
PHYSICAL REVIEW B 92, 235151 (2015)

Hall effect, edge states, and Haldane exclusion statistics in two-dimensional space
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We clarify the relation between two kinds of statistics for particle excitations in planar systems: the braid
statistics of anyons and the Haldane exclusion statistics (HES). It is shown nonperturbatively that the HES exists
for incompressible anyon liquid in the presence of a Hall response. We also study the statistical properties of
a specific quantum anomalous Hall model with Chern-Simons term by perturbation in both compressible and
incompressible regimes, where the crucial role of edge states to the HES is shown.
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I. INTRODUCTION

Anyons are particle excitations obeying the braid statis-
tics, which interpolates continuously between fermion and
boson statistics in two dimensions(2D) [1–4]. Abelian braid
statistics can be characterized by the phase factor ei(α−1)π

of the many-body wave-function when two anyons are ex-
changed, with “any” α ∈ [0,2), thus explaining their name.
Fermions(bosons) correspond to α = 0(1). In real world,
anyons seem to appear in the fractional quantum Hall systems
[5,6], and presumably on the magnetized surface of topological
insulators [7]. Their relation to high-temperature superconduc-
tivity, initiated decades ago [8,9], is still being actively pursued
nowadays in a renewed form [10–12], requiring the knowledge
of anyon thermodynamics, which, however, is barely known
even for free anyons with 0 < α < 1.

Another interpolation between fermion and boson statistics
was proposed by Haldane. It is known as Haldane’s exclusion
statistics (HES)[13] or Haldane-Wu statistics (HWS)[14],
based upon the following state-counting ideas; for a many-
body system in finite volume, the dimension d(N ) of the
Hilbert space of the (N + 1)-th particle depends on N , which
leads to the definition of statistical interaction g via �d =
(g − 1)�N [13]. Obviously, g = 0 for fermions, g = 1 for
bosons, and other intermediate values of g define fractional
HES. Unlike the aforementioned braid statistics, the HES is not
limited to planar systems and one can calculate their thermody-
namic properties explicitly. The representative quantity is the
energy distribution function nH (ε,g), which was derived by
Wu [14]. It turns out that particles with HES (nonmutual) have
a well-defined Fermi energy εF at zero temperature if g �= 1.
When ε < εF , nH (ε,g) = 1/(1 − g), otherwise nH (ε,g) = 0,
thus interpolating between Fermi-Dirac (FD) distribution with
g = 0 and Bose-Einstein (BE) distribution with g = 1 at
zero temperature. At finite temperatures, nH is much more
complicated than FD and BE distributions. In analogy with

Landau-Fermi liquid theory, a theory of interacting HES
particles called Haldane liquid was developed in Ref. [15].
An important result is the generalization of Luttinger theorem:
the interaction does not change the volume enclosed by the
Fermi surface for HES.

In one-dimensional (1D) systems a deep connection
between Luttinger liquids, braid statistics and HES was
established in Refs. [16,17], but for planar systems, braid
statistics and HES are not always equivalent. In fact the free
nonrelativistic anyons do not show the evidence of HES.
On the other hand, the nonrelativistic anyon model in the
strong magnetic field is exactly solvable after projection to
the lowest Landau level (LLL) [18–20] and it is described by
an equation of state consistent with HES [20]. It was shown
that the filling factor of the LLL at T = 0 equals to 1/(1 − α)
[20,21] indicating g = α. This is so far the only known exactly
solvable model obeying HES in 2D and it has a flat dispersion.
Therefore the clarification of the relation between HES and
anyons’ braid statistics appears to be a step of great interest for
providing a class of planar models obeying HES with nontrivial
(nonflat) dispersion.

In this paper, we show that the HES exists quite generically
in 2D systems as long as there is a Hall response. A general
relation between g and α is established nonperturbatively by
examining the total anyon number in the ground state. Note that
determining the energy distribution function nH (ε,g) requires
a Fock structure in terms of single anyon states, not found
in anyonic systems where the N -body wave function is a
multivalued section depending nontrivially on the variables
of all particles [22,23]. On the other hand, the total anyon
number is easy to calculate. In fact, according to the Haldane’s
definition of the statistical interaction g, one immediately
obtains d(N ) − d(0) = (g − 1)N . If the entire band is filled,
N reaches its maximum denoted by N (g), and d(N ) = 0.
Note that d(0) is also the maximum of fermion filling number
N (0), hence we find the integral form of Haldane’s statistical
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interaction

N (g)

N (0)
= 1

1 − g
or N (g) − N (0) = g

1 − g
N (0), (1)

which is consistent with Haldane’s energy distribution function
nH (ε,g), being more general, valid also for Haldane liquids
[15]. The above description can be easily generalized to the
case of multiple species with mutual HES. Labelling the
species with a latin subindex i,j, . . . , with obvious meaning
of symbols, one finds di({Nl}) − di({0}) = ∑

j (gij − δij )Nj ,
with gij (j �= i) defining the mutual HES.

In the following, we give two proofs of the relation between
anyons’ braid statistics and HES, the first one involving an
adiabatic argument given in Sec. II, while the second one
given in Sec. III is based upon a specific model in a random
phase approximation (RPA). Section IV is the conclusion.

II. ADIABATIC ARGUMENT

According to Wilczek [2], one can map an anyon into a
fermion bound to a flux tube by a singular gauge transforma-
tion, so that the multivalueness of the anyons’ wave function,
allowed by the nontrivial topology of the configuration space of
2D identical particles, is removed in the new fermion system.
In this sense, anyons can be viewed as charged fermions with
long range gauge interaction in which the braid statistics is
encoded. The flux binding can be achieved in the Lagrangian
formalism by introducing the Chern-Simons(CS) term. The
resulting Lagrangian in the Minkowski space-time reads

L = LM − aμJμ + 1

4πα
εμνλaμ∂νaλ, (2)

where Jμ is the current and aμ is the statistical CS gauge
field. By “charge” we mean the statistical charge coupled to
aμ’s field, which is taken as unit here. At present, the precise
form of the fermion Lagrangian LM is not important, and it
is only assumed to yield the Hall conductance σh. We could
take LM as describing the conventional quantum Hall system,
the magnetized surface state of a topological insulator, or
other quantized anomalous Hall insulators without magnetic
field [24–29].

By integrating out the a0 field, one obtains the following
constraint on the charge density and the statistical flux:

�∇ × �a = −2παJ 0. (3)

The Chern-Simons parameter α characterizes the braid statis-
tics, which measures the Aharonov-Bohm phase when one
fermion circles around another or equivalently two fermions
are interchanged.

To illustrate the relation between the braid statistics and
the HES, we isolate a thermodynamically large region S as
shown in Fig. 1(a) from the rest. Inside S we turn on the
statistical parameter α adiabatically, generating the statistical
flux � ≡ ∫

∂S
�a · d �x through the region S. This in turn induces

a current J i = −σhε
ilEl with El = −∂ta

l for a Hall insulator
in the scaling limit. Then, according to the continuity equation
and Eq. (3), we have

∂tN = −
∫

S

d2 �x∂iJ
i = 2πσh∂t (αN ), (4)

S
α �= 0

α = 0
(a) (b)

Hall insulator

Normal insulator

σh �= 0

σh = 0

FIG. 1. (a) The Chern-Simons coupling parameter α varies
adiabatically with time inside the shadowed region S, being zero
outside. (b) A Hall insulator connected with a normal insulator.

where N ≡ ∫
S
d2 �xJ 0 is the total particle number in S.

Equation (4) implies that N (1 − 2πσhα) is time independent,
therefore the particle number for a general value of α is
given by N (α)/N(0) = 1/(1 − 2πσhα) in the scaling limit.
Comparing with Eq. (1), we obtain the condition

g = 2πσhα, (5)

between the statistical parameters g for HES and α for the
braid statistics. As an example, let’s revisit the nonrelativistic
anyons in a strong magnetic field. If we take only the LLLs into
account, σh = 1/(2π ), one finds g = α according to Eq. (5),
which recovers the result given in Refs. [20,21].

In this adiabatic argument, it is crucial for LM to describe
a Hall insulator, while a normal insulator with σh = 0 does
not respond to the Chern-Simons flux in the required way.
Therefore anyons in a normal insulator can not obey HES.
This proof can be generalized to mutual statistics obeyed by
multiple species of particles labeled by a latin subscript i as
after Eq. (1). Let us consider anyons with statistical charges qi

and Hall conductivity σh,i coupled to a common Chern-Simon
field as in Eq. (2), then the mutual exchange statistics between
species i and j is given by αij ≡ αqiqj . The argument above
generalizes Eq. (5) to gij = 2πσh,iαij , thus relating also a
mutual HES [14] to anyons’ braid statistics. The details on the
mutual statistics are given in the Appendix.

Next, by invoking the edge states, inevitable in a quantum
Hall system with boundaries, we give another proof of Eq. (5)
admitting some generalization beyond the insulating case. In
fact, even in Eq. (2) a boundary term would be required to
ensure gauge invariance (see, e.g., Ref. [30]), but it has not
been written explicitly because it is irrelevant in the above
adiabatic argument, based only on the continuity equations in
the bulk.

III. RPA CALCULATION

We just showed that the Hall response is crucial for anyons
obeying HES. In practice, a Hall insulator can be realized with
or without magnetic field. Since anyons in a strong magnetic
field have been studied before [18–21], in this article we
consider the quantum anomalous Hall(QAH) system without
Landau levels, which has been proposed theoretically [24,26]
and realized in recent experiments [27]. To be specific we take
the fermion Lagrangian LM as a 2D massive Dirac fermion
with Nf flavors, which can be written conveniently in the
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Euclidean space-time as

LM =
Nf∑
s=1

ψ̄s

(
1

i
∂/ + iγ 0μ + ms

)
ψs, (6)

where γ μ = {σ3,iσ1,iσ2}, ∂/ ≡ ∂μγ μ, ψ̄ = ψ†γ 0, and ms is
the fermion mass of flavor s. In realistic systems, there might
be impurities and conventional Coulomb interactions between
fermions, but for simplicity we ignore them here. In the
following, we present a perturbation calculation of the total
anyon number in the ground state.

The chemical potential inLM breaks the Lorentz invariance
down to the spatial rotation invariance. Combined with the
gauge invariance of Eq. (2), one finds that the fermion
polarization bubble �(2)

μν(q|μ) takes the following form [31]:

�(2)
μν(q|μ) = (q2δμν − qμqν)h1(q|μ) + δμk(�q2δkl − qkql)

×δlνh2(q|μ) + εμνλqλh3(q|μ), (7)

where we denote the space-time indices with Greek symbols,
while Latin characters denote the spatial coordinates. The three
hi’s functions can be calculated straightforwardly. The first
two terms are the conventional ones of the three-dimensional
relativistic fermions with finite density. It is the antisymmetric
h3 term that is peculiar and the relevant one for 2D fractional
exclusion statistics.

Without chemical potential or for |μ| � min(|ms |), one
finds limq→0 h3 = Nf /(4π )

∑Nf

s=1 sgn(ms) [32–35], which
provides the quantized Hall conductance σh of the system.
According to the Nielsen-Ninomiya theorem [36], the flavor
number Nf should be even except for some cases with
topological reasons. If the signs of ms’s annihilate in pairs,
LM describes a normal insulator with σh = 0. Once these
signs do not cancel completely, we obtain a Hall insulator
with integer Hall conductance. As an example we note that
the Haldane’s QAH model [24] has its low-energy physics
described by a two-flavor Dirac fermion with the same mass
term. For simplicity, we assume all masses ms have the
same positive value m > 0, then σh = Nf /(4π ). Unlike other
polarization terms (h1 and h2), this induced Chern-Simons
term is a topological effect, which is independent of the
specific characteristics of the model and nonperturbative in
nature. Indeed, it depends only on the flavor number Nf . We
then adopt the random phase approximation by taking only
this topological term into account and obtain the following
propagator of the gauge field,

D̃μν(x,x ′) = i2πα̃∂−2εμνλ∂λδ
(3)(x − x ′), (8)

where α̃ = α/(1 − 2πσhα) and the Landau gauge is assumed
for convenience.

To calculate the anyon number, we first evaluate the free
energy F(μ,α) to the lowest perturbation order with all gauge
boson lines being replaced by D̃μν of Eq. (8), which includes
the direct and exchange terms Fd and Fe:

Fd = − 1

2β

∫
d3xd3x ′Jμ(x)D̃μν(x − x ′)J ν(x ′), (9)

Fe = Nf

2β

∫
d3xd3x ′D̃μν(x − x ′)

tr[S0(x ′ − x|μ)γ μS0(x − x ′|μ)γ ν], (10)

where β is the inverse temperature and S0(x|μ) is the free
fermion propagator of a single flavor. Although it is almost the
simplest approximation, it can reproduce the nonperturbative
results for the anyon insulator given earlier, since it already
incorporates the important topological effect in the propaga-
tor D̃μν .

We first consider the insulating case with μ = 0. To
investigate the anyon number in the filled band (or vacuum),
we require that the statistical charges of particles in the
valence band are not screened at all, so that the vacuum
expectation value of anyon density J 0(x) �= 0. However, J i(x)
still vanishes if one calculates the fermion loop directly since
a filled band usually can not carry any persistent current. Note
that the RPA propagator D̃μν is antisymmetric and one might
conclude Fd = 0 at first glance. This is true for the normal
insulators, but it is not correct for the Hall insulator where a
persistent chiral current does exist at the sample edges [30,37],
as required by gauge invariance, though it vanishes in the bulk.
Since D̃μν contains an infrared singularity, one can kill two
birds with one stone by putting the system in a finite area �

in contact with normal insulator as shown in Fig. 1(b). For the
static state, the current densities are time independent and, if
the characteristic function of � is denoted by f�(�x), the chiral
current density can be written as �J (�x) = I (μ)(ẑ × �∇f�) with
I the edge current. Then the direct term can be written as

Fd (μ,α) = −i2πα̃

∫
d2 �xJ 0(�x) �∇−2εkj ∂jJ

k(�x)

= −2πα̃I (μ)N (μ,0), (11)

which leads to the modification of anyon number

�Nd (μ,α) = 2πα̃σhN (μ,0) + 2πα̃I (μ)
∂N

∂μ
. (12)

In the presence of the Chern-Simons term, the chiral current
also induces an electric field perpendicular to the boundary,
which is proportional to 2παI (μ) and leads to an additional
inner pressure. This is the origin of the second term in the right-
hand side (r.h.s.) of Eq. (12). Indeed, ∂N/∂μ is proportional to
the compressibility κT for a fixed area. For the insulating state,
where κT is zero, we then recover the results given earlier and
we can extend it to the more general case of incompressible,
but not necessarily insulating systems. It is also noted that in
this case, there is no contribution to the particle number from
the exchange term Fe and from other possible interactions,
since they do not depend on μ as long as the bulk gap is not
spoiled.

We now consider a compressible anyon gas with μ > m,
where the bulk excitation gap vanishes. In this case, we are
only interested in the anyon gas in the conduction band, and
assume the valence band is screened by a static background
with opposite charges. The finite Fermi sea modifies the
polarization bubble Eq. (7) [38,39]. The Hall conductance σh is
no longer quantized and the compressibility κT is also nonzero
accordingly. In this case not only the second term in the r.h.s.
of Eq. (12) but also the exchange term Fe contributes.
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The calculation of Fe follows the standard procedure for
the QED with finite density given in Refs. [31,40]:

Fe(μ,α) = − α̃mNf �

4π
(μ − m)2. (13)

Differentiating Fe with respect to μ leads to the modification
of particle number from the exchange term,

�Ne(μ,α) = 2α̃m

μ + m
N (μ,0) (14)

with N (μ,0) ≡ Nf �(μ2 − m2)/(4π ). The total particle num-
ber change is the sum of Eqs. (12) and (14).

Finally, we consider a charge neutral situation in which all
statistical charges in both valence and conduction bands are
screened completely, so that all fermion loops vanish and only
the exchange term survives. Further assuming μ − m 	 m,
we obtain N (μ,α) ≈ (1 + α̃)N (μ,0). If Nf = 2, we obtain
g = α, a result similar to the insulating case is obtained. The
relation between HES and the exchange diagram has also been
discussed in Ref. [41] where they set Nf = 1 and did not
consider the RPA.

IV. DISCUSSION AND CONCLUSION

We have discussed the exclusion statistics of anyons in
a generic quantum Hall system. Instead of analyzing the
distribution of single-particle states requiring Fock structure,
we study the total particle number in the many body ground
state in a finite volume, which has been shown to characterize
the crucial aspect of the statistics. Our result proves that the
total particle number of the ground state of anyons satisfies
HES if the bulk excitations are fully gapped or more generally
for an incompressible system. The crucial role played by
edge currents for this result is clarified. Anyons in normal
insulators without Hall conductance and edge states do not
satisfy the HES.

The compressible anyon gas does not show the HES as
clean as the incompressible liquid. Actually, it is noticed
that the braiding statistics is not well defined at all in the
2D compressible superfluids [42]. Anyhow, for compressible
systems if the parameter α is well defined the relation between
g and α is much more complicated than Eq. (5), involving
also the system-dependent parameters like fermion mass.
Nonetheless, at fixed chemical potential the particle number
in finite volume strongly depends on the statistical parameter
α, and it even diverges at 2πσhα = 1 [see, e.g., Eq. (12)] as
a Bose liquid. Since anyons can be viewed as fermions with
gauge interaction, this indicates the violation of the original
Luttinger theorem for fermions [43] by the Chern-Simons
interaction with noninteger α.

Our approach provides specific microscopic models satis-
fying HES with nontrivial dispersion, it allows easily judging
whether a system can obey HES or not, and points a direction
for searching such an exotic statistics in real materials. We
hope that our work may shed light on a large class of models
in 2D, as the relation with HES did in 1D. In particular, it allows
a cleaner treatment of the semionic (α = 1/2) holons in the
2D t-J model, relevant to the cuprate high-Tc superconductors
[11,12,44], in analogy with the semionic holons of the 1D t-J
model [45,46].
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APPENDIX: ADIABATIC ARGUMENT FOR MUTUAL
STATISTICS

In this Appendix, we give the details of the adiabatic
argument for the mutual statistics. We first consider s kinds of
particles satisfying the mutual Haldane’s exclusion statistics
(HES) [13,14] characterized by the following equation:

�di =
∑

j

(gij − δij )�Nj, (A1)

where di and Ni are the dimensionality of the new adding
particle and the total particle number of kind-i, respectively.
gij for i �= j is the mutual HES [14].

Integrating Eq. (A1), one finds the dimensionality di as a
function of the particle numbers {Nj },

di({Nj }) =
∑

j

(gij − δij )Nj + Ni,0, (A2)

where Ni,0 ≡ di(0) is the dimension of the available Hilbert
space for kind-i particle when there are no particles, which
is also the maximal filling number for fermions when gij =
0(namely, no exotic HES). If the system is insulating, the
dimensionality di({Nj }) = 0, and the particle number Nj,g can
be solved from Eq. (A2) with the following form:

Ni,0 =
∑

j

(δij − gij )Nj,g. (A3)

Next, let us consider the braid statistics. Suppose we have a
model involving s kinds of anyons which can be described by
fermions coupled to a common Chern-Simons field with the
following Lagrangian:

L = LM [ψj ,ψ
†
j ] −

s∑
j=1

qjJ
(j )
μ aμ + 1

4πα
εμνλaμ∂νaλ, (A4)

where J (j ) is the current of kind-j particle, and qj is the
corresponding statistical charge. As in Sec. II, we also assume
LM providing a nontrivial Hall response σh,j q

2
j for kind-j

particle. Each particle is now bound with flux φj depending
on its statistical charge qj :

φj = −2παqj . (A5)

Following the adiabatic argument given in Sec. II, we isolate
a thermodynamically large area S, through which the total
flux reads

� =
s∑

j=1

Njφj = −2πα

s∑
j=1

qjNj . (A6)
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As we turn on α adiabatically, according to the continuity
equation, we obtain

∂t (qiNi) = −(
σh,iq

2
i

)
∂t� = 2π (σh,iq

2
i )∂t

⎛
⎝α

s∑
j=1

qjNj

⎞
⎠.

(A7)

For convenience, we can introduce the exchange matrixαij ≡
αqiqj , which reflects the anyons’ mutual braid statistics
between kind-i and kind-j particles. Then, Eq. (A7) can be
rewritten as

∂t (Ni − 2πσh,i

∑
j

αijNj ) = 0, (A8)

which implies the term in the bracket is time-independent
when α is changed from 0 to a finite value adiabatically,
therefore

Ni(α) − 2πσh,i

∑
j

αijNj (α) = Ni(0), (A9)

where Ni(0) is the total fermion number of kind-i when α =
0. Identifying Ni(α) [Ni(0)] in Eq. (A9) with Ni,g(Ni,0) in
Eq. (A3), we establish a relation between mutual HES gij and
the anyons’ mutual braid statistics αij ,

gij = 2πσh,iαij . (A10)
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