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Abstract. The focus of this paper is on the effect of muscle force op-
timization algorithms on the human lower limb stiffness estimation. By
using a forward dynamic neuromusculoskeletal model coupled with a
muscle short-range stiffness model we computed the human joint stiff-
ness of the lower limb during running. The joint stiffness values are calcu-
lated using two different muscle force optimization procedures, namely:
Toque-based and Torque/Kinematic-based algorithm. A comparison be-
tween the processed EMG signal and the corresponding estimated mus-
cle forces with the two optimization algorithms is provided. We found
that the two stiffness estimates are strongly influenced by the adopted
algorithm. We observed different magnitude and timing of both the esti-
mated muscle forces and joint stiffness time profile with respect to each
gait phase, as function of the optimization algorithm used.
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1 Introduction

During the last two decades the interest in understanding the physiological basis
of human and animal movement has resulted in an extensive range of experi-
ments. The study of human movement has been improved through the introduc-
tion of muscle-driven dynamic simulations. This approach includes mathematical
models of muscle activation and contraction dynamics and allows for the calcu-
lation of muscle forces, fiber lengths, and other parameters that cannot be easily
measured in-vivo. Muscle-driven simulations have been used in a wide variety
of applications, including the analysis of human walking [1–3], running [4], and
pathological gait [5]. Biomechanical models have been used in several studies to
predict the muscle forces and joint torques along with human body motion. One
of the first muscle’s mathematical models was proposed by Hill [6]. Gordon et al.
[7] refined such model by incorporating the dependence between changes in mus-
cle force as function of muscle lengths and contraction speeds. Zajac extended
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the Hill’s model introducing a muscle-tendon model [8], which is known as Hill-
type muscle force model. The prediction of muscle force can be also calculated
independently from a model by means of optimization algorithms. Such algo-
rithms are usually based on a cost function that depends directly on a physical
parameters such as force variance, energy, muscle stress, to name a few [9–11].
When accomplishing a task, that require both the following of a trajectory and
the exertion of a force, humans need to modulate not only the generated mus-
cle forces, but also the corresponding limb stiffness. During unimpaired gait,
depending on the terrain, one might either walk in a relaxed manner or stiffen
up to increase stability. Several studies have been proposed to estimate the hip
[12], knee [13, 14] and ankle [15] joint stiffness to characterize the mechanical
properties of the whole limb [16–18]. Moreover, a preliminary study about the
incidence of the adopted muscle-tendon model on the joint stiffness estimation
has been proposed in [19].
This paper targets two main research topics: the use of forward dynamic neu-
romusculoskeletal modeling to estimate muscle forces, joint moments, and joint
kinematics from biological signal, and the use of muscle short-range stiffness to
estimate human lower limb joint stiffness. In particular, the aim of this study is
to evaluate how the adoption of different muscle force optimization algorithms,
based on the inclusion or exclusion of kinematic constraints, affects the lower
limb stiffness estimation during running.

2 Methods

In this study we performed a series of simulations that coupled a 3D human
musculoskeletal model of the lower limb with a model of muscle stiffness, to
estimate leg’s joint stiffness during running. The algorithm to compute joint
stiffness is dependent on the value of the computed muscle force. We com-
pared the stiffness values obtained in simulation using two different muscle force
optimization procedures, that we call Torque-based Muscle Force computation
and Torque/Kinematic-based Muscle Force computation. The musculoskeletal
model that we used is freely available with the OpenSim3 platform. It includes
seven body segments for each leg: pelvis, femur, patella, tibia-fibula, talus, foot,
and toes. Each foot includes the calcaneus, navicular, cuboid, cuneiformis, and
metatarsal. Each arm is represented by humerus, ulna, radius, and hand. The
joint definitions are derived by [20, 21] and the anthropometry by [22]. The phys-
iological parameters of muscles are in accordance to mean values reported in [23].
92 muscle-tendon actuators represent the main muscle groups: 43 for each leg,
and 6 lumbar muscles. The arm joints are actuated by ideal torque motors. The
experimental dataset used here is freely available within the ”Muscle function of
overground running across a range of speeds”4 section of the SimTk.org5. The
website is a public repository for data, models, and computational tools related

3 OpenSim Project Overview: https://simtk.org/home/opensim
4 Project’s page: https://simtk.org/home/runningspeeds
5 Repository’s home page: https://simtk.org/xml/index.xml
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to physics-based simulation of biological systems. These data were originally col-
lected with the purpose to better understand how the leg muscles coordinate mo-
tion of the body segments during running. A detailed description of the adopted
experimental protocol is available in [24]. We considered the Electromyographic
(EMG), Motion Capture (MC) and Ground Reaction Forces (GRFs) data re-
ferred to a male subject (age, 19 years; mass, 75.9 Kg; height, 1.82 m; leg length,
1.00 m) that at the time of testing were not suffering from any musculoskeletal
injury likely to adversely affect their sprinting ability. Among the data we con-
sidered a medium-paced running speed at 5.20 ms−1. The raw data, available
in .c3d format6, were processed in Matlab to extract the information relative to
the kinematic, the GRFs and the EMG signals of the subject. The kinematic
and GRFs data were used in OpenSim to scale the musculoskeletal model to
the anthropometry of the real subject, and to compute the joint angle values by
solving the Inverse Kinematics (IK) problem. Then, using the Residual Reduc-
tion Algorithm7 (RRA) we optimized the model adjusting the mass distribution
and joint kinematics to make them consistent with GRFs. The next step was to
solve the Inverse Dynamics (ID) problem to compute the joint torques. At this
point, the force generated by each muscle was estimated by adopting the two op-
timization techniques: Torque-based Muscle Force computation (subsection 2.1)
and Torque/Kinematic-based Muscle Force computation (subsection 2.2), which
do not involve the use of a specific muscle model, but only information about the
Maximum Isometric Force (MIF) exertable by each muscle. The waveforms of
the EMG signals were used to highlight the similarities and differences between
the obtained estimates, compared with the experimental data.

2.1 Torque-based Muscle Force computation

The Torque-based Muscle Force computation procedure is based on the use of
an optimization which estimates the distribution of muscle forces for a specific
set of joint torques. The cost function is the sum of the squared muscle forces
(Eq.1), expressed as a fraction of the MIF for each muscle. A set of constraints
was considered such that the resulting muscle forces summed to the specific
joint torque (Eq.2), and muscle forces were positive and less than or equal to
the achievable MIF (Eq.3).

u = min

M∑
i=1

(
Fm,i

F 0
m,i

)2

(1)

τj =

M∑
i=1

rij × Fm,i i = 1, 2, ...,M ; j = 1, 2, ..., N (2)

0 ≤ Fm,i ≤ F 0
m,i (3)

6 C3D File Format Specification: http://www.c3d.org
7 http://simtk-confluence.stanford.edu:8080/display/OpenSim/How+RRA+Works
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where Fm,i is the muscle force of the i-th muscle and F 0
m,i is the corresponding

MIF, rij is the posture-dependent moment arm for the i-th muscle relative to the
j-th joint, and τj is the torque about the j-th joint. The sum over M elements
corresponds to the number of muscle-tendon actuator crossing the hip, knee and
ankle joint in the model. N is the number of Degrees of Freedom (DOFs). The
data related to F 0

m,i, rij , and τj were taken from the musculoskeletal model and
from the simulation executed within OpenSim. In which the ID problem was
solved taking into account the GRFs. Given these data as input and minimizing
the cost function with respect to the constraints we obtained the corresponding
muscle forces Fm,i. The Torque-based Muscle Force computation procedure was
performed in Matlab environment.

2.2 Torque/Kinematic-based Muscle Force computation

The Torque/Kinematic-based Muscle Force computation algorithm represents
the procedure available within OpenSim to compute the muscle excitation and
the corresponding muscle force. It is based on the use of the Computed Muscle
Control (CMC) tool [25]. We extracted the information related to the muscle
force by executing the CMC in order to compute the muscle excitation levels
that drives the generalized coordinates of the dynamic musculoskeletal model
towards the desired trajectory. The available implementation is based on the
combination of Proportional-Derivative (PD) control and Static Optimization
(SO) that allow to conduct a standard forward dynamic simulation. A detailed
description of the CMC tool operating principles is available in [26]. We report
here only the main concepts with particular reference to the computation of the
muscle forces. In this study, the SO toolbox is used by CMC to resolve the net
joint torques and moments into individual muscle forces subject to the following
muscle activation-to-force condition:

M∑
i=1

am,iF
0
m,irij = τj ∀j (4)

where M is the number of muscles, am,i is the activation level (0 < am,i ≤ 1),
F 0
m,i is the MIF, and rij is the moment arm of the i-th muscle about the j-th

joint. τj is the joint torque acting about the j-th joint. In CMC, an objective
function J combines the sum of squared muscle activations augmented by a set
of equality constraints (Cj = 0) that requires the desired accelerations to be
achieved within the tolerance set for the optimizer (Eq.5).

J =

M∑
i=1

(am,i)
2

; Cj = q̈∗j − q̈j ∀j (5)

where M is the number of muscles and am,i is the activation level (0 < am,i ≤
1). This setup is equivalent to having an ideal force generators in which the
model accelerations q̈j are driven toward the desired accelerations q̈∗j , where qj
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respresents the j-th model coordinate. The desired accelerations are computed
using the following PD control law:

q̈∗(t+ T ) = q̈exp(t+ T ) + kv[q̇exp(t)− q̇(t)] + kp[qexp(t)− q(t)] (6)

where qexp are the experimentally-derived coordinates, q̈∗ are the desired ac-
celerations, and q are the model coordinates. kv = 30 and kp = 900 are the
feedback gains on velocity and position errors, which were experimentally set.
It is worth noting that, by assuming 0 ≤ Fm,i ≤ F 0

m,i in Torque-based Muscle
Force computation and 0 < am,i ≤ 1 in Torque/Kinematic-based Muscle Force
computation, then Eq.4 is equivalent to Eq.2, and Eq.5 is equivalent to Eq.1.
This because, the ratio Fm,i/F

0
m,i always varies between 0 and 1. On the other

hand, the introduction of the kinematic constraints (Cj = q̈∗j − q̈j ∀j) in Eq.5,
encompassing the coordinate accelerations, significantly diversifies the two ap-
proaches considered here. This is especially true since we are analyzing dynamic
movement such as running in its different phases and not simply static poses.

2.3 Stiffness Estimation

The adopted muscle model is known in literature as Thelen2003Muscle [27],
which is the name of its implementation within the OpenSim. The model is based
on the Hill-type muscle model, which represents a muscle-tendon unit through
three elements: a contractile element (CE), a parallel element (PE), and a se-
ries element (SE). While CE is responsible for the active force, PE accounts for
the muscle passive behavior and SE represents the tendon. Thelen2003Muscle
is a parametric-based implementation capable of representing the muscle me-
chanical response by considering the following physiological parameters: MIF,
Optimal Muscle Fiber Length (OMFL), Tendon Slack Length (TSL), Maximum
Contraction Velocity (MCV), and Pennation Angle (PA). Given the normalized
muscle force obtained either within CMC or with our dedicated algorithm, the
muscle fiber length was estimated by means of Force-Length relationship for
each muscle embedded in the OpenSim’s Muscle model. The force-length curves
modeled the effects of active/passive muscle components. In particular, the ac-
tive force-length curve was described using natural cubic splines [8], while the
passive force-length curve was described using exponential functions [27]. The
tendon length was estimated by subtracting the fiber length to the whole-muscle
length derived from the path geometry and joint angles within the simulation.
Finally, the short-range muscle stiffness was estimated using the model devel-
oped by Cui et al. [28], and already adopted by Perreault et al. [29] for the
estimation of the endpoint stiffness of the human arm. The model assumes that
the short-range stiffness of a muscle-tendon unit, Kmt (Eq.7), results from the
stiffness of the muscle fibers, Km, in series with the stiffness of the tendon, Kt.

Kmt =
KmKt

Km +Kt
(7)

Km is a function of the muscle force Fm and OMFL lm0 , up to a dimensionless
scaling constant. Kt is defined by the ratio between the tendon force and the
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tendon elongation, which is given by the difference between the tendon length lt
and the TSL lts. By using the estimated muscle forces and the muscle short-range
stiffness, we computed the corresponding joint stiffness taking into account the
kinematic relationship between changes in joint angles and changes in muscle-
tendon length (Eq.8).

Kj = JT K̃mtJ +
∂JT

∂θ
F̃m (8)

where J is the Jacobian matrix relating changes in muscle joint angles to changes
in muscle length, K̃mt is a diagonal matrix with the stiffness for each muscle in
the model, F̃m is the vector of muscle forces, and θ is the vector of joint angles.
The partial derivative of the Jacobian matrix with respect to joint angles ac-
counts for how angle dependent changes in muscle moment arms influence joint
stiffness. It is worth noting that Kj is a 3× 3 matrix in which the diagonal ele-
ments represent the hip, knee and ankle joint stiffness, while the other elements
represent the stiffness relationship existing between hip and knee, hip and ankle,
knee and ankle. In particular, not having tri-articular muscles, in this study the
hip-ankle stiffness relationship is zero. A comparison between the obtained joint
stiffness using the two different muscle force optimization algorithms has been
considered to show how the choice of a specific algorithm, for the estimation of
force, affects the result we get in the computation of stiffness.

3 Results

The set of results, provided here, shows significant differences in the muscle
force estimates obtained by adopting either the Torque-based Muscle Force com-
putation or the Torque/Kinematic-based Muscle Force computation procedure.
A first evaluation has been done by performing a cross-correlation analysis be-
tween muscle forces estimated with both Torque-based Muscle Force computa-
tion and Torque/Kinematic-based Muscle Force computation procedures, and the
processed EMG signal (Fig. 1). The obtained cross-correlation sequences were
normalized so that the autocorrelations at zero lag were identically 1.0. The re-
sults show that, for the muscles most involved in the analyzed movement (i.e.
Gastrocnemius, Vasti, Rectus Femoris and Bicep Femoris), the cross-correlation
related to the Torque-based Muscle Force computation is higher than that ob-
tained for the Torque/Kinematic-based Muscle Force computation procedure.
Fig. 2 shows a comparison between the processed EMG signal of such represen-
tative muscles and their estimated forces. It is clear that most of the time the
Torque-based Muscle Force computation (blue line) tracks EMG signal better
than the Torque/Kinematic-based Muscle Force computation (green line), which
gives large forces also when there is not EMG signal. This makes the latter
less likely to be appropriate. During the optimization stage, through which the
muscle force is computed, it may also happen that a high value of the EMG
signal does not correspond to an equally high developed muscle force (Fig. 2,
Right Rectus Femoris). This behavior may be due to a configuration of the
muscle for which, despite the activation level, the fibers length is either very
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Fig. 1. Maximum values of the cross-correlation functions computed between
muscle forces estimated with both Torque-based Muscle Force computation and
Torque/Kinematic-based Muscle Force computation procedures, and the processed
EMG signal.

stretched or very contracted and does not allow the generation of an appropri-
ate force with respect to the OMFL. Recall that the MIF is generated only at the
OMFL. Future study should take into consideration methods to estimate muscle
forces that better track the corresponding EMG profiles. Corresponding differ-
ences also arise in the stiffness values obtained by adopting either Torque-based
Muscle Force computation or Torque/Kinematic-based Muscle Force computa-
tion procedure. As depicted in Fig.3 there is a misalignment of the peaks of the
stiffness time profiles with respect to the different phases of movement. We can
notice a delay between the instants in which the foot impacts the ground and the
instant in which the stiffness peaks generated by either approach occurs. Notice
that Torque/Kinematic-based Muscle Force computation has an average delay
of 112 ms compared to the 82 ms of Torque-based Muscle Force computation.
Furthermore, the former produces stiffness peaks with a much larger ampli-
tude compared to the latter. The stiffness peaks for both knee and ankle occurs
almost synchronously within each model. Furthermore, we can notice that the
width of stiffness peaks are different between algorithms. For example, the graph
of the knee stiffness shows that the knee is contracted for a longer time in the
Torque/Kinematic-based Muscle Force computation. The ratio of hip/knee stiff-
ness at the peak is different for the two approaches: 1.28 (Torque-based Muscle
Force computation), 1.86 (Torque/Kinematic-based Muscle Force computation).
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The second ratio is bigger indicating a predominancy of hip stiffness over the
other joints. Similar considerations hold true for the left lower limb joints.

Fig. 2. Processed EMG signal profiles compared to estimated muscle forces with
Torque-based Muscle Force computation and Torque/Kinematic-based Muscle Force
computation procedures. The labels stand for Left Foot-Off (lFO), Left Foot-Strike
(lFS), Right Foot-Off (rFO), and Right Foot-Strike (rFS).

The inter-joint stiffness estimated in this work for each combination of two joints
was found to be symmetric. Furthermore the inter-joint stiffness between hip and
ankle was negligible. Thus, only two inter-joint stiffness time profiles are shown in
Fig. 4. These results are an indication that all the algorithms were implemented
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properly. Indeed, since the stiffness is a positive definite tensor it is expected to
be simmetric. Moreover, due to the absence of tri-articular muscles connecting
the ilium with the foot the hip-ankle component must be zero.

Fig. 3. Right Lower Limb Joint Stiffness estimated values: Hip, Knee, and Ankle. The
x-axis reports the time-samples, while y-axis expresses the joint stiffness [Nm/rad].
The labels stand for Left Foot-Off (lFO), Left Foot-Strike (lFS), Right Foot-Off (rFO),
and Right Foot-Strike (rFS).
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The inter-joint stiffness is not negligible for the pair ankle-knee and knee-hip.
However, the magnitude of these stiffness time-profiles is smaller than those
proper of the joints.

Fig. 4. Right Lower Limb Intra-Joint Stiffness estimated values: Hip-Knee Stiffness
Relation, and Knee-Ankle Stiffness Relation. The x-axis reports the time-samples, while
y-axis expresses the intra-joint stiffness [Nm/rad]. The labels stand for Left Foot-Off
(lFO), Left Foot-Strike (lFS), Right Foot-Off (rFO), and Right Foot-Strike (rFS).

4 Conclusions

In this paper, two different whole-muscle force optimization algorithms are uti-
lized to estimate the lower limb muscle-tendon forces and the corresponding
joint stiffness during the running of an unimpaired individuals. It is important
to note that the purpose of this study was not to determine which algorithm is
better for the estimation of muscle forces, but the goal was to determine how
different algorithms may affect the estimation of joint stiffness. Indeed, results
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show that the choice of the optimization algorithm influences the estimation of
the muscle-tendon stiffness and of the corresponding joint stiffness. The adopted
modeling and simulation techniques highlight how it is possible to estimate the
joint stiffness decomposing the computation into two stages, where the assump-
tion of a muscle-tendon model is actually required only in the computation of
the geometrical parameters such as the muscle lengths and moment arms. At
the same time, there are a number of open questions related to the possibility of
estimating the stiffness during the execution of the movement and not only in
relation to particular limb poses. Further studies are needed in order to provide
a more precise modeling of the muscle-tendon unit capable of describing how
the behavior and the parameterization of the muscle-tendon unit changes as a
function of the posture. Future research will focus on providing a better char-
acterization of the existing relationships between muscle models, muscle-tendon
force optimization algorithms and stiffness estimation procedures.
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