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Abstract 

In this Chapter, we evaluate the movement of 6 points near a landslide body, which were surveyed 

with GNSS receivers over time. We apply Bayesian inference to identify the areas on the ground with 

statistically significant vertical (downwards) shifts. Traditional statistical methods work well only 

when point displacements between different survey epochs are sufficiently large compared to the 

standard deviations of related coordinates. In such cases, coordinate differences of some points can 

be marked as potential displacements. The Bayesian analysis can help to improve discrimination 

when height differences, computed with respect to the first measurement epoch, are at the same order 

of magnitude as the uncertainties of the measures. After the application of the classical statistical test, 

one network point, close to the upper part of the landslide area, seemed to be more unstable than the 

rest. In order to remove or validate the hypothesis of instability the Bayesian statistical inference was 

applied and all three of the upper group of points show significant shift, depending on the data prior 

parameters. This application shows that the Bayesian approach can be considered as an integration to 



classical statistical significance testing (e.g., z-test), reliably showing significance in vertical 

directional (i.e., downward) coordinate shifts, thus detecting smaller movements. 

 

1. Introduction 

1.1 Geodetic techniques for change detection of the Earth surface 

There are various techniques to monitor movements of the earth surface. Movement, by definition, 

has a spatial and a temporal component; two aspects which have to be measured accurately to 

successfully carry out tasks related to monitoring these in these two domains. Besides traditional 

geodetic and geotechnical surveying methods (GPS, robotic thoedolites, boreholes, inclinometers, 

etc.) adopted for investigation and monitoring of landslides, the use of modern remote sensing 

techniques for the study of these phenomena has exponentially grown in last years. The spatial 

component can be measured directly using classical topographic techniques, or indirectly by 

estimating movement using remote sensing and related geomatic techniques, i.e., photogrammetry, 

see Scaioni et al. (2014). The advantages of the latter methods are evident especially when one 

considers the low degree of accessibility of landslide areas and the high degree of risk for personnel 

that carries out the direct measurements. The disadvantages are related to the resolution, accuracy 

and capability of the sensors; for example if vegetation is present over the area, photogrammetry 

alone will not provide ground information, whereas light detection and ranging (LiDAR) allows a 

certain penetration of the canopy thus returns the information on the ground plane (Pirotti et al. 2013). 

Indeed, the possibility of acquiring highly detailed and accurate digital terrain models (DTMs) offered 

by ground based interferometric synthetic aperture radar (GBSAR, see Monserrat et al 2014) and 

LiDAR techniques (Dowman 2004), has opened new way of applications for the study of landslide 

phenomena (Lingua et al. 2007). In this field, GBSAR-based systems are mainly used for the 

detection and quantification of small displacements over large areas (Crosetto et al. 2014; Monserrat 

et al. 2014; Refice et al. 2000; Ye et al. 2004). Specific case studies regarding synthetic aperture 

radar and permanent scatterers have been tested in (Farina et al. 2006; Frangioni et al. 2014). GNSS 



techniques with ‘low-cost’ receivers have been investigated and have attracted interest, for 

understandable economic reasons (Cina & Piras 2014). Forlani et al. (2013) use GNSS for camera 

positions in the ‘Photo-GNSS’ technique which applies dense-matching algorithms to retrieve surface 

models of the terrain, see Previtali et al. (2014) and Remondino et al. (2014). A spatial sensor network 

(SSN) was tested in Scaioni et al. (2014) including photogrammetry and contact geotechnical sensors 

on a scaled-down model of a landslide simulation platform. Terrestrial laser scanners are also 

becoming popular for multi-temporal change detection of landslides since Bitelli et al. (2004) 

especially considering that latest models have increased range and decreased weight of the sensor, 

and the aforementioned capability to filter out vegetation (Pirotti et al. 2013). Other references are 

given in Barbarella et al. 2013; 2014; Jaboyedoff et al. (2012).  

All the methods mentioned are valid, and carry intrinsic pros and cons, hence have to be carefully 

applied depending on the characteristics of the phenomenon which is being studied, i.e., the landslide. 

A state of the art network of GNSS receivers remains a most robust approach to detect micro-scale 

displacements.  

 

1.2 GNSS for deformation monitoring of earth surface 

Geodetic techniques are widely used for monitoring the deformation of the Earth surface at different 

spatial and temporal scales. The term Global Navigation Satellite System (GNSS) is used to define 

positioning systems based on a constellation of satellites, which emit carrier signals used for defining 

time and position of the receiving station.  Various systems are either operational or about to be so. 

The most recognized, due to longer operation time, is the United States’ GPS constellation followed 

by Russia’s GLONASS, Europe’s Galileo, and the Chinese Beidou, see Hofmann-Wellenhof et al. 

(2007). Precise positioning is fundamental for monitoring dynamics of elements on the earth and to 

support other geo-spatial technologies, e.g., remote sensing and geographic information systems 

(GIS) which together act in synergy for the assessment of natural hazards and risk, see Manfré et al. 

(2012).  GNSS estimates of position and derivatives (i.e., velocity and acceleration) are becoming 



more reliable, and advanced data analysis techniques are helpful for the recognition of features in the 

GNSS time-series, e.g., non linear behaviours, discontinuities in the signal and in its derivatives. 

Detection of signal discontinuities between two or more GNSS multi-temporal surveys, or in a whole 

time-series, can be accomplished through the use of advanced analysis techniques such as wavelets, 

the Bayesian, and the variational methods, see Borghi et al. (2012). Discontinuities which are 

expected to be very small and compatible with the signal noise motivate the use of advanced data 

analysis techniques to investigate significant modifications of point positions, see Betti et al. (1999). 

The ability to detect GNSS points whose movement can be considered significantly different from 

noise and other factors not related to the phenomenon of interest, is an important step in the field of 

geomatics applied to natural hazards and risk. Investigations in this sense have been carried out also 

by (Wang & Soler 2012) where a GNSS dense network was monitored to detect a creeping landslide 

in a two year period; authors also discuss influence of rainfall events which degrade performance of 

the receivers. The Bayesian approach in structuring a significance test (Koch 2007) on the 

displacement of point position is a robust and promising approach.  Important work on this topic has 

also been carried out by Betti et al. (2001; 2011). 

In this case study we will present a proof-of-concept using a network of GNSS receivers to determine 

significance of the movement recorded on the vertical axis. All measures by sensors have a budget of 

residual errors, and each error function can be estimated and used in a model to calculate significance. 

This is typical in statistical analysis, and literature provides us with several methods. In the following 

chapter, we present and discuss the Bayesian approach used to analyse a time series of vertical 

displacement measures carried out in a GNSS network with ten vertices. The objective is to assess 

significance of each measure testing different models that represent the characteristics of the 

phenomenon under investigation, thus allowing better discrimination with respect to classical 

statistical inference.  

 



2 Study area  

The area which was tested is called Rovina di Cancìa, located in the Dolomites region (Northeast 

Italy –Fig. 1). It includes a basin whose main channel origins at the feet of Salvella Fork  (2500 m 

a.s.l.) in the municipality of Borca di Cadore (Fig. 2), 15 km far from Cortina d'Ampezzo, and ends 

in a retaining basin systems (low deposition area) at 1005 m a.s.l.. The channel intersects a flat area 

at lower altitude (1344 m a.s.l.) which was specifically built to divert and slow down debris flow.  

Phenomena of landslide and of debris flows are present at this site. The latter are triggered just 

downstream a cyclopean boulder (Fig. 3) where runoff entrain large quantities of solid material and 

debris flow can form.  For more detailed discussion on the site, see Gregoretti & Dalla Fontana, 

(2008) 



 

Figure  1 The GNSS control network 

 

 



 

Figure  2 Study area ‘Ravina di Cancìa’ with the two main hydrological basins source: Ortofoto 2008 
Regione Veneto mapped over a digital terrain model. 

 



 

Figure  3 Details of the study site with loose gravel and surfacing rocks. 

  

 

 

3 Materials and methods  

3.1 The GNSS control network 

A GNSS control network (CN) was created around the landslide area in order to determine small 

surface movements. The CN consists of ten points, four of which (1-4) are considered stable and are 

positioned at a distance from the landslide (Errore. L'origine riferimento non è stata trovata.), 

whereas the remaining 6 points (5-10) are positioned near the landslide body. The fixed points were 

defined using the Italian Geodetic network from the Istituto Geografico Militare (IGM 2014) which 



has monumented several control points in the region. With classical topography (total station) we 

defined the fixed points were the GNSS receivers were then positioned.  

The location of the set of the control points to monitor was detected using orthophotos and a LiDAR-

derived digital terrain model (DTM) from an aerial survey carried out in 2003. The DTM was used 

to take into account the terrain morphology, logistics and safety (slopes steepness) issues, thus the 

overall accessibility. In order to determine the best set of candidate locations, several sky-plots were 

determined. Potential obstructions (e.g., due to vegetation, rocks and overall morphology) were 

derived from the LiDAR-derived DSM as well as from visual interpretation of the ortho-images. Five 

benchmarks were then selected and properly monumented in the field by cementing steel survey nails 

into the ground or into the rocks. This solution was adopted in order to easily recover the marks in 

subsequent surveys and to prevent possible displacements due to damage by local fauna or cattle. The 

length of all potential baselines of the resulting geodetic network ranges between 300 m and 5 km. 

Four survey campaigns have been performed between 2011 to 2013, with a six-month time interval: 

in May, after the snow-melting period, and in early October, before the winter season. Occupation 

time was set to 1 hour with a sampling rate of 10 seconds. For the data collection the following 

geodetic-grade GNSS receivers were employed: two Topcon HiPer Pro, a Leica Wild GNSS System 

200 with SR299 antenna, and a Trimble 5700. A least squares free network adjustment was applied 

to each acquired dataset, using all available independent baselines. The computations were executed 

using TopconTools’ software adopting the ‘single base’ approach. Preliminary loop closure analysis 

of the post-processed baselines showed all the time misclosures of a few millimetres, thus denoting 

the absence of any gross error in the observations. The resulting adjusted coordinates (N, E, h) of the 

ten control points are listed in table 1. Here the differences (ΔE, ΔN, Δh) have been computed with 

respect to the first survey epoch. Adjustment of the geodetic network yielded coordinate standard 

deviations at centimetre level.  

 

 



Table 1. Coordinates of the points in the GNSS network with their residual error in terms of standard 

deviation after differential correction. Ep. = Epoch. Points 5-7 and 8-10 are respectively the lower 

and upper group of points near the landslide (Errore. L'origine riferimento non è stata trovata.) 

 

 Ep. E (m) N (m) h (m) σE σN σh ΔE  (m) ΔN  (m) Δh  (m) 

1 1 287273.634 5145139.688 990.154 0.03 0.03 0.08       

2 287273.627 5145139.684 990.145 0.05 0.05 0.10 0.007 0.004 0.009 

3 287273.619 5145139.678 990.144 0.03 0.05 0.06 0.008 0.006 0.010 

4 287273.614 5145139.675 990.145 0.04 0.05 0.06 0.005 0.003 0.009 

2 1 286220.336 5146347.164 968.639 0.03 0.04 0.10       

2 286220.332 5146347.159 968.625 0.03 0.04 0.11 0.004 0.005 0.014 

3 286220.324 5146347.152 968.628 0.02 0.02 0.04 0.008 0.007 0.011 

4 286220.318 5146347.145 968.624 0.03 0.04 0.10 0.006 0.007 0.015 

3 1 287771.711 5146198.934 1279.527 0.04 0.04 0.09       

2 287771.705 5146198.930 1279.517 0.03 0.03 0.08 0.006 0.004 0.010 

3 287771.701 5146198.924 1279.512 0.05 0.02 0.08 0.004 0.006 0.015 

4 287771.694 5146198.921 1279.514 0.03 0.05 0.07 0.007 0.003 0.013 

4 1 289574.834 5147974.169 3164.527 0.02 0.02 0.11       

2 289574.830 5147974.161 3164.441 0.02 0.04 0.04 0.004 0.008 0.086 

3 289574.826 5147974.153 3164.449 0.02 0.05 0.07 0.004 0.008 0.078 

4 289574.821 5147974.150 3164.429 0.02 0.05 0.07 0.005 0.003 0.098 

5 1 288398.021 5147007.454 1746.699 0.04 0.03 0.08       

2 288398.014 5147007.431 1746.600 0.04 0.02 0.08 0.007 0.023 0.099 

3 288398.008 5147007.417 1746.599 0.04 0.05 0.05 0.006 0.014 0.100 

4 288397.991 5147007.387 1746.627 0.05 0.02 0.04 0.017 0.03 0.072 

6 1 288395.084 5146895.914 1674.800 0.03 0.05 0.09       

2 288395.061 5146895.896 1674.715 0.02 0.03 0.11 0.023 0.018 0.085 

3 288395.055 5146895.885 1674.724 0.05 0.02 0.04 0.006 0.011 0.076 

4 288395.033 5146895.879 1674.722 0.05 0.05 0.11 0.022 0.006 0.078 

7 1 288466.157 5146945.457 1740.800 0.02 0.03 0.10       

2 288466.134 5146945.441 1740.703 0.03 0.03 0.09 0.023 0.016 0.097 

3 288466.112 5146945.412 1740.709 0.02 0.03 0.06 0.022 0.029 0.091 

4 288466.099 5146945.401 1740.711 0.02 0.05 0.04 0.013 0.011 0.089 

8 1 288749.217 5147380.425 2042.012 0.05 0.04 0.03       

2 288749.202 5147380.380 2041.859 0.04 0.05 0.03 0.015 0.045 0.153 

3 288749.154 5147380.346 2041.872 0.02 0.02 0.02 0.048 0.034 0.140 

4 288749.107 5147380.307 2041.887 0.03 0.03 0.04 0.047 0.039 0.125 



9 1 288649.394 5147552.146 2107.801 0.04 0.05 0.04       

2 288649.354 5147552.116 2107.681 0.03 0.03 0.04 0.040 0.030 0.120 

3 288649.339 5147552.094 2107.652 0.04 0.04 0.05 0.015 0.022 0.149 

4 288649.312 5147552.056 2107.615 0.04 0.04 0.02 0.027 0.038 0.186 

10 1 288620.624 5147340.959 1959.589 0.03 0.02 0.03       

2 288620.575 5147340.942 1959.480 0.02 0.04 0.05 0.049 0.017 0.109 

3 288620.565 5147340.918 1959.407 0.04 0.04 0.03 0.01 0.024 0.182 

4 288620.546 5147340.871 1959.443 0.05 0.03 0.04 0.019 0.047 0.146 

 

 

 

3.2 Analysis of displacements with the Bayesian method. 

The Bayesian method applied to test significance over differences – in our case difference in vertical 

point position between epochs – tests the likelihood of such difference given the prior model of 

expected residuals (i.e., height differences due to error budget of GNSS) of the measure. The general 

formulation of Bayes theorem states that if A and B are two stochastic variables, scalars or vectors, 

with known probability density functions, P(A) and pP(B), the relation between the joint probability 

densities P(A,B) = P(B,A), the conditional probability densities P(A | B) and P(B | A) and the single 

probability densities P(A) and P(B) is defined as: 

 

( , ) ( | ) ( ) ( | ) ( )P A B P A B P B P B A P A   (1) 

 

which can be written as: 

 

( , ) ( , ) ( | ) ( )
( | )

( ) ( ) ( )

P B A P A B P B A P A
P A B

P B P B P B
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resulting in Bayes theorem: 

 

( | ) ( )
( | )

( )

P B A P A
P A B

P B
  (3) 

 

In other words the likelihood that the difference is explained by the error model. On a simplified 

schema, if A is the accuracy in terms of expected normal distribution of the differences due to 

measuring errors, and B is the real difference we test the likelihood that B if significantly above the 

expected difference due expected error frequency distribution. 

The Bayesian approach allows identifying in advance the areas on the ground with statistically 

significant shifts. A drawback of traditional statistical methods is that they work well only when point 

displacements between different survey epochs are sufficiently large compared to the standard 

deviations of related coordinates. In such cases, coordinate differences of some points can be marked 

as potential displacements by the classical methods. Bayesian analysis can help to better discriminate 

these ‘ambiguities,’ see Sacerdote et al. (2010). Point shifts computed with respect to the first 

measurement epochs had the same order of magnitude as the residuals of the corresponding 

coordinates.  

In order to evaluate whether the differences in vertical coordinates, with respect to the values at epoch 

1, are more likely to be caused by a movement then to be due to random measurement errors, the 

Bayesian approach is more robust, see Betti et al. (2011). The test was limited to the one-dimensional 

case since the results of classical analysis did not show any doubt on the horizontal components of 

the geodetic network points. Thus, for each point Pj the shifts Δh between different measurement 

campaigns were taken into account:   

 1( ) 2,...,6 1,...,5
j j

P i P
h h h with i and j      (4) 

 



In equation (4) hi denotes the adjusted height of point Pj at surveying epoch ti, while h1 is the adjusted 

height of the same point at the first measurement epoch t1, considered as reference value. Assuming 

that the shifts Δh have a normal distribution with unknown mean δh and known variance 
2

h  

(computed from network adjustment), for each control point Pj the shift Δh can be written as: 

 

1i hh h h h       (5) 

 

The mean δh is, in turn, a random variable following a normal distribution with mean μ and variance 

σ0
2 which represents, in this analysis, the prior distribution of the Bayesian statistical inference. The 

parameters μ and σ0
2 are the prior information whose values have to be somehow set in advance.  

Since the points 5 through 10 were placed close to the landslide area, it is reasonable to assume that 

the vertical displacements can be zero or negative (decrease in altitude). Therefore, considering a 

properly oriented axis, the following additional a-priori constraint has been set: 

0h   

Considering the observables Δh as dependant on parameter δh, the Bayes formula becomes: 
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All the terms on the right of equation (above) can be explicitly calculated. The function f(δh) in this 

analysis denotes the a-priori probability distribution of parameters δh . This distribution follows a 

modified version of a normal distribution: along the negative semi-axis it is null, being the probability 

of the interval [-, 0] all concentrated in the origin, i.e., P0  Pδh  0. Given this constraint, the 

probability distribution of δh becomes:  
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where (δh) is the unit step function (or Heaviside step function): 
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and δ(δh) is the delta of Dirac function which is a generalized distribution that is zero everywhere 

except at zero. 

The value of P0 can be calculated by considering the normalization condition applied to the 

distribution probability f(δh). Indeed, from equation (9): 
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it follows that 
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The integral on the right side of (10) can be solved using the error function (Zwillinger 2012) whose 

values are available in specific tables: 
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This way, after a variable change, equation (7) becomes: 
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In equation (4) the function f(Δh|δh) can be regarded as the likelihood function L(Δh|δh) of variable 

Δh: 
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The denominator of (6) is a normalization constant which can be numerically estimated. After some 

mathematical steps, the following formula is obtained: 
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Being all terms in equation (6) defined in explicit form, the Bayes formula can be now numerically 

evaluated as follows: 
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The benefit of using the two quantities A and B becomes clear by evaluating the probability that 

significant (δh  0) or not significant (δh = 0) vertical displacements have occurred between 2011 

and 2013. Indeed, this operation is turned into the calculation of the following simple ratios: 
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The significance analysis of displacements through the Bayesian approach is thus reduced to a 

comparison between the two quantities (18) and (19). A probabilistic analysis can be therefore 

performed instead of classical statistical testing. The result of the comparison allows to assess which 

of the two alternatives (significant or not significant shift) is more likely to be occurred.  

While in classical statistical analysis a decision rule based on a confidence level (e.g., α=5%) in the 

Bayesian statistical analysis a different approach was adopted, as shown in Table 2. 

 

 

 

Table 2. Criteria threshold for the Bayesian statistical analysis. 

 



P(δh > 0|Δh) Interpretation 

< 0.475 Point displacement is not significant  P(δh = 0|Δh) > 0.525 

> 0.525 Point displacement is significant  P(δh = 0|Δh) < 0.475 

0.475  0.525 No assessment can be made about the significance of the 

displacement  

 

 

Three tests were then carried out with different settings for the prior values of parameters µ and σ0. 

For each test the probabilities P(δh > 0|Δh) were calculated, assuming as reference for the 

comparisons the adjusted heights of the network points derived from the first measurement epoch. 

Although the classical analysis had highlighted some ‘ambiguities’ just for points P4 and P5, the 

Bayesian approach was applied to all the control points.  

Finally to compare with classical statistics we applied a z-score comparison using the residuals of the 

corrections for the network: 

1 2

2 2

v v

h
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
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where 
1

2

v and 
2

2

v are known as they have been calculated by the least squares network adjustment at 

the two surveying epochs t1 and t2 and Δh is the difference in height. In order to statistically check 

the significance of the network point displacements, computed within the surveys, the null hypothesis 

tested was that no significant displacements occurred between two measurement epochs. 

 

 

4 Results and discussion 

Test results are illustrated in Table 3, where three different parameters for Bayesian data prior for 

each point in the control network are tested (A – C) and a column with the z-test scores are reported. 

Values which are above the threshold, and therefore significant, are in boldface.  In the third Bayesian 



test, the value of the parameter μ was set equal to the mean shift Δh for each point Pj. The data prior 

(μ, 0 ) were set according to accumulated experience and knowledge about the landslide, derived 

from previous surveys.  The first four points are not reported as they resulted in very low values, as 

expected, and we will focus on the points near the landslide body. 

We can see from the data in boldface that the upper group of points (point 8, 9 and 10) have proven 

to be significantly shifting downwards. With a classical statistical test only two points, 8 and 9, and 

only in one case for each of the three compared height differences, show that the recorded values can 

be considered as genuine shifts and not as false positives due to residuals of the measures. The 

application of the Bayes approach gave results which included also point 10 as significant. It also 

included more than one epoch of survey for all three points as significant with respect to the first 

measure (t1). Historically it is known that there is a downward shift of that part of the basin, and our 

results are compatible with such information.  

 

Table 3. Results of Bayesian analysis respectively with (A) µ = 0.040 m, 0  = 0.02 m, (B) µ = 0.050 

m, 0  = 0.05 m and (C) µ = variable, 0  = 0.08 m. 

 

Point  Epoch Δh (m) A B C z-score 

5 t2 - t1 -0.092 0.175 0.169 0.150 1.029 

 t3 - t1 -0.1 0.210 0.123 0.062 1.060 

 t4 - t1 -0.1 0.260 0.174 0.101 1.118 

6 t2 - t1 -0.083 0.231 0.210 0.112 0.781 

 t3 - t1 -0.095 0.213 0.207 0.170 1.062 

 t4 - t1 -0.071 0.201 0.145 0.101 0.753 

7 t2 - t1 -0.076 0.198 0.125 0.115 0.760 

 t3 - t1 -0.079 0.274 0.180 0.168 0.837 

 t4 - t1 -0.075 0.396 0.299 0.239 0.663 

8 t2 - t1 -0.104 0.143 0.137 0.094 1.217 

 t3 - t1 -0.187 1.062 0.969 0.871 1.982 



 t4 - t1 -0.101 0.450 0.428 0.415 1.071  

9 t2 - t1 -0.168 0.963 0.894 0.823 2.037 

 t3 - t1 -0.114 0.590 0.589 0.320 1.334 

 t4 - t1 -0.138 0.527 0.352 0.150 1.673  

10 t2 - t1 -0.136 0.709 0.638 0.619 1.592 

 t3 - t1 -0.119 0.618 0.585 0.537 1.393 

 t4 - t1 -0.154 0.295 0.204 0.124 1.722 

 

 

The variation of the data prior shows that the method is robust, giving coherent results and pushing 

to the same conclusions. Point 9 seems particularly sensible to the test, and we can see from Figure 1 

that it is the point with higher altitude of the group; this suggests a relationship with the position along 

the main axis of the basin. It is an hypothesis which can be tested by adding points to the network and 

applying this approach to a larger network, or to another one positioned differently.  

The application of the Bayes approach can also be used inversely, to prove that a control network is 

stable over time, and therefore that it can be used as control points for stationing other instruments 

which might be used for change detection and/or landslide monitoring using remote sensing 

techniques that were mentioned in the introduction. In our study case it was used to define points with 

significant vertical downward shift. 

Traditional methods work well when coordinate differences between survey epochs are large enough, 

with respect to the residuals from error budget of the network adjustment, to remove any doubts on 

the cause of such difference. The Bayesian approach is not to be considered as a substitute to classical 

statistical testing, but as an integration, which can reliably give a more in-depth information clearing 

doubts in the case of border-line values. This can be done without having to increase the sample size, 

i.e., more surveys, as in the case of classical statistics, thus decreasing costs. The Bayesian approach 

works well when the movements have a preferred directionality; this might not be the case in many 

applications, so the phenomenon has to be interpreted beforehand and then a decision taken on which 

approach will work best. 



5 References 

Barbarella M, Fiani M, Lugli A (2013) Landslide monitoring using multitemporal terrestrial laser 

scanning for ground displacement analysis. Geomatics, Natural Hazards and Risk, 21 pages, 

available online at doi:10.1080/19475705.2013.863808.  

Barbarella M, Fiani M, Lugli A (2013) Multi-temporal terrestrial laser scanning survey of a 

landslide. In: Scaioni M (Ed.) 'Modern Technologies for Landslide Investigation and 

Prediction,' Springer, Berlin (Germany).  

Betti B, Biagi L, Crespi M, Riguzzi F (1999) GPS sensitivity analysis applied to non-permanent 

deformation control networks. Journal of Geodesy 73, 158–167, doi:10.1007/s001900050231.  

Betti B, Cazzaniga NE, Tornatore V (2011) Deformation Assessment Considering an A Priori 

Functional Model in a Bayesian Framework. Journal of Surveying Engineering 137: 113–119, 

doi:10.1061/(ASCE)SU.1943-5428.0000052.  

Betti B, Sansò F, Crespi M (2001) Deformation Detection According to a Bayesian Approach. In: 

Benciolini B (Ed.), Proc. 'IV Hotine-Marussi Symposium on Mathematical Geodesy,' Int. 

Association of Geodesy Symposia, Vol. 122, Springer, Berlin (Germany), pp. 83–88, 

doi:10.1007/978-3-642-56677-6_12.  

Bitelli G, Dubbini M, Zanutta A (2004) Terrestrial laser scanning and digital photogrammetry 

techniques to monitor landslide bodies. The International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences 38(7B).  

Borghi A, Cannizzaro L, Vitti A (2012) Advanced Techniques for Discontinuity Detection in GNSS 

Coordinate Time-Series. An Italian Case Study. In: Kenyon S et al. (Ed.'s) 'Geodesy for Planet 

Earth,' Int. Association of Geodesy Symposia, Vol. 136, Springer, Berlin (Germany), pp. 627–

634, doi:10.1007/978-3-642-20338-1_77.  

Cina A, Piras M (2014). Performance of low-cost GNSS receiver for landslides monitoring: test and 

results. Geomatics, Natural Hazards and Risk, 18 pages, doi:10.1080/19475705.2014.889046.  



Crosetto M, Monserrat O, Luzi G, Cuevas-González M, Devanthéry N (2014). Discontinuous 

GBSAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing 93: 

136–141, doi:10.1016/j.isprsjprs.2014.04.002.  

Dowman I (2004) Integration of LiDAR and IFSAR for mapping. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences 35(2), 11 pages.  

Farina P, ColomboD, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide 

investigations: outcomes from the ESA-SLAM project. Engineering Geology 88(3-4): 200–

217, doi:10.1016/j.enggeo.2006.09.007.  

Forlani G, Roncella R, Diotri F (2013) Production of high-resolution digital terrain models in 

mountain regions to support risk assessment. Geomatics, Natural Hazards and Risk, 19 pages, 

available online at doi:10.1080/19475705.2013.862746.  

Frangioni S, Bianchini S, Moretti S (2014) Landslide inventory updating by means of Persistent 

Scatterer Interferometry (PSI): the Setta basin (Italy) case study. Geomatics, Natural Hazards 

and Risk, 20 pages, available online at doi:10.1080/19475705.2013.866985.  

Gregoretti C, Dalla Fontana G (2008) The triggering of debris flow due to channel-bed failure in 

some alpine headwater basins of the Dolomites: Analyses of critical runoff. Hydrological 

Processes 22: 2248–2263, doi:10.1002/hyp.6821.  



Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS - Global Navigation Satellite 

Systems: GPS, GLONASS, Galileo, and more. Springer, Berlin (Germany), 516 pages.  

IGM (2014) Rete Geodetica Nazionale. Available online at http://www.igmi.org/geodetica/ (last 

access on 10th July 2014).  

Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use 

of LIDAR in landslide investigations: A review. Natural Hazards 61: 1-24, 

doi:10.1007/s11069-010-9634-2.  

Koch K (2007) Introduction to Bayesian Statistics. Springer, Berlin (Germany).  

Lingua A, Piatti D, Rinaudo F (2007) Remote Monitoring Of A Landslide Using an Integration of 

Gb-Insar and Lidar Techniques. The International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences 37(B1): 361–366.  

Manfré LA, Hirata E, Silva JB, Shinohara EJ, Giannotti MA, Larocca APC, Quintanilha JA (2012) 

An Analysis of Geospatial Technologies for Risk and Natural Disaster Management. ISPRS 

International Journal of Geo-Information 1(3): 166–185, doi:10.3390/ijgi1020166.  

Monserrat O, Crosetto M, Luzi G (2014) A review of ground-based SAR interferometry for 

deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing 93: 40–48, 

doi:10.1016/j.isprsjprs.2014.04.001.  

Pirotti F, Guarnieri A, Vettore A (2013) Vegetation filtering of waveform terrestrial laser scanner 

data for DTM production. Applied Geomatics 5(4): 311–322, doi:10.1007/s12518-013-0119-3.  

Previtali M, Barazzetti L, Scaioni M (2014) Accurate 3D surface measurement of mountain slopes 

through a fully automated imaged-based technique. Earth Science Informatics 7: 109–122.  

Refice A, Bovenga F, Wasowski J, Guerriero L (2000) Use of InSAR data for landslide monitoring: 

a case study from southern Italy. In: Proc. IGARSS 2000, Honolulu (HI, U.S.A.), 24-28 July 

2000, Vol. 6, pp. 2504-2506, doi:10.1109/IGARSS.2000.859621.  

Remondino F, Spera MG, Nocerino E, Menna F, Nez F (2014) State of the art in high density image 

matching. The Photogrammetric Record 29(146): 144–166.  



Sacerdote F, Cazzaniga NE, Tornatore V (2010) Some considerations on significance analysis for 

deformation detection via frequentist and Bayesian tests. Journal of Geodesy 84: 233–242, 

doi:10.1007/s00190-009-0360-z.  

Scaioni M, Feng T, Barazzetti L, Previtali M, Lu P, Qiao G, Wu H, Chen W, Tong X, Wang W, Li 

R (2014) Some applications of 2-D and 3-D photogrammetry during laboratory experiments for 

hydrogeological risk assessment. Geomatics, Natural Hazards and Risk, pages 24, available 

online at doi:10.1080/19475705.2014.885090.  

Scaioni M, Feng T, Barazzetti L, Previtali, Roncella R (2014) Close-Range Photogrammetric 

Techniques for Deformation Measurement: Applications to Landslides. In: Scaioni M (Ed.) 

'Modern Technologies for Landslide Investigation and Prediction,' Springer, Berlin (Germany).  

Wang G, Soler T (2012) OPUS for Horizontal Subcentimeter-Accuracy Landslide Monitoring: Case 

Study in the Puerto Rico and Virgin Islands Region. Journal of Surveying Engineering 138(3): 

143–153, doi:10.1061/(ASCE)SU.1943-5428.0000079.  

Ye X, Kaufmann H, Guo XF (2004) Landslide Monitoring in the Three Gorges Area Using D-

INSAR and Corner Reflectors. Photogrammetric Engineering & Remote Sensing 70: 1167–

1172, doi:10.14358/PERS.70.10.1167.  

Zwillinger D (2012) CRC Standard Mathematical Tables. 

 


