
A Distributed Calibration Algorithm for Color
and Range Camera Networks

Filippo Basso, Riccardo Levorato, Matteo Munaro, and Emanuele Menegatti

University of Padova, Department of Information Engineering (DEI), IAS-Lab
Via Ognissanti 72, I-35131 Padova, Italy.

{filippo.basso,riccardo.levorato,matteo.munaro,emg}@dei.unipd.it
http://robotics.dei.unipd.it

Abstract. In this tutorial chapter we present a package to calibrate
multi-device vision systems such as camera networks or robots. The pro-
posed approach is able to estimate – in a unique and consistent reference
frame – the rigid displacements of all the sensors in a network of standard
cameras, Kinect-like depth sensors and Time-of-Flight range sensors. The
sensor poses can be estimated in a few minutes with a user-friendly pro-
cedure: the user is only asked to move a checkerboard around while the
ROS nodes acquire the data and perform the calibration. To make the
system scalable, the data analysis is distributed in the network. This
results in a low bandwidth usage as well as a really fast calibration pro-
cedure. The ROS package is available on GitHub within the repository
iaslab-unipd/calibration_toolkit1. The package has been developed
for ROS Indigo in C++11 and Python, and tested on PCs equipped with
Ubuntu 14.04 64bit.

Keywords: ROS, calibration, camera, depth, camera network, distributed
system, Kinect, RGB-D.

1 Introduction

Robotic systems and camera networks consist of many heterogeneous vision sen-
sors. The estimation of the poses of all such sensors with respect to a unique,
consistent world frame, is a challenging and well-known problem. As a matter of
fact, a good calibration of these sensors can be a useful starting point for several
applications in the computer vision field (e.g. 3D mapping, people recognition
and tracking [4, 15], microphone calibration for audio localization [14]) as well
as in many robotics applications (e.g. simultaneous localization and mapping
(SLAM) applications, grasping and manipulation).

However, even most of the time a good calibration is mandatory for the
success of the application, there are still no tools that permit to easily calibrate
multiple vision sensors together in a uniform way. In fact, most of the existing
tools are for specific applications or specific sensors (e.g. stereo cameras); there
1 https://github.com/iaslab-unipd/calibration_toolkit

2 A Distributed Calibration Algorithm for Color and Range Camera Networks

Fig. 1. Example of sensors in a PC network that the proposed package aims to cali-
brate.

are only few methods developed to simultaneously calibrate an heterogeneous
sensor network. As stated by Le et al. [13], the most followed approach is to
divide the sensors into pairs and calibrate each pair independently, even using
different algorithms for each one.

Our idea, i.e., the one behind the development of this package, is to go
beyond this calibration technique, and develop an easy-to-use and easy-to-extend
calibration package for ROS, such that users can add their own sensor types,
their own error functions and perform the calibration. Moreover, since calibration
is a time-consuming task, a fast procedure would be a very useful tool, especially
when the involved sensors need often to be moved – and therefore re-calibrated.

We are still far from having a sensor-independent calibration toolbox like
the aforementioned one, however, as we have already demonstrated [3, 14, 16],
the very same calibration procedure can be used to calibrate standard cameras,
Kinect-like and Time-of-Flight depth sensors as well as omnidirectional cameras
and actuated laser scanners. So, we took what we had learned during the de-
velopment of our previous works and packed it in a completely new package,
heavily based on Eigen [11] and Ceres Solver [1] libraries.

The package addresses the problem of calibrating networks composed by
cameras and depth sensors like the one in Fig. 1. The approach we followed is
an extension of the classical single camera calibration procedure: users are asked
to move a checkerboard pattern in front of the each camera and depth sensor
and, as soon as any of the sensors see the checkerboard, the calibration starts.
Then, whenever the pattern is visible by at least two sensors simultaneously, a
constraint is added to the calibration problem. This process goes on until all the
sensors are connected to the others. At the end, all the data are processed inside
an optimization framework that improves the quality of the initial estimation.
This procedure has already been tested on camera-only networks as part of

A Distributed Calibration Algorithm for Color and Range Camera Networks 3

the OpenPTrack2 project [16]. Here we explain how to configure and use the
package as well as the theoretical background behind the developed algorithm.
The remainder of the chapter is organized as follows:

– First, we review some of the existing works on camera and sensor network
calibration.

– Second, we give a short overview of the calibration problem for camera net-
works.

– Third, we explain in detail how the calibration is performed from a theoret-
ical point of view.

– Fourth, we introduce the readers to the package with a real-world example.
– Fifth, we describe how to configure and use the nodes provided by the pack-

age to calibrate a user-defined sensor network.
– Finally, we draw some conclusions.

2 Related Work

In the robot vision field, RGB cameras have been a key technology in the devel-
opment of visual perception. In the last few years, the introduction of RGB-D
sensors contributed deeply to the advancement of sensor fusion in practical appli-
cations. Auvinet et al. [2] proposed a new method for calibrating multiple depth
cameras for body reconstruction using only depth information. Their algorithm
is based on plane intersections and the NTP protocol for data synchronization.
The calibration achieves good results: even if the depth error of the sensor is 10
mm, the reconstruction error with 3 depth cameras is, in the best case, less than
6 mm. A drawback of their implementation is that they have to manually select
the plane corners and, above all, they only deal with depth sensors.

Another approach to solve the calibration problem is the one proposed by
Le and Ng [13]: they jointly calibrate groups of sensors. More specifically, each
group is composed by a set of sensors that can provide a 3D representation of
the world (e.g. a stereo camera, an RGB camera and a depth camera, etc.). First
of all they calibrate the intrinsics of each sensor, secondly they calibrate the ex-
trinsic parameters of each group, then they calibrate the extrinsic parameters of
each group with respect to all the others. Finally the calibration parameters are
refined in one optimization step. Their experiments show that this method not
only reduces the calibration error, but also requires a little human intervention.
An advantage of having groups that output 3D data is that the same calibra-
tion objective can be used to calibrate a group with respect to all the others,
regardless of the sensor type. Also, a joint calibration does not accumulate er-
rors like a calibration based on sensor pairs do. However, they state that they
should combine this two steps and jointly calibrate all parameters at once, as we
proposed in our works [3] and propose here. In fact, the main drawback of this
approach is that they always need to group the sensors beforehand in order to
have 3D data outputs.
2 http://openptrack.org/

4 A Distributed Calibration Algorithm for Color and Range Camera Networks

Finally, Furgale et al. [10], recently developed a similar ROS package, Kalibr,
that tackles the spatio-temporal calibration of multi-sensor systems composed
of cameras and an IMU. To the best of our knowledge, this is the work most
similar to ours.

3 Background
3.1 The Calibration Problem
Definition 1. Let S = {S1,S2 . . . SK} be a set of sensors. For each sensor
Si ∈ S, i = 1 . . .K, the goal is to find its pose WSi with respect to a common
reference frame W, namely the world.

To solve such problem, it is important to know the concept of reference
frame and how affine transformation (in a 3D space) works. Moreover, since we
are dealing mostly with cameras, it is mandatory to know how 3D points are
converted to pixels and vice-versa.

3.2 Affine Transformations
Let x = (x, y, z)T be a point in 3D space. For any non-zero real number w,
(xw, yw, zw,w)T is the set of homogeneous coordinates associated to the point
x. In particular, when w = 1, the resulting 4D vector x̃ = (x, y, z, 1)T is called
the normalized homogeneous form.

A rigid transformation in 3D space is represented by a linear transformation
T ∈ SE(3) on normalized homogeneous vectors

T =
[

R t
0T 1

]
where R ∈ SO(3) is the rotation matrix and t ∈ IR3 the translation vector.

To transform a 3D point x it is sufficient to left-multiply its normalized
homogeneous form x̃ by the transformation matrix T

ỹ = T · x̃ .

The resulting vector ỹ is the normalized homogeneous form of the desired 3D
point y. This operation is equivalent to perform an affine transformation in IR3

y = R · x + t .

3.3 Reference Frames
A reference frame F is a coordinate system used to represent and measure po-
sition and orientation of objects. A transformation matrix TST from a source
reference frame S to a target frame T is a transformation matrix that allows to
convert the coordinates of a point from S to T .
Let, for example, x be a point and let Sx be its coordinates in S, x’s coordinates
in T , namely T x, can be computed as

T x̃ = TST · S x̃ .

A Distributed Calibration Algorithm for Color and Range Camera Networks 5

3.4 Pinhole Camera Model

Let C be a camera and C its reference frame. The pinhole model describes the
mathematical relationship between the coordinates of a 3D point and its projec-
tion onto the image plane. The model assumes that the camera has 4 parameters,
namely intrinsic parameters:

– (cx, cy)T is the principal point that is usually at the image center;
– fx, fy are the focal lengths expressed in pixel units;

usually arranged in a 3× 4 matrix KC

KC =

fx 0 cx 0
0 fy cy 0
0 0 1 0

 .

The relationship between the coordinates of a 3D point Cx and its projection
onto the image plane x′ (in pixels) is

s · x̃′ = KC · Cx̃ , (1)

at least theoretically. Unfortunately real lenses usually have some distortion. So,
the pinhole model is extended with a vector of distortion coefficients dC and a
distortion function dC(·). Equation (1) thus becomes

s · x̃′ = KC · dC(Cx̃) . (2)

For more details on the distortion function please refer to [6].
In the following, given a camera C, the reprojection of a 3D point onto C’s image
plane, i.e. (2), will be denoted by the function rC(·), that is

x′ = rC
(Cx) . (3)

3.5 Notations

We use non-bold characters x to represent scalars, bold lower case letters x to
represent vectors with no distinction between cartesian coordinates and homo-
geneous coordinates. Bold upper case letters M represent matrices. Note that
matrices can be seen as ordered lists of vectors, one for each column.

The reference frame of an object B is in calligraphic style B. The coordinates
of an entity e with respect to the reference frame F are denoted by Fe. According
to this notation, the pose of a body A in B’s coordinate system B is denoted as
BA and the relative homogeneous transformation matrix is BAT.

4 Camera-only Network Calibration

4.1 Pose Estimation

To solve the calibration problem (Def. 1) for a camera-only network, we use a
checkerboard pattern. So, let B be an R×C checkerboard and let B be its reference

6 A Distributed Calibration Algorithm for Color and Range Camera Networks

frame. Let also C be a camera with reference frame C, intrinsic parameters KC
and distortion coefficients dC. We can estimate the checkerboard pose CBT in
the camera reference frame by finding its corners in the image and solving the
correspondent Perspective-n-Point (PnP) problem [9].
That is, let I = {1 . . . R} × {1 . . . C} be the corner indices, let also

BB =
{Bbr,c

}
(r,c)∈I

be the checkerboard corners and

B′ =
{

b′r,c
}

(r,c)∈I

the correspondent locations in the image. The checkerboard pose CBT can be
estimated by means of a single function called solvePnP, i.e.

C
BT = solvePnP

(
KC,dC,

BB,B′
)
, (4)

and is the one that minimizes the reprojection error

erC

(C
BT, BB,B′

)
=
∑

(r,c)∈I

∥∥b′r,c − rC
(C
BT · Bbr,c

)∥∥2
. (5)

Now, let C1 and C2 be two different cameras, with reference frame C1 and
C2 respectively and suppose they both can see the checkerboard at the same
time. To be more precise, let’s define k ∈ IN as an acquisition step, that is, a
progressive number that is incremented each time the checkerboard is moved to
a different location and an acquisition for every camera is triggered at the same
instant. Let also WB T(k) be the checkerboard pose at step k. Using (4) we can
estimate both C1

B T(k) and C2
B T(k). Starting from these two poses (and the fact

the the checkerboard is in the same location), we can estimate the pose of one
sensor with respect to the other C1

C2
T with a closed formula

C1
C2

T = C1
C2

T(k) = C1
B T(k) · C2

B T(k)−1
. (6)

Then, remembering that affine transforms can be chained

B
AT = BXT · XAT ,

and that
B
AT = ABT−1 ,

we can find a solution to our calibration problem for a network composed by N
cameras. We just need to estimate (or set) the pose WCi T of one camera Ci with
respect to the world reference frameW and move the checkerboard around until
each camera pose is computed, using any of the aforementioned equations.

To estimate the pose of a camera Ci with respect to the world reference frame
W, first of all we must know whether we need to define a world reference frame
W in the environment or not. In fact, if it really does not matter where such

A Distributed Calibration Algorithm for Color and Range Camera Networks 7

reference frame is, any camera reference frame Ci can be set as the world, that
is W = Ci (or equally WCi T = I) for one i ∈ {1 . . . N}. Otherwise the pose can be
set manually: WCi T = W for some transformation matrix W and i ∈ {1 . . . N};
or estimated by moving the checkerboard to the desired position and setting
W
B T(k) = I, for some k ∈ IN.

At this stage we have good estimations of the sensor poses, however, due to
errors in the measurements, usually

C1
C2

T(k) 6= C1
C2

T(l)

for two different steps k and l. Therefore we must perform an optimization step
to refine the estimated camera poses, such that the error on the estimated poses
is reduced as much as possible.

4.2 Optimization

Taking a step back to the acquisition part, we can organize the calibration data in
a matrix, like the one in Fig. 2. Here, what we need to refine are the checkerboard
poses but, following the bundle adjustment approach [12], we refine both the
camera poses WCi T, i = 1 . . . N and the checkerboard poses WB T(k), k = 1 . . .K.
Indeed, even if we perfectly know the pose of every camera with respect to the
world, the pose of a checkerboard B estimated at step k using two different
cameras, say Ci and Cj , is likely to be different, that is

W
Ci T(k) · CiB T(k) 6= WCjT(k) · CjB T(k) .

To achieve a satisfying solution, a good candidate to be minimized is the repro-
jection error defined in (5). The complete error function EC that we minimize is
therefore

EC =
K∑
k=1

N∑
i=1

uik ·
1
σ2

Ci
· erCi

(
W
Ci T−1 ·WB T(k), BB,B′(k)

i

)
(7)

=
K∑
k=1

N∑
i=1

uik ·
1
σ2

Ci
·
∑

(r,c)∈I

∥∥∥b′(k)
i,r,c − rCi

(
W
Ci T−1 ·WB T(k) · Bbr,c

)∥∥∥2
,

where uik is an indication function equal to 1 if camera Ci sees the checkerboard
at step k (otherwise it is 0) and the fraction 1

σ2
Ci

is instead a normalization factor.
The term σCi is usually set to 1 or 0.5 and indicates the error on the corner’s
estimated position (in pixels) in the images provided by camera Ci.

4.3 Additional Constraints

In one of our first applications of this calibration algorithm, OpenPTrack [16],
we needed to calibrate a camera network in a big room against the floor, i.e.
extract the floor equation and set the world frame somewhere on it. We decided

8 A Distributed Calibration Algorithm for Color and Range Camera Networks

W
C1 TKC1 ,dC1

W
C2 TKC2 ,dC2

W
C3 TKC3 ,dC3

W
C4 TKC4 ,dC4

W
C5 TKC5 ,dC5

W
B T(1) W

B T(2) W
B T(3) W

B T(4) W
B T(5) W

B T(6) W
B T(7) W

B T(8)

B′(2)
2

B′(4)
4 B′(5)

4

B′(3)
5

B′(5)
2

B′(4)
1

B′(1)
2

B′(6)
4

B′(6)
3

B′(7)
5

B′(7)
2

B′(8)
1

B′(8)
3B′(1)

3

B′(2)
5

Steps

C
am

er
as

Fig. 2. Matrix view of the calibration data. Each row is associated to a camera Ci

and contains both the camera parameters KCi and dCi , and the camera estimated
pose W

CiT. The columns are instead associated to the steps and contain the poses of the
checkerboard at every step k, namely W

B T(k). A cell (i, k) contains the corners locations
(in pixels) B′(k)

i of the checkerboard at step k in the image provided by camera Ci, if
the checkerboard is visible.

to estimate the floor coefficients during the calibration procedure, exploiting the
fact that positioning a checkerboard on the floor would have allowed us to define
the plane equation as well as the world reference frame. However, since the room
was quite big and the checkerboard far from every camera, the results were not
satisfactory: the plane had often a non-negligible rotation with respect to the
real one. To overcome this issue, printing a bigger checkerboard was not a viable
solution. Instead, we imposed that two or more checkerboards were lying on the
same plane and added the geometrical constraints to the error model. In fact,
if we fix the plane π on which a checkerboard can move, the checkerboard pose
can be defined by a 2D transform P

BT2 with respect to the reference frame of
plane π, namely P.

So, let define a plane by means of its reference frame WP T, such that the x-
and y-axes are on the plane and the z-axis is its normal, as depicted in Fig. 3.
Then the pose of a checkerboard lying on π at step k is

W
B T(k) = WP T · PBT(k)

2 , (8)

where the 2D transform P
BT(k)

2 is wrapped into a 3D one to perform the matrix
multiplication

P
BT(k)

2 =


cos(θ) − sin(θ) 0 tx
sin(θ) cos(θ) 0 ty

0 0 1 0
0 0 0 1

 .
We can now substitute (8) into (7) to refine both the plane and the checker-

board pose.

A Distributed Calibration Algorithm for Color and Range Camera Networks 9

π

x

y

z

W
P T

ty

tx

x

y

θ

P
B T(k)

2

Fig. 3. Reference frames of the plane π and a checkerboard B lying on it.

5 Extension to a Depth Sensor-Camera Network

5.1 Pose Estimation

In Sect. 4 we have presented a calibration procedure for camera-only networks.
Such procedure works well with cameras, but how can we calibrate a network
composed by both cameras and depth sensors?

A depth sensor D provides an R × C point cloud view of the scene, i.e. an
indexed set of 3D points

DP =
{Dpr,c

}
(r,c)∈I ,

where I = {1 . . . R} × {1 . . . C}, reflecting the shape of the scene in the sensor’s
field of view. Obviously, we cannot directly estimate the checkerboard pose using
the corners, as we do for the camera-only network calibration, since they are not
visible. However, we can exploit the 3D data to extract the pattern plane and
perform a plane-to-plane calibration [20]. That is, supposing we have already
estimated the checkerboard pose WB T(k) at step k, we can define the checkerboard
plane Wπ(k)

B using three non-collinear corners. We can also estimate the pattern
plane Dπ(k)

B from the point cloud, using a for example a RANSAC-based [9]
plane fitting algorithm.

So, let {k1 . . . kn}, with n ≥ 3, be the intersection between the steps in which
depth sensor D sees the checkerboard and those in which the checkerboard pose
has been estimated, and let the plane equations be of the form nT · x − d = 0.

10 A Distributed Calibration Algorithm for Color and Range Camera Networks

Following [20], we define

WN =
[
Wn(k1)

B . . .Wn(kn)
B

]T
Wd =

[
Wd

(k1)
B . . .Wd

(kn)
B

]T

DN =
[
Dn(k1)

B . . .Dn(kn)
B

]T
Dd =

[
Dd

(k1)
B . . .Dd

(kn)
B

]T

and compute
W
D T =

(W
D R W

D t
0T 1

)
as

W
D t =

(WNT ·WN
)−1 ·WNT ·

(Wd− Dd
)
,

W
D R = V ·UT ,

where U · S ·VT is the SVD decomposition of DNT ·WN.

5.2 Optimization
For what concerns the error function, we calculate it as a sort of distance between
the plane defined by the checkerboard, say Wπ(k)

B , at step k, and the plane fitted
to the checkerboard depth data of sensors Dj , j = 1 . . .M , namely Djπ(k)

B . So,
let pπ(x) be the line-of-sight projection of a point x onto plane π as described
in [18], we can define the error function ED as

ED =
K∑
k=1

M∑
j=1

ujk ·
1
σ2

Dj
· epDj π(k)

B

(
W
DjT

−1 ·WB T(k), BB
)

=
K∑
k=1

M∑
j=1

ujk ·
1
σ2

Dj
·
∑

(r,c)∈I

∥∥∥Djb(k)
r,c − pDjπ

(k)
B

(
Djb(k)

r,c

)∥∥∥2
,

where
Djb(k)

r,c = WDjT
−1 ·WB T(k) · Bbr,c ,

and ujk is an indication function equal to 1 if sensor Dj sees the checkerboard at
step k (otherwise it is 0) and the fraction 1

σ2
Dj
, as for cameras, is a normalization

factor. But, while for cameras, σDj is usually set to corner estimation error in
pixels, for depth sensor it describes the error on the depth estimation. This means
that each depth sensor may have a different normalization factor. Moreover, there
are sensors, like Kinects v1, for which this error depends on the depth value, that
is

σDj (z) = a+ b · z + c · z2 , (9)
for some coefficients (a, b, c). Typical values3 for a Kinect v1 are: a = 0, b =
0, c = 0.0035. Taking into account this fact, the error function ED becomes

ED =
K∑
k=1

M∑
j=1

ujk ·
∑

(r,c)∈I

1
σ2

Dj

(
Djz

(k)
r,c

) · ∥∥∥Djb(k)
r,c − pDjπ

(k)
B

(
Djb(k)

r,c

)∥∥∥2
(10)

3 http://wiki.ros.org/openni_kinect/kinect_accuracy

A Distributed Calibration Algorithm for Color and Range Camera Networks 11

where Djz(k)
r,c is the z component of Djb(k)

r,c .

6 ROS Environment Configuration

6.1 Dependencies

The package depends on some external libraries, well integrated in ROS, such
as:

– Boost
– OpenCV
– Eigen 3.2
– PCL 1.7

They are all available in the Ubuntu 14.04 repository and easily installable. For
what concerns the optimization algorithm, instead, the package relies upon Ceres
Solver [1] a library to solve non-linear least squares problems. In Ubuntu 14.04,
it is possible to install version 1.8 of such library by selecting the apt package
libceres-dev, however, due to some bugs on that library version, our package
does not compile. To overcome this issue, we have prepared a script to download
the latest tested version and install it. Just type

roscd calibration_toolkit /../ scripts
./ install_ceres .sh

on a terminal, and Ceres Solver as well as its dependencies will be installed on
your system.

The algorithm assumes that all the sensors’ intrinsic parameters are already
estimated and expects that each camera publishes its own calibration parame-
ters as a sensor_msgs/CameraInfo message. This is a common assumption for
cameras, for which a lot of specialized tools (e.g. the camera_calibration ROS
package) exist, while it is a bad assumption when dealing with depth sensors.
In fact, for depth sensors, even if it has been demonstrated [5, 7, 8, 17, 19, 22]
that depth measurements are not reliable, this operation is not really common.
Unfortunately, up to this time, there is not an established way of calibrating such
sensors, not even a ROS way to deal with their distortion. Users must therefore
rely on external packages, like the ones presented in [5, 8] or [19].

Finally, it’s worth noticing that the package is developed in C++11 and
needs a compatible compiler to work. In particular we are currently compiling
with gcc 4.8.

6.2 Basic Configuration

In order to allow communication between nodes in different computers, the en-
vironment variable ROS_MASTER_URI on every client PC must be set to the IP
address of the PC where the master node is launched, namely the master PC.
Additionally, the ROS_IP and ROS_PC_NAME environment variables must be set.
This can be done temporarily by typing

12 A Distributed Calibration Algorithm for Color and Range Camera Networks

export ROS_MASTER_URI =http :// < MASTER_IP >:11311/
export ROS_IP =< MACHINE_IP >
export ROS_PC_NAME =< MACHINE_NAME >

on a terminal. Note that the PC names assigned can be whatever the user wants,
not necessarily related to the real names of the PCs. To set them definitively,
they can be added directly to the end of the .bashrc file in the home folder. As
an example:

echo " export ROS_MASTER_URI =http ://192.168.1.1:11311/
export ROS_IP =192.168.1.5
export ROS_PC_NAME = Phoenix " >> ~/. bashrc

7 Real-World Example

Suppose all the PCs are configured as explained in Sect. 6, and that we want to
calibrate a network of two cameras connected to two different PCs that are called,
respectively, Phoenix and Gemini. The multi-sensor calibration is performed by
running a master node in a so called master PC, in our case Lyra, and a device
driver in every PC attached to a device (one driver node for each device). First
of all, we have to run the ROS drivers for all our devices. As an example, for a
PointGrey camera, type on a terminal:

roslaunch pointgrey_camera_driver camera . launch

Then, we have to wrap these drivers in our calibration environment so that they
can communicate with the master node in Lyra. To this aim, we run on both
Phoenix and Gemini:

roslaunch multisensor_calibration camera_node . launch \
camera_name := camera image_topic :=/ camera / image \
camera_info_topic :=/ camera / camera_info

where image_topic and camera_info_topic are the real topics on which the
camera drivers publish their data. If everything is fine, we will see in our terminal:

[/ Gemini / camera_node] All messages received .
[/ Gemini / camera_node / get_device_info] Service started .
[/ Gemini / camera_node / extract_checkerboard] Action server started .

At this point, Phoenix and Gemini are working as expected, we can therefore
move to Lyra. Here we must let the master node know the network. We create
a file called network.yaml in the multisensor_calibration/conf directory,
open our favourite text editor, and fill network.yaml with the two PCs and the
two cameras connected to them:

Network configuration
network :

- pc: " Phoenix "
devices : [" camera "]

- pc: " Gemini "
devices : [" camera "]

A Distributed Calibration Algorithm for Color and Range Camera Networks 13

Note that the strings in the devices arrays exactly match the value of the
argument camera_name we set when launching camera_node.launch. We must
then define the calibration pattern, i.e. the checkeboard, that we will use during
the calibration procedure. So, let’s create a file named checkerboard.yaml in
the multisensor_calibration/conf directory and fill it with our checkerboard
parameters:

Checkerboard configuration
checkerboard :

cols: 6
rows: 5
cell_width : 0.12
cell_height : 0.12

We can now start the calibration procedure:
roslaunch multisensor_calibration master_node . launch

If all the nodes are launched correctly we’ll have an output similar to the one
below:

[/ Lyra/ master_node] Connected to [/ Phoenix / camera_node /
get_device_info] service .

[/ Lyra/ master_node] Connected to [/ Gemini / camera_node /
get_device_info] service .

[/ Lyra/ master_node] Connected to [/ Phoenix / camera_node /
extract_checkerboard] action server .

[/ Lyra/ master_node] Connected to [/ Gemini / camera_node /
extract_checkerboard] action server .

[/ Lyra/ master_node] Getting device infos ...
[/ Lyra/ calibration] Sensor [/ Phoenix / camera] added .
[/ Lyra/ calibration] Sensor [/ Gemini / camera] added .
[/ Lyra/ master_node] Initialization complete .

We can then start the data acquisition phase. So, we take our checkerboard and
move it around letting all the sensors see it. Every time we are in a good position
we can publish an empty message on the topic /Lyra/master_node/acquisition
to get one instance of the checkerboard (if visible) from each sensor:

rostopic pub /Lyra/ master_node / acquisition std_msgs / Empty -1

Note that the, instead of publishing a message each time we need, we can let the
publisher run at a fixed rate, substituting -1 with the desired rate -r <rate>.
In this case, we must pay attention not to move the checkerboard too quickly,
to avoid blur calibration errors due to the non perfect synchronization of the
sensors.

We can monitor the whole calibration procedure via Rviz (Fig. 4). It is suf-
ficient to set the world frame as fixed frame, add the tf view and a marker
view on topic /Lyra/master_node/markers and every time the checkerboard
is detected or a sensor pose is estimated we will see it on the screen. In Fig. 4
some screenshots acquired during the calibration are shown. Before finishing the
calibration, we lay the checkerboard on the floor and publish:

rostopic pub /Lyra/ master_node / action std_msgs / String " begin
plane " -1

14 A Distributed Calibration Algorithm for Color and Range Camera Networks

Fig. 4. Screenshots acquired during the calibration procedure. Top-left: as soon as
one sensor detects the checkerboard pattern, it becomes part of the tf tree and its
pose is published. Top-right: then, every sensor that sees the checkerboard is added
to the tree. Bottom-left: as new detections arrive, the pose of the sensors are refined
with the optimization algorithm, the checkerboard visualized is the last one. Bottom-
right: when the program is asked to estimate a plane, its pose is published and can
be visualized using Rviz.

From now on, the calibration algorithm assumes that all the checkerboards are
lying on the same plane (see Sect. 4.3). We perform some acquisitions with the
checkerboard lying on the floor and then publish an end plane instruction:

rostopic pub /Lyra/ master_node / action std_msgs / String "end plane "
-1

Finally, to get the results of the calibration, we use the service get_results
offered by the master node. On a terminal we run:

rosservice call /Lyra/ master_node / get_results

and get the estimated poses, similar to the ones below:
poses :

- frame_id : ’/world ’
child_frame_id : ’/ Gemini /camera ’
pose:

position : {x: 0.0 , y: 0.0 , z: 0.0}
orientation : {x: 0.0 , y: 0.0 , z: 0.0 , w: 1.0}

- frame_id : ’/world ’
child_frame_id : ’/ Phoenix /camera ’
pose:

position : {x: 1.12064 , y: 0.321081 , z: 0.565662}
orientation : {x: 0.0471913 , y: -0.377825 , z: -0.0340694 , w:

0.924046}

A Distributed Calibration Algorithm for Color and Range Camera Networks 15

Fig. 5. Typical approach of network calibration algorithms. All the driver nodes are
directly connected to a central node that performs the computation. The bandwidth
usage is high.

Fig. 6. Our approach to the network calibration procedure. The data provided by a
device are elaborated by a node on the same PC and only the necessary calibration
features are sent to the calibration node. Here, the thin lines that connect the master
node with the device nodes mean that the quantity of data on the network is limited,
with respect to the quantity of the typical approach (Fig. 5).

8 ROS Package

8.1 Architecture

The main purpose of the here-presented package is to allow the calibration of
all the sensors (for now cameras and Kinect-like depth sensors) within a ROS
network, no matter where they are. That is, suppose to have a set of sensors
distributed in a PC network as in Fig. 1, the typical approach for the calibration
procedure is to develop a calibration node that grabs the data generated by all the
sensors, elaborate them and then estimate the sensors’ rigid displacement in the
scene (Fig. 5). This approach is clearly not scalable: more sensors means more
bandwidth yet more computational power needed. To overcome such problem, we
propose a different, distributed, architecture that allows us to both drastically
reduce the bandwidth usage and distribute the computational cost over the
network. In fact, we separate the data analysis from the calibration procedure.
As depicted in Fig. 6, there are two sorts of calibration nodes: device nodes and
the master node. A device node is responsible for elaborating the data provided

16 A Distributed Calibration Algorithm for Color and Range Camera Networks

by its device, it extracts the corners from every image, creates a message and
sends it to the master node that executes the calibration procedure.

Remembering that ROS device drivers typically stream data at a defined
frame-rate, with the proposed architecture we are able to work in a request-reply
way: it is the master node that asks for new data when needed. In particular,
since ROS service calls are blocking, the communication relies on the actionlib
stack.

8.2 Device Node

Node Parameters. A device node is responsible for getting the data from a
device and, upon request, elaborate and send them to the master node. We first
need to distinguish between the word device and sensor. We define a device as an
item that can be connected to a PC, while a sensor, rather physical or virtual, is
the item whose pose will be estimated in the calibration procedure. For example,
a Kinect is a device composed by three different sensors: the RGB camera, the
IR camera and a virtual depth sensor [7].

So, from a ROS perspective, a device node subscribes to the image and/or
depth topics of the device sensors and keeps listening to an action topic until a
request from the master node arrives. Then, the last images received are pro-
cessed and the extracted calibration features are packed into a message and sent
back to the master.

To explain how to configure and run a device node, we suppose we have to
create a launch file for a Kinect v1. We first need to set the name of the device
and its serial in case two or more Kinects are launched on the same PC:

<?xml version ="1.0"?>
<launch >

<arg name=" device_name " default =" kinect1 " />
<arg name=" device_serial " default ="#1" />

Then, to avoid conflicts between nodes launched from different PCs, we group
everything inside the namespace $ROS_PC_NAME:

<group ns="$(env ROS_PC_NAME)">

Now we include the launcher for the Kinect driver. The argument camera let
us define the namespace for all the topics published by the driver as well as the
reference frames in the Kinect messages: here we add the _driver suffix just to
avoid confusion. Note also that we have set the argument depth_registration
to false: it avoids the driver to perform any factory-defined modifications to
the point cloud.

<include file="$(find openni_launch)/ launch / openni . launch ">
<arg name=" camera " value ="$(arg device_name) _driver " />
<arg name=" device_id " value ="$(arg device_serial)" />
<arg name=" depth_registration " value =" false " />
<arg name=" publish_tf " value =" false " />

</ include >

A Distributed Calibration Algorithm for Color and Range Camera Networks 17

The last node we need to add is our device node. The package multisensor_cal-
ibration provides the node as a binary called device_node. We rename it to
match our current device, paying attention that, for communication reasons, the
node name needs the suffix _node.

<node pkg=" multisensor_calibration " type=" device_node "
name="$(arg device_name) _node " output =" screen ">

We then define the Kinect sensors that we want to calibrate. They have to be
defined within the ~device namespace, in particular:

name – sets the device name, only for logging purposes;
sensors – defines the list of sensors to calibrate, it is divided into:

intensity – the sensors that will be treated as pinhole cameras;
depth – the sensors that will be treated as depth sensors;

<sensor> – sets, for each sensor defined in sensors:
frame_id – its unique frame id;
error – the error polynomial defined in (9), where [depth sensors only]:

min_degree/max_degree – the minimum and maximum degree of the
polynomial (in the example below σ(z) = c0 · z0 + c1 · z1 + c2 · z2);

coefficients – the polynomial coefficients ci;
transforms – defines the known transforms between the sensors:

<sensor> – the child sensor;
parent – the parent sensor, that is, the frame to which the transform

is defined;
translation – the translation between the two sensors;
rotation – the quaternion defining the rotation between the two sen-

sors.

<rosparam param =" device " subst_value ="true">
name: "$(arg device_name)"
sensors:

intensity: ["rgb"]
depth: [" depth "]

rgb:
frame_id: "/$(env ROS_PC_NAME)/$(arg device_name)/rgb"

depth:
frame_id: "/$(env ROS_PC_NAME)/$(arg device_name)/ depth "
error:

min_degree: 0
max_degree: 2
coefficients: [0.0 , 0.0 , 0.0035]

transforms:
depth:

parent: "rgb"
translation: {x: -0.025 , y: 0.0 , z: 0.0}
rotation: {x: 0.0 , y: 0.0 , z: 0.0 , w: 1.0}

</ rosparam >

Finally, we have to connect the device node to the topics published by the driver.
We use the remapping feature of ROS to set the sensor nodes listen to the
right topics. Both for depth sensors and cameras, the default topics they listen

18 A Distributed Calibration Algorithm for Color and Range Camera Networks

to are of the form ~/device/<sensor>/<topic type>, where <topic type> is
image for either images or depth images, camera_info for the camera calibration
parameters and cloud for the point clouds:

<remap from="~ device /rgb/ image "
to="$(arg device_name) _driver /rgb/ image_color "/>

<remap from="~ device /rgb/ camera_info "
to="$(arg device_name) _driver /rgb/ camera_info "/>

<remap from="~ device / depth / cloud "
to="$(arg device_name) _driver / depth / points " />

<remap from="~ device / depth / camera_info "
to="$(arg device_name) _driver / depth / camera_info " />

</node >
</ group >

</ launch >

8.3 Master Node

Node Parameters. Let’s take a look to the launch file for the master node to
see the parameters it needs to run. The launch file for the master node is simple:

<?xml version ="1.0"?>
<launch >

<arg name=" network_file " default ="$(find
multisensor_calibration)/conf/ network .yaml" />

<arg name=" checkerboard_file " default ="$(find
multisensor_calibration)/conf/ checkerboard .yaml" />

<group ns="$(env ROS_PC_NAME)">
<node pkg=" multisensor_calibration " type=" master_node "

name=" master_node " output =" screen ">
<param name=" network_file " value ="$(arg network_file)" />
<rosparam command ="load" file="$(arg checkerboard_file)" />

</node >
</ group >

</ launch >

We first need to set the file containing the network description, network_file, to
let the master node know the sensors to be calibrated. The network configuration
is expected to be in a yaml file of the form

Network configuration
network :

- pc: "<ROS_PC_NAME_1 >"
devices : ["<DEVICE_NAME_1 >", "<DEVICE_NAME_2 >"]

- ...
- pc: "<ROS_PC_NAME_N >"

devices : ["<DEVICE_NAME_1 >", ... , "<DEVICE_NAME_N >"]

and typically stored in the multisensor_calibration/conf directory of the
master PC. Here, each pc must match any of the names previously given to the
PCs via the export command, while the strings in the devices array are the
device names. They have to match the first part of a device node, that is, all
but the suffix _node. Note that each device node is expected to be reachable
in the network using the PC name as a namespace. As an example, the device

A Distributed Calibration Algorithm for Color and Range Camera Networks 19

x

y

x

y

x′

y′

Fig. 7. The reference frame of a checkerboard is located internally with respect to
one of the black corner-cells (if present), according to the checkerboard size, that is,
with the x-axis along the columns and the y-axis along the rows. Left: the reference
frame of a 5 × 6 checkerboard has only one possible location. Right: here, due to a
rotational symmetry, the reference frame of the 5 × 7 checkerboard can be positioned
in two different locations, leading to pose estimation problems.

node camera that runs in the PC named Gemini, is expected to be a node called
/Gemini/camera_node.

The second parameter is the checkerboard_file. It must be a yaml file and
contain the checkerboard pattern specifications:

Checkerboard configuration
checkerboard :

cols: <internal corners along the x dimension >
rows: <internal corners along the y dimension >
cell_width : <cell size along the x dimension in meters >
cell_height : <cell size along the y dimension in meters >

Because of symmetry (see Fig. 7), it is mandatory that one of cols and rows is
odd and the other even, no matter which. Otherwise two different sensors can
assign to the same checkerboard two different reference frames, invalidating the
calibration procedure. In fact, according to our experience, the OpenCV corner
detector starts enumerating the corners from one of the black corner-cells (if
present), in row-major order. We rely on this order to set the reference frame of
the checkerboard: the x-axis along the columns and the y-axis along the rows.

Services and Messages. As already shown in Sect. 7, it is possible to interact
with the master node with messages and services. The most important topic the
node is listening on is ~acquisition. Publishing a string on such topic would
result in a data acquisition. Note that, the message queue on the node is set to
1, so even if the node receives multiple requests while still elaborating previous
data, only the last one will be taken into account. Note also that rostopic pub
permits to publish messages at a defined rate with the flag -r <rate>. Users
must pay attention to use such feature since the sensors may be not perfectly
synchronized. In fact, if the data are acquired while the pattern is still moving,
the resulting calibration could be wrong.

The node is also listening to an action topic named ~action. It is used to
send special calibration commands in form of strings. For now the only two

20 A Distributed Calibration Algorithm for Color and Range Camera Networks

commands accepted are begin plane and end plane. The former command
tells the calibration algorithm that, from that instant on, the checkerboards
are all lying on the same plane (see Sect. 4.3). The latter, instead, makes the
algorithm go back to its standard behavior.

Finally, to get the results of the calibration, the master node offers a service
called ~get_results. It can be invoked with an empty request and returns a
vector of messages of type calibration_msgs/ObjectPose. In the future we
envision to improve this service with some options like:
– ask for the poses of checkerboards and/or planes;
– set a fixed transform between the world and a sensor in the request, the

response will be filled with the poses transformed according to it.

9 Conclusions

We have presented a ROS package that lets users calibrate networks of sensors
composed by cameras and Kinect-like depth sensors. A checkerboard pattern is
used to estimate the relative poses between sensors and everything is optimized
with a state-of-the-art non-linear least squares solver [1]. The choice of using
ROS as the developing framework gives our implementation lots of advantages
with respect to, for example, Matlab-based toolboxes [21]. The main advantage
is the way the sensors and their synchronization are managed. On the other side,
one of the main drawbacks of the presented approach is that it highly depends on
the intrinsic parameters provided. If they are not well estimated, the calibration
results will not be accurate. In the future we can think of adding the possibility
to refine also the intrinsic parameters of cameras while estimating their pose.

We also think that it will be really useful to provide a tool to assess the quality
of the obtained calibration, so that users can verify if the obtained results are
reliable or not. Another important improvement will be at code level. In our idea,
the package will be part of a calibration ecosystem for ROS, where contributors
can implement their own calibration algorithms or contribute to the existing
ones by adding, for example, new sensors. Hence, it will be necessary to define
some standard interfaces between nodes and classes to lower the entry barrier
for new developers and let the ecosystem grow.

Acknowledgments. The authors would like to thank Prof. Mohamed Chetouani,
Salvatore Maria Anzalone and Stéphane Michelet from Université Pierre-et-
Marie-Curie (UPMC) and the Institut des Systèmes Intelligents et de Robotique
(ISIR) for their support and help.
The authors would also like to thank Jeff Burke, Alexander Horn and Randy
Illum from University of California, Los Angeles (UCLA) for the extensive col-
laboration in designing and testing the calibration methods during the develop-
ment of OpenPTrack [16]. OpenPTrack has been sponsored by UCLA REMAP
and Open Perception. Key collaborators include the University of Padova and
Electroland. Portions of the work have been supported by the National Science
Foundation (IIS-1323767).

References

[1] Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org
[2] Auvinet, E., Meunier, J., Multon, F.: Multiple depth cameras calibration

and body volume reconstruction for gait analysis. In: Information Science,
Signal Processing and their Applications (ISSPA), 2012 11th International
Conference on. pp. 478–483 (July 2012)

[3] Basso, F., Levorato, R., Menegatti, E.: Online calibration for networks
of cameras and depth sensors. In: Proceedings of the 12th Workshop on
Non-classical Cameras, Camera Networks and Omnidirectional Vision (OM-
NIVIS). Hong Kong, China (June 2014)

[4] Basso, F., Munaro, M., Michieletto, S., Menegatti, E.: Fast and robust
multi-people tracking from RGB-D data for a mobile robot. In: Proceedings
of the 12th Intelligent Autonomous Systems (IAS) Conference. vol. 193, pp.
265–276. Jeju Island, Korea (June 2012)

[5] Basso, F., Pretto, A., Menegatti, E.: Unsupervised intrinsic and extrin-
sic calibration of a camera-depth sensor couple. In: Robotics and Automa-
tion (ICRA), 2014 IEEE International Conference on. pp. 6244–6249. Hong
Kong, China (June 2014)

[6] Bradski, G.: The opencv library. Dr. Dobb’s Journal of Software Tools
(2000)

[7] Canessa, A., Chessa, M., Gibaldi, A., Sabatini, S.P., Solari, F.: Calibrated
depth and color cameras for accurate 3D interaction in a stereoscopic aug-
mented reality environment. Journal of Visual Communication and Image
Representation 25(1), 227 – 237 (2014)

[8] Di Cicco, M., Iocchi, L., Grisetti, G.: Non-parametric calibration for depth
sensors. In: Proceedings of the 13th International Conference on Intelligent
Autonomous Systems. (IAS-13). Padova, Italy (2014)

[9] Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartogra-
phy. Communications of the ACM 24(6), 381–395 (June 1981)

[10] Furgale, P., Rehder, J., Siegwart, R.: Unified temporal and spatial calibra-
tion for multi-sensor systems. In: Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. pp. 1280–1286 (Nov 2013)

[11] Guennebaud, G., Jacob, B., et al.: Eigen. http://eigen.tuxfamily.org
(2010)

[12] Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision.
Cambridge University Press, second edn. (2004)

[13] Le, Q., Ng, A.: Joint calibration of multiple sensors. In: Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. pp.
3651–3658 (October 2009)

[14] Levorato, R., Pagello, E.: Probabilistic 2D acoustic source localization us-
ing direction of arrivals in robot sensor networks. In: Brugali, D., Broenink,

22 A Distributed Calibration Algorithm for Color and Range Camera Networks

J.F., Kroeger, T., MacDonald, B.A. (eds.) Simulation, Modeling, and Pro-
gramming for Autonomous Robots. Lecture Notes in Computer Science,
vol. 8810, pp. 474–485. Springer International Publishing (2014)

[15] Munaro, M., Basso, F., Menegatti, E.: Tracking people within groups with
RGB-D data. In: Proceedings of the International Conference on Intelligent
Robots and Systems (IROS). pp. 2101–2107. Vilamoura, Portugal (October
2012)

[16] Munaro, M., Horn, A., Illum, R., Burke, J., Rusu, R.B.: OpenPTrack: Peo-
ple tracking for heterogeneous networks of color-depth cameras. In: IAS-13
Workshop Proceedings: 1st Intl. Workshop on 3D Robot Perception with
Point Cloud Library. pp. 235–247. Padova, Italy (July 2014)

[17] Smisek, J., Jancosek, M., Pajdla, T.: 3D with kinect. In: Computer Vision
Workshops (ICCV Workshops), 2011. ICCVW 2011. IEEE International
Conference on. pp. 1154–1160 (2011)

[18] So, E., Basso, F., Menegatti, E.: Calibration of a rotating 2D laser
range finder using point-plane constraints. Journal of Automation, Mobile
Robotics & Intelligent Systems 7(2), 30–38 (2013)

[19] Teichman, A., Miller, S., Thrun, S.: Unsupervised intrinsic calibration of
depth sensors via SLAM. In: Proceedings of Robotics: Science and Systems.
Berlin, Germany (June 2013)

[20] Unnikrishnan, R., Hebert, M.: Fast extrinsic calibration of a laser
rangefinder to a camera. Tech. rep., Carnegie Mellon University (2005)

[21] Warren, M., McKinnon, D., Upcroft, B.: Online calibration of stereo rigs
for long-term autonomy. In: Robotics and Automation (ICRA), 2013 IEEE
International Conference on. Karlsruhe, Germany (2013)

[22] Zhang, C., Zhang, Z.: Calibration between Depth and Color Sensors for
Commodity Depth Cameras. In: Multimedia and Expo (ICME), 2011 IEEE
International Conference on. pp. 1–6 (2011)

