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Abstract

We present an algorithm to approximate large dataset by Radial Basis Function
(RBF) techniques. The method couples a fast domain decomposition procedure with a
localized stabilization method. The resulting algorithm can efficiently deal with large
problems and it is robust with respect to the typical instability of kernel methods.
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1 Introduction

Radial Basis Function (RBF) methods provide a flexible way to recover multivariate func-
tions from scattered data. In the recent years, such techniques have been successfully applied
in various fields of applied mathematics, computer science and engineering to solve several
problems, such as approximation of functions and numerical solutions of PDEs.

Although effective, these methods require special attention when applied to large prob-
lems. Namely, difficulties often arise on the side of the computational cost, due to the use of
usually dense matrices, and on the side of stability of the algorithms, and these limitations
are sometimes an obstacle to their application on concrete and real-world problems.
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As regards stability, it is known that the cause of ill-conditioning is the particular
algorithm used to construct the solution. In particular, it has been proven that the approx-
imation operator itself is stable in the function space associated with the RBF kernel (see
[6]), while the instability comes from the use of the unstable standard basis of translates. To
this end, in recent years a lot of efforts have been played to study and construct better con-
ditioned bases. A general theoretical framework for change of basis in kernel-based spaces
is developed in [12]. For specific kernels, namely the Gaussian and inverse multiquadric
kernels, almost perfectly conditioned bases have been constructed ([8, 9, 10, 7]), and some
method to produce better bases for a generic kernel have been developed too (see [4, 5, 11]).

To overcome the aforementioned limitations, we propose a new method based on the
coupling of a fast domain decomposition technique with a local stabilization method relying
on the change of basis presented in [4]. This stabilization method have been chosen thanks
to its applicability, without restriction, to any kernel. The algorithm presented here is
intended as an exploratory attempt to couple such methods, and we plan to improve it by
replacing the domain decomposition/points search technique used in this paper with the
recently developed block search algorithms (see [2, 3]).

2 Kernel based approximation

Assuming to have a finite set of n distinct data points Xn = {xi, 1 ≤ i ≤ n} in a bounded
domain Ω ⊂ Rd and a set of data values Fn = {fi, 1 ≤ i ≤ n}, our goal is to recover a
continuous function Rn : Ω→ R that interpolates the data. To construct Rn one considers
a positive definite and symmetric kernel K : Ω×Ω→ R and looks for a solution in the form

Rn =

n∑
i=1

ciK(·, xi). (1)

The coefficient vector c = [c1, . . . , cn]T is determined by imposing the interpolation condition
Rn(xi) = fi, 1 ≤ i ≤ n, i.e., by solving the linear system Ac = f , where A = [K(xi, xj)]

n
i,j=1

is the kernel matrix and f = [f1, . . . , fn]T . Since the kernel is positive definite, so it is the
matrix A, hence the solution c exists and it is unique for any given data. The kernels we
will deal with are always radial, meaning that there exist a univariate function φ : R≥0 → R
and a shape parameter ε > 0 such that K(x, y) = φ(ε‖x− y‖2) for all x, y ∈ Ω. The shape
parameter has the effect of localize or flatten the kernel, and it has a crucial role in the
behavior of the approximant.

We recall that associated to a positive definite kernel K on Ω there is a uniquely defined
reproducing kernel Hilbert space NK(Ω), called the native space of K on Ω. When the data
comes from the sampling of a function f ∈ NK(Ω), i.e., fi = f(xi), the operator f 7→ Rn

is the projector from NK(Ω) into the subspace Vn = span{K(·, xi) : 1 ≤ i ≤ n}. For
f ∈ NK(Ω) we have Rn → f as Xn gets dense into Ω, and explicit convergence estimates
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are known (see e.g. [16]), depending on the smoothness of K and Ω and on the distribution
of Xn in Ω.

Nevertheless, the actual computation of Rn is often numerically intractable using the
standard method described above. In particular, the kernel matrix is generally dense and
of the same size n of the data, hence the construction and the solution of the linear system
is computationally expensive. Moreover, it is in general required to tune the parameter ε
to fit the data, but reducing it is a source of instability, especially when K is smooth.

We will see in Section 3 how to deal with large data sets by splitting the problem in
smaller subproblems, and in Section 4 how to locally employ the change of basis to control
the instability.

3 Domain decomposition

We want to avoid to solve a global problem involving a large and possibly dense matrix. To
do so, we focus on the partition of unity (PU) method (see [15]).

The idea is to decompose the problem, solve (many) small local approximation sub-
problems, and then blend together the results in a global approximant. We give here a
general review of this method, while further implementation details are provided in Section
5.

We consider an open and finite covering {Ω(k)}Nk=1 of the bounded set Ω, that is

Ω ⊂
N⋃
k=1

Ω(k),

where we require mild overlapping of the patches. Associated to the covering one considers
a partition of unity, i.e., a set of nonnegative and continuous functions {W (k)}Nk=1 with

supp(W (k)) ⊂ Ω(k),
N∑
k=1

W (k)(x) = 1 for all x ∈ Ω.

With these tools in hand, if we are able to produce a local approximant R(k) for any subset
Ω(k), it is immediate to recover a global approximant Rn on Ω as

Rn(x) =
N∑
k=1

W (k)(x)R(k)(x), x ∈ Ω.

But the kernel K is still positive definite when restricted to each Ω(k), so it is possible
to uniquely solve the approximation problem restricted to the local domains. Namely,
for each Ω(k), 1 ≤ k ≤ N , we consider the restricted set of n(k) data locations defined as
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X
(k)
n = Xn∩Ω(k), n(k) = card(X

(k)
n ), and the corresponding values F

(k)
n = {f(x) : x ∈ X(k)

n }.
The local approximant R(k) is then computed as in (1), i.e,

R(k) =

n(k)∑
i=1

c
(k)
i K(·, x(k)

i ),

where now it suffices to solve a much smaller linear system to determine the coefficients in
the above expansion.

It is important to recall that, under further assumptions on the covering and on the
partition of unity, it is possible to prove that the global approximant keeps the same ap-
proximation order of the local ones (see [15]), but we will not go into the details here.

Instead we emphasize that, besides the theoretical framework, the success of the PU
method relies on a good point searching technique. Although we will employ in Section
5 a standard algorithm, we plan to improve the method by updating the current domain
decomposition method with the recently developed block-based algorithms (see [2, 3]). We
stress here that this update will presumably lead to a reduction of the computational cost,
while nothing will change in terms of accuracy. In this view, the numerical experiments
presented in Section 5 should be indicative, as regards the error, of the behavior of the
enhanced method.

4 Local stabilization

The partition of unity method allows to deal with large datasets in an efficient way, and
partially reduces the ill-conditioning found in many cases when dealing with RBF problems,
since it reduces the size of the problem. Nevertheless, especially in the flat limit ε → 0,
using a domain decomposition technique can be not enough. To this end, we want to
employ locally a stabilization method that permits to face in an even more stable way large
approximation problems. The coupling of the PU algorithm with the local stabilization will
lead to the full algorithm of the next Section.

For any subdomain Ω(k) there is an associated space of functions NK(Ω(k)) given by
the restriction of NK(Ω) to Ω(k). As in the global setting, the interpolation operator is

the projection into the finite subspace V
(k)
n = span{K(·, x(k)

j ) : x
(k)
j ∈ X(k)

n } generated by

the restricted set of data X
(k)
n . To this subspace we apply the change of basis described in

[4, 5]. Namely, we substitute the standard basis {K(·, x(k)
i ) : x

(k)
i ∈ X(k)

n } with the Weighted

Singular Value Decomposition (WSVD) basis {u(k)
j }n

(k)

j=1 ,

u
(k)
j =

n(k)∑
i=1

d
(k)
ij K(·, x(k)

i ).
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The invertible coefficient matrix D(k) = [d
(k)
ij ]n

(k)

i,j=1 is computed through a singular value

decomposition of the local kernel matrix A(k) = [K(x
(k)
i , x

(k)
j )]n

(k)

i,j=1, i.e.,

A(k) = U (k)Σ(k)(U (k))T , D(k) = U (k)(Σ(k))−1/2, Σ(k) = diag(σ
(k)
1 , . . . , σ

(k)

n(k)).

This basis has been constructed to mimic in a discrete way the eigenbasis defined through
the Mercer’s Theorem (see e.g. [13]), where the L2(Ω) inner product is replaced by its
discrete pointwise version `2(Xn). In particular, as proven in [4], the basis enjoys the
following properties.

Proposition 4.1 The WSVD basis {u(k)
j }n

(k)

j=1 has the following properties:

(i) it is NK(Ω(k))-orthonormal,

(ii) it is `2(X
(k)
n )-orthogonal with norms {σ(k)

j }j,

(iii) (u
(k)
j , f)

`2(X
(k)
n )

= σ
(k)
j (u

(k)
j , f)NK(Ω(k)), ∀f ∈ NK(Ω(k)), 1 ≤ j ≤ n(k),

(iv) σ
(k)

n(k) ≥ . . . ≥ σ
(k)
1 > 0.

(v)
∑n(k)

j=1 σ
(k)
j = n(k) φ(0).

We want now to approximate the restriction of f ∈ NK(Ω) to Ω(k), say f (k), using this basis.
Thanks to the orthogonality property (i), the local interpolant of f (k) can be represented
as

R(k) =
n(k)∑
j=1

(f (k), u
(k)
j )NK(Ω(k))u

(k)
j .

Moreover, each element of this new basis is associated to a singular value of the matrix A.
Since we expect the singular values to decay very fast to zero, we can drop the last elements
of the basis to remove from the interpolant the terms responsible for the ill-conditioning.
To be more precise, for any m(k) ≤ n(k), the truncated interpolant

R
(k)

m(k) =
m(k)∑
j=1

(f (k), u
(k)
j )NK(Ω(k))u

(k)
k

is the solution of the least-squares problem

min
g∈span{u(k)

1 ,...,u
(k)

m(k)
}
‖f (k) − g‖

`2(X
(k)
n )

.
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Indeed, thanks to property (iii), we have for any m(k) ≤ n(k)

R
(k)

m(k) =

m(k)∑
j=1

(f (k), u
(k)
j )NK(Ω(k))u

(k)
j =

m(k)∑
j=1

(σ
(k)
j )−1(f (k), u

(k)
j )

`2(X
(k)
n )

u
(k)
j , (2)

and the rightmost term in the above expression is the `2(X
(k)
n ) projection of f (k) into the

subspace span{u(k)
1 , . . . , u

(k)

m(k)}. Obviously, for m(k) = n(k) the latter approximant coincides

with the interpolant, while we can look for a suitable truncation index m(k) < n(k) to
remove the elements of the basis corresponding to the singular values below some prescribed
tolerance.

The use of this basis allows to reduce the instability, but it has some drawbacks. Namely,
in case of severe ill-conditioning the truncation approach may be over regularizing. More-
over, the computation of the SVD is expensive, especially since we want to drop part of its
factors. To overcome the second problem we will approximate the singular value decomposi-
tion using the Lanczos method (see e.g [14]), as done in [5]. This approximation introduces
a perturbation in the basis that is thoroughly analyzed in the cited paper, nevertheless,
the form (2) of the approximant is still valid for the approximated basis. As regards the
regularizing effect of the truncation, it has been observed that the method, when applied
globally, is capable to deal with only a limited instability. In fact, when ε→ 0 or when the
kernel is too smooth, the original algorithm needs to leave out too much elements of the
basis, and the resulting approximant may be meaningless. Instead, when repeatedly applied
to the small subdomains Ω(k), the regularizing effect simply improves the approximation,
as shown in the next Section.

5 Numerical experiments

We present here two experiments to test our algorithm on two small problems in dimension
d = 2. For both examples we compare the behavior of two different RBF kernels K(x, y) =
φ(ε‖x− y‖2) with different smoothness, namely the Gaussian φ(r) = exp(−ε2r2) (which is
a C∞ kernel) and the C2 Matérn kernel φ(r) = exp(−εr)(1 + εr). In both examples the test
function is the bivariate Franke’s test function

f(x, y) = 3
4e
− 1

4
((9x−2)2+(9y−2)2) +3

4e
−( 1

49
(9x+1)2+ 1

10
(9y+1))

+1
2e
− 1

4
((9x−7)2+(9y−3)2) −1

5e
−((9x−4)2+(9y−7)2),

approximated on the unit square Ω = [0, 1]2. The shape parameter ε varies on a log-spaced
grid in [10−3, 102]. The error is measured by means of the root mean squared error (RMSE)
on a equally spaced grid of 40d points in Ω.
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In both examples the PU method uses a covering of Ω based on balls {Ω(k)}Nk=1, where
the centers {y(k)}Nk=1 of the balls lie on an equally spaced 2D grid in Ω and the radii
are the same for any k = 1, . . . , N . The points are organized through a kd-tree, as in
[1]. We use n Halton points, where n = 65d, 129d, 257d, which correspond respectively
to N = 16d, 32d, 64d. The common radius of the balls is chosen to be 1/

√
N , so that

the boundary of every patch intersects the centers of the nearby patches. As a partition
of unity we use a superposition of C2 Wendland’s functions W (k)(x) = ψ(ν‖x − y(k)‖),
ψ(r) = (1−νr)4

+(4νr+1), where the shape parameter ν > 0 is scaled to control the support of
the partition. We remark that these choices of Ω(k) and W (k) fulfills the requirement on the
covering and the partition in order to preserve globally the order of the local approximation.

As a stopping rule for the locally employed Lanczos algorithm we use an extension of
the rule proposed in [5]. Namely, since we know that the trace of the local kernel matrix A(k)

is n(k) φ(0) (see property (v) in Proposition 4.1), we stop the iteration when the distance
between the trace of the Lanczos matrix and n(k) φ(0) is below a fixed tolerance τ , here
τ = 10−14.

The first example compares the approximation obtained with the new method with the
one obtained with a global application of the change of basis described in Section 4. Since
we use here a global approach, the experiment is limited to n = 65d. The results are shown
in Figure 1. For a not too small shape parameter, for both kernels, the global method and
the new algorithm behaves in the same way. In the case of the Matérn kernel there is an
intermediate range of the shape parameter where the global method is slightly superior,
since it uses all the data simultaneously while no instability is yet present. As ε → 0 the
global method loses accuracy, while the local one is still able to compute an accurate and
stable approximant.

In the second example we compare the behavior of the PU method without local regu-
larization with the new algorithm. Figure 2 presents the results for this test. As expected,
there is a first phase where no instability is present and the two methods behaves exactly
in the same way. Instead, in the flat limit case the standard PU method starts to become
unstable, while the stabilized method retain its accuracy and it is able to effectively com-
pute the approximants. The effect is much more evident for the smoother Gaussian (which
is smoother) than for the Matérn kernel.

Other tests have been performed for d > 2, with similar results.

Acknowledgements

The first, third and fourth authors have been partially supported by the funds of the Univer-
sity of Torino, project ex 60% “Metodi numerici nelle scienze applicate”. The second and
fifth authors have been partially supported by the funds of the University of Padova, project
CPDA124755 “Multivariate approximation with application to image reconstruction”.

c©CMMSE ISBN: 978-84-617-2230-3



PU-WSVD

10
−4

10
−2

10
0

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

ε

R
M

S
E

 

 

10
−4

10
−2

10
0

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ε
R

M
S

E

 

 

Figure 1: Comparison between the global approximant computed with the WSVD basis
(dotted lines) and the new method (solid lines), for the C2 Matérn kernel (left) and the
Gaussian kernel (right), for 10−3 ≤ ε ≤ 102 and n = 652 Halton points in the unit square.
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