < (1/(}’12'"71))(;/[/1)) I

where p is the smallest prime divisor of n. If M is primitive, then, by the statement
just before Lemma 13.4, |[I1; N H| < 2.6™. Now let H be a subgroup of G of diago-
nal type. Then |IT; N H| < (n! /2)'” B . If H is a maximal subgroup of G containing the
socle of G, then I1) N H = (J. Let .4 be a minimal cover (a cover with least number
of members) of G containing maximal subgroups of G. Let a be the number of sub-
groups in .# of the form Ng(M x M9 x --- x M%) where M is imprimitive. Let b
be the number of subgroups in .# of the form Ng(M x M9 x --- x M%) where M
is primitive. Let ¢ be the number of subgroups in .# of diagonal type. Then

a-(1/(m2" ) (n/p)!"p!" +b-2.6™ + ¢ (nl/2)"? = (n = 1)l(nt/2)""".

From this we see that

(n— 1))(nt/2)"! )
maX{(l/(nzm_l))(n/p)!ml’p!m72.6l1m7 (n!/z)m/z} <

a(G)

if n is not a prime, and

(n—1)l(n!/2)""!
max{2’6nm’ (n|/2)m/2} < O'(G)

if n is a prime. Hence to finish the proof of this section, we just need
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Lemma 14.1. Let n be odd with n > 12 and let m > 1.

(1) If p is the smallest prime divisor of n and p < n then

nm
Qnm—m=— 1 < (l/l) ]
(n/p)tmeplm

(2) In general

2nm72 < (n - 1)'(”')’”71
2.6mm ’

(3) and
2nm7(m/2)72 < (I’l 1) (n') (m/2) 1.

Proof. (1) It is sufficient to prove the inequality

2n71 < n!
(n/p)'7p!

for n > 15. This is true by inspection for 15 < n < 99. Hence assume that n > 99.
Applying Stirling’s formula (see Theorem 12.1) three times to both sides of the in-
equality

2" Y (n/p)1Pp! < n!
we obtain
271 2n(n/p)” (n/pe)" e/ 20/P)\ [2mp(p/e)’e! /' < \2mn(n/e)"e!/ (120,

Since e!/(1201/P)e1/120 < 2 and !/02+1) > 1 it is sufficient to prove the inequality

2"\/2n(n/p)" (n/pe)"\/2mp(p/e)’ < V2mn(n/e)".

After rearranging factors and applying the estimate 3 < p < /n we see that it is suf-
ficient to prove

2"\/27m/3ﬁ\/271\/ﬁ(\/ﬁ/e)‘/z < 3"V2nmn.

After taking logarithms of both sides of the previous inequality and rearranging
terms, we get

(vn/2)In(27n/3) + (1/2) In(2n/n) + Vnln(v/n/e) < nin(3/2) + (1/2) In(2zn).
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After further rearrangements we obtain

(Vi — (1/4))Inn < In(3/2)n + /a(1 — (In(22/3)/2)).

After dividing both sides of the previous inequality by /n and evaluating the loga-
rithms we see that it is sufficient to prove Inn < 0.4y/n + 0.63 for n = 99. But this is
clearly true.

(2) After rearrangement the inequality becomes (n/4)2"" < (n!)™/2.6"". Hence it
is sufficient to show that (1/n/2)5.2" < n!. But this is true for n > 13.

(3) Rearranging the inequality we get (n/4)2""~("/2) < (n!)m/ 2. Hence it is suffi-
cient to see that (1/8)4” < nl. But this is true for n > 13. [

15 Proofs of Theorems 1.4 and 1.5

Let us first show Theorem 1.4. Suppose that n is congruent to 2 modulo 4. If n > 10,
then a(A4,) = 2"72, by [9]. Hence we may assume that m > 1 (and n > 10). In this
case, by Proposition 10.1, s is definitely unbeatable on IT and # is a covering for
A,. Hence

oc(m) + Z |An : M|l7771 — |W| = O’(H) < J(G) < OC(WZ) 4 Z |An . M‘mfl7
Me A M e H

by Proposition 3.1. Finally, it is easy to see that

M e Ay i=1
iodd

This (together with the previous section) proves Theorem 1.4.

From now on assume that #n is either at least 16 and divisible by 4 or odd with a
prime divisor at most /z. In this case # is definitely unbeatable on IT by Proposition
10.1. This gives us the lower bound

am) + > |4y M| < 0(G).

M e Ay

Let the set # of maximal subgroups of A, be defined as follows. If 4 divides n,
then let #3 be the set of all subgroups conjugate (in A4,) to (S,/21S2) NA4,. If n is
odd, then let 4 be the set of all subgroups conjugate (in A4,) to some subgroup
(Sk X Sy—x) N A, for some k with k < n/3. Then #; U 73 is a covering for 4,. Hence,
by Proposition 3.1, this gives us the upper bound

o(G) <o(m)+ D Ay M"Y (4, M
Me A M e A
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Hence to prove Theorem 1.5, it is sufficient to see that the fraction

A, M|™!
f(n,m) _ ZMe% | n |m71
ZMG% |A” : M|

tends to 0 as n tends to infinity.
If n is divisible by 4, then

(a/2(m)"

f(n,m) = 7 m
(1/2) 55 ()

which clearly tends to 0 as n tends to infinity.
Finally, if n is odd with smallest prime divisor p at most v/, then

Sy = ZEQ" SO (S 0)"
, (n!/((n/p)lept))™ = 2mm-m = 2 nm—m

which again tends to 0 as » tends to infinity.
This proves Theorem 1.5.
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