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Transcriptomic analysis of skeletal muscle from beef cattle exposed to illicit schedules containing
dexamethasone: identification of new candidate biomarkers and their validation using samples
from a field monitoring trial

Ramy Elgendy, Mery Giantin, Clara Montesissa and Mauro Dacasto*

5 Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (Padua), Italy

(Received 10 March 2015; accepted 4 July 2015)

Growth promoters (GPs) such as the glucocorticoid dexamethasone (DEX) and the β-adrenergic agonist clenbuterol
(CLEN) are still used abusively in beef cattle production. Transcriptomic markers for indirect detection of such GPs have
been discussed in either  experimentally treated animals or commercial samples separately. In the present study we

10 examine the transcriptomic signature of DEX alone or in combination with CLEN in skeletal muscle of experimentally
treated beef cattle, and, furthermore, compare them with previously screened commercial samples from a field-monitoring
study, as well as  with  proteomics data representing the same set of samples. Using  DNA microarray technology,

 transcriptomic profiling was performed on 12 samples representing  three groups of animals: DEX (0.75 mg/animal/
day, n = 4),AQ1 a combination of DEX (0.66 mg/animal/day) and CLEN (from 2 to 6 mg/animal/day, n = 4) and a control

15 group (n = 4). Analyses showed the differential expression of 198 and 39 transcripts in DEX and DEX–CLEN groups,
respectively. Both groups had no common modulated genes in between, neither with the proteomics data. Sixteen
candidate genes were validated via qPCR. They showed high correlation with the corresponding microarray data.
Principal component analysis (PCA) on both the qPCR and normali sed microarray data resulted in the separation of
treated animals from the untreated ones. Interestingly, all the PCA plots grouped the DEX-positive samples (experimental

20 or commercial) apart from each other. In brief, this study provides some interesting glucocorticoid-responsive biomarkers
whose expression was contradictory to what is reported in human studies. Additionally,  this study  points out the
transcriptomic signature dissimilarity between commercial and experimentally treated animals.

Keywords: cattle; clenbuterol; dexamethasone; microarray; muscle

Introduction

25 The misuse of growth promoters (GPs) such as anabolic
hormones, corticosteroids and β2-agonists in cattle is a
major concern for food safety because of the public health
interest. The synthetic glucocorticoid dexamethasone
(DEX) is known to be illicitly used in meat cattle either

30 alone or in combination with other active principles, such
as the β2-agonist clenbuterol (CLEN). It is known that low
doses of DEX interfere with endogenous cortisol synthesis
and metabolism , therefore it results in improved feed
intake, increased weight gain, reduced feed conversion

35 ratio, reduced nitrogen retention, and increased water
retention and fat content (Möstl et al. 1999; Courtheyn
et al. 2002; König et al. 2006; Cannizzo et al. 2013). As
regards β2-agonists, they elicit their growth-promoting
effect by enhancing protein synthesis and cell hypertro-

40 phy, by inhibition of proteolysis in the muscle tissue and
induction of lipolysis in the adipose tissue, which is
known as the ‘repartitioning effect’. These effects may
result in a reduction of carcass fat by up to 40% and an
increase of carcass protein content by up to 40%, yielding

45 a consistent advantage for the meat industry (Courtheyn
et al. 2002; Leporati et al. 2014). Pharmacologically, the

repartitioning and induced muscle growth of CLEN are
mediated via interaction with β-adrenergic receptors (β-
AR; Rothwell & Stock 1987 ); however, this effect soon

50becomes attenuated due to decreased density (Huang et al.
2000) or desensiti sation of the β-AR in skeletal muscle
upon long-term exposure to β2-agonists (Badino et al.
2005). On the other hand, glucocorticoids are thought to
reverse the homologous down-regulation of the β-AR

55number and mRNA  expression (Mak et al. 1995), and
hence are considered as part of the strategy to enhance
the anabolic effects of β-adrenergic agonists (Huang et al.
2000). The effect of continuous administration of low
doses of DEX and CLEN on animal s’ muscle mass and

60performance has already been illustrated  (Odore et al.
2006; Biancotto et al. 2013).

The use of various illicit schedules, such as newly
designed drugs or cocktails containing lower GP concen-
trations, makes the mission of control authorities more

65difficult, especially when these low GP concentrations
bypass the threshold limits of current official detection
methods (Cantiello et al. 2007; Riedmaier et al. 2014).
For that reason, looking for alternative detection methods
was inevitable. In recent years, some pilot studies
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70 investigated the effect of DEX, alone or in combination
with CLEN, on different biological parameters, in order to
highlight direct or indirect markers that could be used for
screening purposes. In this context, regulation of tissue β -
adrenergic and glucocorticoid receptors in veal calves has

75 been studied following repeated exposure to DEX or
CLEN (Odore et al. 2007). Moreover, the effect of a
DEX/CLEN-containing cocktail on serum immunoglobu-
lins, lymphocyte proliferation and cytokine gene expres-
sion in veal calves has also been evaluated (Cantiello et al.

80 2007). Others have used protein expression changes
(Stella et al. 2011), thymus morphology and serum corti-
sol concentration (Vascellari et al. 2012), or corticosteroid
profiling of urine using coupled LC-MS/MS (Biancotto
et al. 2013), as indirect markers to detect illegally admi-

85 nistered GPs. On the other hand, commercial beef samples
were also used to look for diagnostic signatures for DEX
treatment in a field monitoring study (Pegolo et al. 2012).
Collectively, high-throughput-omic methodologies, such
as epigenomics, genomics, transcriptomics (e.g. the

90 whole-transcriptome expression profile using DNA micro-
arrays), proteomics and metabolomics, have recently been
incorporated in this field of research, similar to other
biological sciences (Riedmaier & Pfaffl 2013).

The purpose of this study was threefold: (1) to mea-
95 sure the changes in cattle skeletal muscle transcriptome

induced by treatment with DEX alone, or in combination
with CLEN, similar to those illegally performed in the
field; (2) to identify a set of differentially expressed
genes (DEGs) that could be used as an indirect biological

100 marker for illicit treatment abuse; and (3) to understand,
through the comparison with transcriptomic data from
field monitoring samples (Pegolo et al. 2012) and proteo-
mic results (Stella et al. 2011), if the single-approach

 strategy (i.e., proteomics, transcriptomics or analytical
105 chemistry) could be enough  to  define a universal panel

of biomarkers, or if a multi-approach strategy is needed.
Finally, another question of this study was to discover
whether  experimentally treated animals respond differ-
ently from those present in the field.

110 Materials and methods

Animals and experimental design

Twenty-four clinically healthy Charolais bulls (18 –20 
month s old) were used . Animals were weighed, housed
in ventilated stables and all the experimental procedures

115 were carried out according to  European Union animal
welfare legislation. The experiment began after 3 weeks
of acclimati sation. The animals were randomly divided
into three groups of eight animals each. The first group
was used as a control (CTR); the second group was treated

120 with DEX, administered via feed 0.75 mg per capita for
42 days (group DEX); the third one (DEX–CLEN) was

administered DEX via feed (0.66 mg per capita for
21 days) in combination with an increasing dose of
CLEN, e.g. 2 mg per capita during the first week, 4 mg

125per capita in the second week, and 6 mg per capita during
the third and fourth weeks (28 days in total ; Figure 1). The
products to be administered were dissolved in water, and
the desired dosage was achieved by mixing 15 ml of water
containing an appropriate concentration of each drug with

130100 g of feed. This feed was carefully offered to each
animal, ensuring that no significant residue remained in
the feeder. In addition, feed conversion index (FCI) and
body weight were recorded all over the study.

Sample collection and RNA extraction

At the slaughterhouse, small biceps brachii muscle tissue
135specimens were sampled from all animals. Muscle sam-

ples were immediately frozen in vessels containing liquid
nitrogen (within 1 min of removal) and stored at –80 °C
prior to subsequent analyses. Total RNA was isolated by
TRIzol® reagent AQ2(Life Technologies, USA) and subse-

140quently purified using the RNeasy Mini kit AQ3(Qiagen,
Italy), according to the manufacturer ’s instructions. To
avoid genomic DNA contaminations, on-column DNase
digestion with the RNase-free DNase set (Qiagen ) was
performed. Total RNA concentration was determined

145using the NanoDrop ND-1000 UV-Vis spectrophotometer AQ4

(NanoDrop Technologies, USA), and its quality was mea-
sured by the 2100 Bioanalyzer and RNA 6000 Nano kit AQ5

(Agilent Technologies, USA). High-quality input (hybri-
di sed RNA) is essential to have an unbiased and reprodu-

150cible output in terms of gene expression data; therefore,
the isolated RNAs were tested for proper concentration
and integrity. The best four samples of each group (total
number = 12) were selected for the microarray analyses,
using a specific RNA quality parameter as a criterion, e.g.

Figure 1. Experimental design (treatment). Charolais beef cattle
were treated via feed with dexamethasone (DEX) alone or in
combination with clenbuterol (CLEN). Animals were adminis-
tered DEX at a dose rate of 0.75 mg per capita for 6 weeks. One
group (DEX–CLEN, n = 8), besides DEX, was administered
with CLEN increasing dosages, e.g. 2 mg per capita during the
first week, 4 mg per capita during the second week, and 6 mg per
capita during the third and the fourth weeks (4 weeks in total). A
third group served as a control (CTR).

2 R. Elgendy et al.
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155 RNA concentration ≥ 40 ng µl–1 and RNA integrity num-
ber (RIN) ≥ 6.5. The mean RIN value of these 12 samples
was 6.93 ± 0.51, indicating intact RNA. Additionally,
tissue specimens of  four illicitly DEX-treated animals
(were classified as positive by LC-MS and thymus histo-

160 logical analyses in the study performed by Pegolo et al.
2012) were provided and fresh RNA was isolated from
them, then tested for quantity and quality as before. On the
bases of having positively DEX treated samples from the
field, those  four samples  were analy sed by qPCR, then

165 implemented in further statistical analyses (see statistics
and principal component analyses) along with the experi-
mental samples.

RNA amplification, l abelling and hybridi sation

Sample amplification, l abelling and hybridi sation were
170 performed following the Agilent One-Color Microarray-

Based Gene Expression Analysis protocol. Briefly, for
each individual sample 50 ng of total RNA were line-
arly amplified and l abelled with Cy3-dCTP using
Agilent Low Input Quick Amp Labeling kit . A mixture

175 of 10 different viral polyadenylated RNAs (Spike-In
Mix, Agilent )  was added to each RNA sample before
amplification and l abelling. A purification step was
applied to the l abelled cRNA using the RNeasy Mini
Kit (Qiagen ), and sample concentration and specific

180 activity (pmol Cy3 µg–1 cRNA) were measured. A
total of 1.65 μg of l abelled cRNA was fragmented by
using the Gene Expression Hybridi sation kit (Agilent )
according to the manufacturer ’s instructions, and finally
diluted by the addition of 55 µl of 2X GE Hybridi sation

185 buffer. A volume of 100 µl of hybridi sation solution
was then dispensed in the gasket slide and assembled to
the microarray slide, with each slide containing four
arrays. Bovine-specific oligo-arrays (Bovine V1, 4x44k
G2519F, Design ID 015354 ; Agilent ) were used. Slides

190 were first incubated for 17 h at 65 °C in a Hybridi sation
Oven (Agilent ), then washed using wash buffers 1 and 2
according to the manufacturer ’s instructions. Hybridi sed
slides were scanned at 5 µm resolution using a
G2565BA DNA microarray scanner (Agilent ). Default

195 settings were modified in order to scan the same slide
twice at two different sensitivity levels (XDR Hi 100%
and XDR Lo 10%). A general workflow of the micro-
array experiment is reported in Figure 2. Microarray
data have been deposited in the NCBI ’s Gene

200 Expression Omnibus (GEO) and are accessible through
the GEO Series accession number GSE61934.

Normal isation of microarray data

Data were extracted and the background was subtracted
using the default settings of the Agilent ’s Feature
Extraction Software version 9.5.1 . Extracted data were

205normali sed and processed as previously described  by
Giantin et al. (2014). A further filtering step was carried
out by removing probes that reported missing values or
no reactivity (flag equal to 0) in at least 50% of samples.
Missing values (probes with Feature Extraction flag

210equal to 0) were imputed by using the microarray data
analysis tool TIGR Multiple Array Viewer (TMEV;
Saeed et al. 2003). In addition, raw microarray data
(30 samples) from a monitoring study were downloaded
from GEO (GSE26318 ; Pegolo et al. 2012).

215Experimental and monitoring samples (n = 42) were
grouped, normali sed and filtered together in one run to
avoid any possible analytical bias, and then used in
subsequent analyses.

Data mining and pathway analyses

220The functional analysis of DEGs list was performed using
the Ingenuity Pathway Analysis (IPA) online platform (see
http://www.ingenuity.com ; Qiagen ).

Quantitative real time PCR

Sixteen target genes (Table 1) and three housekeeping
225(HK) genes (RPLP0, GAPDH and TBP) were chosen

for the external validation of microarray findings by
qPCR. To increase the number of data points in the
statistical and correlation analyses between DNA micro-
array and qPCR, samples from all  24 animals  in the

230study were included in the qPCR analysis. Gene-specific
primers (see Table S1 in the Supplemental data online),
encompassing one intron, and the most appropriate
Universal Probe Library (UPL) probe were designed
by using the UPL Assay Design Centre web service AQ6

235(Roche Applied Science, USA). First-strand cDNA was
synthesi sed from 0.15 µg of total RNA using the High
Capacity cDNA Reverse Transcription Kit (Life
Technologies ) according to the manufacturer ’s protocol
and stored at –20 °C until further use. Overall, qPCR

240reactions (10 µl final volume) consisted of 1X
LightCycler 480 Probe Master (Roche Applied
Science ), 300 or 600 nM forward and reverse primers AQ7

(Integrated DNA Technology, Italy) according to the
assay set-up, 200 nM human UPL probe (final concen-

245trations) and 2.5 µl of 1:7.5 diluted cDNA (15 ng  µl–1).
Each qPCR analysis was performed, in duplicate, in a
LightCycler 480 Instrument (Roche Applied Science )
using the standard PCR conditions (an activation step
at 95°C for 10 min ; 45 cycles at 95 °C for 10 s and at

25060 °C for 30 s ; a cooling step at 40 °C for 30 s ) and
LightCycler 480 clear plates (Roche Applied Science ).
To determine the efficiency of each qPCR assay, non-
template and no reverse transcription controls were
included on each plate. Moreover, standard curves

255obtained by amplifying eight threefold serial dilution
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of the same cDNA pool were used. Data were analy sed
with the LightCycler480 software release 1.5.0 (Roche
Applied Science ) using the second derivative or fit-point
method.  mRNA relative quantification was performed

260by the ΔΔCq method (Livak & Schmittgen 2001).

Statistics and principal component analysis (PCA)

To identify DEGs, a two-class unpaired test was imple-
mented in the program SAM (Significance Analysis of
Microarrays) release 4.0 (Tusher et al. 2001), enforcing a

265false discovery rate (FDR) of 5% with a fold change (FC)
threshold of 2. All other statistical tests (linear regression,
non-parametric Spearman correlation analysis and Mann–
Whitney test) were carried out by the GraphPad Prism 5
software (San Diego, CA, USA). Statistical significance

270was set at p < 0.05.
Using TMEV, a PCA analysis was carried out on our

microarray processed samples (n = 12) in order to test the
efficiency of  the identified DEGs in differentiating

 treatments from untreated samples. Hence, only

Figure 2. General workflow of the microarray experiment.

Table 1. Spearman ’s rho for the selected genes used for qPCR
validation.

Gene acronym FC qPCR FC array Spearman ’s rho 
a

C7 −2.12 −2.54 0.9580***
CCDC80 −3.44 −2.53 0.9021***
CRISPLD2 −5.65 −7.07 0.9930***
FKBP5 −7.14 −8.66 0.9720***
LIPG −15.32 −14.77 0.8601**
MMP2 −2.83 −2.58 0.9790***
MYOC −2.36 −4.44 0.9021***
RASD1 −3.05 −4.75 0.9720***
SULT1A1 −2.49 −2.54 0.9091***
CYP1A1 −10.39 −10.41 0.9371***
CCL24 −4.84 −5.14 0.9021***
PFKFB4 −3.17 −4.38 0.8862**
C1QA −1.69 −3.61 0.9161***
MEDAG −2.50 −3.28 0.6853*
FGL2 −2.82 −3.16 0.9930***
HSPA8 1.52 2.11 0.7343**

Notes: Fold-change (FC) was calculated by comparing group DEX versus
group CTR or group DEX–CLEN versus group CTR.

 
aSpearman ’s rho (r) was calculated at p < 0.01 (*), 0.001 (**) and
0.0001 (***).
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275 normali sed and filtered microarray intensities of the pre-
viously obtained DEGs (198 transcripts of DEX  versus
CTR and 39 of DEX–CLEN versus CTR) were used.

To visuali se the multivariate response of the selected
classifiers to the treatment and to see if the chosen set

280 of gene markers could result in the best separation of
treated and untreated animals, another dynamic PCA
approach, based on qPCR results (relative quantification
values , RQs), was performed. The objective was to test
if  the proposed set of the 16 genes could differentiate

285 DEX-treated samples (experimental or commercial)
from the untreated ones. For that purpose, the later
PCA was performed using RQ values corresponding to
the CTR (n = 8) and DEX (n = 8) groups, along with
the four samples claimed to be positive for DEX from

290 the monitoring study. The PCA on qPCR RQ values
was executed by  GenEx v.5 software (Bergkvist et al.
2010), adopting the following settings: mean  centre
scaling, Ward ’s algorithm and Manhattan distance.
Finally, another PCA analysis was carried out on our

295 microarray processed (n = 12) and all the monitoring
samples (n = 30) or the DEX-positive ones (n = 4) in
order to test if they could group into different clusters
based on their DNA microarray raw data. For each
PCA, samples were grouped together in one set, and a

300 blind PCA was carried out.

Results

Animal health status and growth performance

The health status of all the experimental animals was
satisfactory  throughout the experiment. Except for DEX

305 and/or CLEN, no other drugs  were administered during
the experimental procedure. Information about the animal-

 s’ performance and feed conversion index have been
presented in detail  by Biancotto et al. (2013).

Microarray quality control and data analyses

310 The comparison of the DEX group with the CTR one
(DEX  versus CTR) resulted in a list of 198 down-
regulated transcripts, representing 123 characteri sed
transcripts and 75 estimated sequence tags (ESTs: see

 Table S2 in the Supplemental data online). Estimated
315 sequence tag transcripts were excluded from further

analyses due to limited or  unavailable information on
annotation. Among the 123 down-regulated genes, 29

 had  FC > 4, and the highest FC (–14.77-fold) was
noticed for the LOC509808 (LIPG) gene.

320 Following the comparison between DEX–CLEN and
CTR groups (DEX–CLEN versus CTR), the analysis with
SAM resulted in a much shorter list of DEGs. A total of
39 DEGs, representing 21 characteri sed transcripts and 18
ESTs (thereby excluded from further analyses), was

325identified. Among the 21 genes, 16 and five were respec-
tively up- and down-regulated respectively ( see Table S3
in the Supplemental data online). There were no over-
lapping DEGs between the two comparisons.

To describe better the transcriptome functional mod-
330ifications and to mine through the obtained DEG lists, IPA

was used to find out and explore pathways, networks and
bio functions somewhat modulated by the used GPs. Data
analysis identified some networks and bio functions, e.g.
molecular and cellular functions, physiological system

335development and canonical pathways (see  Table S4 in
the Supplemental data online for a detailed IPA report).
Moreover, glucocorticoid receptor and xenobiotic metabo-
lism  signalling pathways were highlighted among the
canonical pathway s’ output following the IPA core analy-

340sis performed on our DEGs (Figure 3).
To reduce the complexity of a long list of significant

genes, an additional approach was to focus on those
transcripts that seemed more relevant to our study.
Through an extensive literature screening, using the
NCBI database and gene summaries present in

345GeneCards of the human gene database (see http://
www.genecards.org), together with some predictions
suggested by IPA, we collected information about the
direct function of each gene and the corresponding tar-
get tissue (when available). This strategy helped  to

350refin e the DEG lists and to group genes into  three
main categories, e.g. glucocorticoids responsive, skeletal
muscle related and coagulation cascade-related genes
(see Table S5 in the Supplemental data online). A set
of 16 genes shown to be modulated in DEX (15 genes:

355CYP1A1, FKBP5, CCL24, RASD1, MYOC, PFKFB4,
MEDAG, SULT1A1, LIPG, CRISPLD2, C1QA, FGL2,
CCDC80, C7 and MMP2) and DEX–CLEN groups ( one
gene: HSPA8) were considered for the final validation
analysis by qPCR.

360Confirmatory qPCR analysis

To cross-validate our platform performance and identify
some potential biomarkers, a relative quantification
approach by using qPCR was a must. All the aforemen-
tioned 16 genes were found to be significantly regulated in

365the muscle tissue, comparing treated with control animals
(Figure 4). A Spearman rank correlation test was then
performed for each target gene, comparing qPCR RQ
values with the corresponding microarray ’s intensities
(Figure 5). In the DEX group, 14 out of 15 genes showed

370high correlation coefficients (Spearman rho > 0.8;
p < 0.001), while only one gene (MEDAG) was signifi-
cantly correlated, but with a lower correlation coefficient
(rho = 0.685; p = 0.01).  In the DEX–CLEN group, a
significant relationship was only found for HSPA8

375(rho = 0.734; p < 0.01 ; Table 1). The correlation made
on the average FC obtained with DNA microarray and
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qPCR technologies showed a high and significant correla-
tion coefficient (Spearman ’s r = 0.754, p < 0.0001), with a
slope of linear regression of 0.94 ( Figure 6).

Clustering and PCA

380 The first two components, which accounted for 81.124%
of the total variance, clearly identified and distinguished
DEX from CTR samples, while DEX–CLEN samples
were distributed along the x- and  y- axes with no clear
grouping trend (Figure 7A).

By using the RQ values of the proposed 16 gene
385 markers, the PCA was able to distinguish three groups of

samples, e.g. CTR (n = 8), DEX-treated animals (n = 8)
and the four DEX-positive samples from the monitoring
study. The first two principal components of greatest var-
iation covered 94.60% of the total variance. Quite unex-

390 pectedly, samples from DEX group and DEX-positive
samples from the monitoring (MO) study did not group
together on the PCA plot (Figure 7B). Likewise, samples
clustered independently from each other also on the rela-
tive dendrogram (Figure 8).

To understand better why DEX-treated animals clus-
395 tered apart from each other, and particularly to verify

whether this  behaviour was a treatment-specific
response or a technical bias, a broad dynamic PCA,
using the raw microarray data of all the samples

(present study: n = 12, field monitoring: n = 30), was
400performed (Figure 9A). In this case, the first two com-

ponents, in compliance with Pegolo et al. (2012),
accounted for 66.5% of the total variance and separated
the monitoring samples (MO-1 and MO-2) from our
experimental samples (EXP). The y-axis, representing

40524.3% of the total variance, separated our 12 samples
from group MO-2, including the four DEX-positive
samples and other unknown samples.

To  confirm these findings further and to avoid any
possible distortion in the PCA plot due to many
unknown samples in the monitoring study, the PCA

410was repeated between our 12 samples (EXP) and the

 four DEX-positive samples (MO-POS), using the dif-
ferentially regulated gene list (11 484 unique tran-
scripts) following a one-class SAM analysis, and
enforcing an FDR of 0%. Again, we found that our

415samples and the monitoring ones were grouped apart
from each other ’s (Figure 9B).

Discussion

Although the development of additional detection meth-
ods for GP s’ abuse in beef cattle has already been faced by

420different ‘omic’ disciplines, such as genomics, transcrip-
tomics, proteomics and metabolomics, the ‘gold standard’
detection technology or the perfect biomarkers panel is

Figure 3. Ingenuity pathways analysis (IPA). Canonical pathways tree following a core analysis by IPA and using human, mouse and
rat databases as a background. The glucocorticoid receptor signalling pathway is highlighted.

6 R. Elgendy et al.
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seemingly out of reach for the moment. In the present
study we investigated the effect of some GPs on the

425 muscle ’s transcriptome of beef cattle. The foremost objec-
tive was to detect possible changes in gene expression and
to compare these transcriptional effects with those
obtained applying a proteomic approach (Stella et al.
2011) and MS-based analytical investigations (Biancotto

430 et al. 2013). Moreover, another goal was to test our sug-
gested transcriptional biomarkers against pre validated
DEX-positive samples (Pegolo et al. 2012). Shortly, a set
of potential transcriptional biomarkers was identified and
cross-validated with an independent method. However, the

435 comparison of our DEGs list with that of the proteomics
study revealed no common gene-coded protein or pathway

(s) in between. Finally, after plotting our samples on PCA
against DEX-positive samples coming from a monitoring
study, our proposed target genes did not group the experi-

440mental and monitoring samples together; on the contrary,
they were clustered separately. These distinct results are
hereby discussed more in depth.

Indirect biological markers have a comparable cost,
higher output and high sensitivity compared with other

445methods (Balizs & Hewitt 2003; Carraro et al. 2009).
Based on results here obtained, the use of illicit sche-
dules containing DEX alone could be reliably identified,
with high confidence, by using  15 genes; on the other
hand, the use of a DEX–CLEN combination was even-

450tually identified by the HSPA8 gene only. The

Figure 4. Validation of 16 differentially expressed target genes. Expression levels (relative quantification ( RQ) values) of genes, relative
to non-treated (CTR) samples determined by qPCR. Significance was tested by using the one-way analysis of variance (ANOVA)
(Kruskal–Wallis test) followed by Dunn ’s post-hoc test. Multiple bars show means ± SE. *, **, *** Statistically significant differences of
DEX versus CTR values (p < 0.05, 0.01, 0.001, respectively).
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identification of 198 DEGs in the DEX-treated group
and only 39 ones in the DEX–CLEN group could sug-
gest a CLEN-masking effect upon DEX. Counteraction
between DEX and CLEN, where the latter caused mild

455 attenuation of the effects of DEX on some physiological
parameters, has already been reported (Huang et al.
2000). Several genes were broadly down-regulated in
the DEX-treated group, and we will shortly discuss only
the ones showing the highest response in terms of fold 

460 changes and/or relevance to the purpose of the study.

The most down-regulated gene (–15.32-fold) is the
endothelial lipase (LIPG) gene. Endothelial lipase is a
member of the triglycerides (TG) lipase gene family,
showing a significant phospholipase activity on high-

465density lipoprotein (HDL) particles (Goldberg 1996;
Jaye et al. 1999; Griffon et al. 2006); furthermore,
LIPG gene inactivation has been shown to increase
HDL levels (Qiu et al. 2007). Although the relationship
between LIPG and lipid metabolism is well documen-

470ted, there is not much information in the literature

Figure 5. Plots of qPCR RQ values versus corresponding normali sed-microarray probe intensities for individual target genes. Each
solid dot represents a sample from the 12 samples ( four/group) included in the microarray analysis as mentioned above. Both Pearson ’s
rho (r), representing the correlation coefficient, and the obtained p-value are shown within each plot.
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regarding any relationship between this gene and gluco-
corticoids. However DEX has been shown to decrease
LIPG activity in the liver of rats (Peinado-Onsurbe et al.
1991). Moreover, a recent study reported that DEX

475 administration in horses decreased the expression of
genes involved in hormone  signalling, cholesterol
synthesis and steroidogenesis (Ing et al. 2014). The
well-studied and evident effect of DEX on lipid meta-
bolism (Zhou & Cidlowski 2005; Xu et al. 2009; Martin

480 et al. 2009; Campbell et al. 2011) could be a reason to
hypothesi se a relationship between LIPG and DEX
treatment.

The cytochrome P450 1A1 gene was down-regulated
by 10.39-fold. This gene is involved in oxidative drug

485 metabolism (Beresford 1993) and it depends on the aryl
hydrocarbon receptor (AhR) for its regulation. It has been
reported that CYP1A1 expression in adult human hepato-
cytes was negatively regulated by DEX at the protein
level, but no effects were noticed upon mRNA

490 (Monostory et al. 2005). On the other hand, DEX was
shown to have no inhibitory potency on the CYP1A1 level
either in human hepatocytes (Vrzal et al. 2009) or in rain-
bow trout (Burkina et al. 2013). In the same context, DEX
was recently proved to suppress CYP1A1 transactivation

495 in gene reporter assays (Stejskalova et al. 2013).
FKBP5 (also known as FKBP51) can act as an impor-

tant determinant of the responses to steroids, especially to
glucocorticoids in stress and mood disorders in humans
(Kang et al. 2008; Jääskeläinen et al. 2011AQ8 ). Up-regulation

500 of FKBP5 in response to corticosteroid use has been
consistently demonstrated in many studies (Franchimont
et al. 2002; Almon et al. 2005; Tissing et al. 2007), and
has been associated with the loss of efficacy of corticos-
teroids (Fisher et al. 2005). Surprisingly, in the present

505 study FKBP5 was down-regulated (–7.14-fold). Most of
the information about FKBP5 is closely related to humans,

and very little information is available about this gene in
animals, if any. However, it has been recently reported that
FKBP5 is down-regulated following  21- day treatment

510with the corticosteroid prednisolone in a collagen-induced
arthritis mouse model (Ellero-Simatos et al. 2014). It
should be emphasi sed that illicit schedules in cattle sub-
stantially differ, in terms of dosage and duration of admin-
istration, from  those used in humans, and  that the

515glucocorticoid signalling system is highly stochastic and
differs greatly between tissues (Kino 2007).

Dexamethasone-induced Ras-related protein 1
(RASD1) is a member of the Ras family of proteins that
is usually activated following the administration of corti-

520costeroids (Kemppainen & Behrend 1998; Tu & Wu
1999). Surprisingly, we observed a down-regulation of
this gene (–3.05-fold).  To our knowledge, there is no
available information about RASD1 gene expression in
cattle. In humans, RASD1 mRNA is constitutively

525expressed in many tissues such as brain, heart, liver and
kidney (Kemppainen & Behrend 1998; Tu & Wu 1999;
Fang et al. 2000), while no records are available  for
skeletal muscle. The inactivation of RASD1 and its corre-
lation with resistance to DEX, as a consequence of methy-

530lation, was recently discussed by Nojima et al. (2009). A
thorough explanation of these contradictory findings needs
further investigations and comparative studies to be
performed in order to understand if there are species-
and/or tissue- related variations.

535The chemokine (C-C motif) ligand 24 (CCL24) is
predominantly involved in chemotaxis of T -cells compa-
tible with an anti-inflammatory effect of glucocorticoids
(Ehrchen et al. 2007). In few studies performed on cattle,
CCL24 was shown to be normally down-regulated in the

540gestation period of female cows (Oliveira et al. 2010;
Laporta et al. 2014). However, data from human and
experimental animal models, in accordance with our find-
ings, showed that CCL24 was down-regulated following
DEX treatment (Goleva et al. 2008; Luesink & Jansen

5452010; Louten et al. 2012). Overall, these findings are in
concordance with the down-regulation (–4.84-fold) we
observed following DEX treatment.

The myocilin, trabecular meshwork inducible gluco-
corticoid response (MYOC) gene was shown to be mod-

550erately down-regulated (–2.36-fold). This result is
apparently in contrast with other studies where MYOC
was up-regulated upon DEX treatment in both human and
cattle anterior segments of the eye, namely the trabecular
meshwork cells (Taniguchi et al. 2000 AQ9; Ishibashi et al.

5552002; Rozsa et al. 2006; Mao et al. 2011). Nevertheless,
it was recently reported (Kumar et al. 2013) that MYOC
showed decreased expression in trabecular meshwork cells
isolated from eyes of mice treated with steroids.
Furthermore, the effect of DEX upon MYOC gene expres-

560sion varies greatly from one tissue matrix to another
(Morgan et al. 2014).

Figure 6. Overall comparison between microarray and qPCR
data, expressed as estimated fold-changes, referring to the final
16 candidate transcript biomarkers. ***p < 0.001.
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One of the other interesting results was the down-
regulation (–3.44-fold) of the cysteine-rich secretory pro-
tein LCCL domain containing 2 (CRISPLD2) gene. This

565transcript has only recently been considered as a gluco-
corticoid-responsive gene (Himes et al. 2014). What is
interesting here is that CRISPLD2 showed an over-

Figure 7. Principal component analysis (PCA). (A) PCA plot of the 12 samples of the current study, showing normali sed microarray
data of all the differentially expressed genes (198 and 39 in DEX versus CTR and DEX–CLEN versus CTR, respectively). The PCA
shows the two principal components of greatest variation, accounting for 67.8% (x-axis) and 13.3% (y-axis) of the total variance. (B) Plot
showing the three principal components of variance for the three experimental groups. Animals of the control group (CTR) are
represented by green circles; the dexamethasone-treated group (DEX) is represented by black stars, while animals of the monitoring
study ( four DEX-positive samples) are shown by red squares. Ellipses distinguish different treatment groups. Eigenvalues for PC1, PC2
and PC3 were 75.955%, 18.651% and 2.915%, respectively.
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expression pattern in some primary human cell lines fol-
lowing 24–48 h of DEX treatment (Masuno et al. 2011;

570 Greer et al. 2013; Himes et al. 2014), while it was down-
regulated in our study. Very little information is actually
available for this gene in the literature, except for humans.
The present contradictory result might be due to the dif-
ferent illicit protocol (GP combination) and/or the DEX

575 dosages here used.
Likewise to CRISPLD2, the complement component 7

(C7), a key component of the adaptive immunity (Actor
et al. 2001; Mashruwala et al. 2011), has been recently
considered as a glucocorticoid-responsive gene (Himes

580 et al. 2014). In our experimental conditions, C7 was
found to be down-regulated (–2.12-fold). This could be
explained by the fact that glucocorticoids are known to
repress the expression of adaptive immune-related genes
(Galon et al. 2002; Franchimont 2004; Azuma 2010). The

585 only up-regulated gene in our validated set of genes was
the heat shock proteins A8 (HSPA8), which has been
examined as a glucocorticoid-induced gene in other
model systems (Smoak & Cidlowski 2006). However, no
information relating this gene to CLEN is present in the

590 literature so far.
A second purpose of the present work was the

comparison between our DEG lists (transcriptomics
data) with the one referring to differentially expressed

proteins (e.g., proteomics data), for which the same
595muscle samples from the same animal were used

(Stella et al. 2011). Interestingly, the comparison
resulted into no common differentially regulated genes/
protein in between. In cattle, the proteomic approach
has been explored as a tool for the detection of protein

600expression patterns in skeletal muscles (Keady et al.
2013; Stella et al. 2014), body fluids (Draisci et al.
2007; Della Donna et al. 2009; Guglielmetti et al.
2014) and some target organs such as liver (Gardini
et al. 2006). Until recently, there was an implicit

605assumption in the systems biology literature  about the
existence of a proportional relationship between mRNA
and protein expressions measured from tissue. However,
analysis of mRNA and protein expression data from the
same cells under similar conditions have failed to show

610a high correlation between the two domains in multiple
studies (Pascal et al. 2008; Ghazalpour et al. 2011).
Moreover, small non-coding RNAs (miRNA) and post-
translational modifications such as phosphorylation,
SUMOylation and ubiquitination have been shown to

615modulate the expression, regulation, stability and func-
tion of glucocorticoid molecular targets and pathways
(Duma et al. 2006; De Iudicibus et al. 2013). Therefore,
finding no single gene overlap was  somewhat surpris-
ing, but further confirms that the transcriptomic and

Figure 8. Dendrogram showing the hierarchical clustering of the three experimental groups; controls (CTR, B4:1–B4:8), animals
administered with dexamethasone (DEX, B4:9–B4:16) and monitoring DEX-positive cattle (MO: S21, S54, S56 and S57). This tree
represents the similarity between genes and/or samples based on the gene expression profiles (RQ values) measured by qPCR assays.
Average linkage and Euclidean distance were used as a clustering method and distance measure, respectively.
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620 proteomic approaches are independent  of each other,
even if the target tissue is the same. This agrees with
Timperio et al. (2009), who reported that proteomics
and transcriptomics data seldom overlapped when com-
pared upon analysis of liver samples from two different

625 Bos taurus breeds. Hence, the need for an integrated
approach against GP s’ misuse in cattle seems to be
required to improve the effectiveness of the indirect
biomarker approach for screening purposes.

On the microarray level, the defined DEGs were able to
630 distinguish our experimental groups one from another. This

has an effect on the efficiency of the analyses and the
robustness of the obtained data. In addition, the validated

and proposed set of biomarkers (16 genes, whose level of
expression was measured by qPCR) grouped the field mon-

635itoring DEX-positive samples away from our experimental
DEX group on the PCA; furthermore, they were also clus-
tered into different batches on a dendrogram. This unex-
pected behaviour of the monitoring samples prompted us to
decide to use the whole microarray raw dataset of all the

640monitoring samples along with ours to check whether or not
monitored commercial animals still behave differently from
the experimentally treated ones . Interestingly, all our samples
grouped together and distinctively away from the other mon-
itoring samples,  which were represented on the PCA as

645previously reported by Pegolo et al. (2012). Moreover, this

Figure 9. PCA of the bovine skeletal muscle gene expression profiles. (A) PCA plot showing the grouping of the 12 experimental
samples distinctively away from commercial field monitoring samples (MO-1 and MO-2). The plot was created following a one-class
SAM analysis (via TMEV) on normali sed microarray intensities by using a differentially regulated gene list (11 484 unique transcripts)
and a false discovery rate (FDR) of 0%. The first two components accounted for 42.2% and 24.3%, respectively. (B) PCA plot excluding
all the monitoring study samples except for the four dexamethasone (DEX)-positive ones; the x- and y- axes cover 60.8% and 8.8% of the
total variance, respectively. The ellipse on the right side represent the 12 experimental samples, while the four samples on the left side of
the plot are the four DEX-positive ones from the monitoring study.
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result was confirmed after repeating the PCA using our 12
samples against only the  four DEX-positive samples.
Despite the efforts made to decrease any possible outliers
affecting sample s’ distribution on the PCA, we again had the

650  two groups apart. Once again, variables such as breed
( perhaps), diet and breeding conditions (more  probably),
the use of different DEX-containing illicit protocols and/or
new cocktails containing different GPs could be the reason(s)
for this conflict. Indeed, intraspecies transcriptomic compar-

655 ison is needed to reveal the differences in drug response
between animals under field and experimental conditions.

Conclusions

The present work has shown that despite the attractions of
comparative profiling of transcripts and proteins on a global

660 ‘omic’ scale, there are obvious biological and technical dif-
ferences preventing transcriptomics and proteomics from
having a convergence. Moreover, the idea of having a ‘uni-
versal set of biomarkers’ that can be applied to all illicitly
treated cattle still seems elusive at the moment. Indeed, one

665  ‘stand-alone’ technology does not suffice to gain a compre-
hensive understanding of the biological system complexity.
An approach that incorporates the various ‘omic’ platforms
and their data would be the key to solve this puzzle.
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