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Abstract

Firstly we provide a technique to move torsion pairs in abelian categories via adjoint functors and in particular through Giraud
subcategories. We apply this point in order to develop a correspondence between Giraud subcategories of an abelian category C
and those of its tiltH(C) i.e., the heart of a t-structure on the derived category D(C) induced by a torsion pair.
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Introduction

One of the most useful process in abelian category theory is the so-called localization of an abelian category D
to a quotient category D/S by means of a Serre class S in D. When S is a localizing subcategory in the sense of
[? ], the canonical exact functor D → D/S has a fully faithful right adjoint functor S : D/S → D which allows to
deal withD/S as a full subcategory ofD, which is called a Giraud subcategory ofD. Dualizing the context, one get
the notion of a co-Giraud subcategory. Giraud and co-Giraud subcategories very often appear in the literature in very
different settings (see 1.3).

On the other side, in 1981 Beilinson, Bernstein and Deligne introduced the notion of t-structure on a triangulated
category related to the study of the derived category of constructible sheaves on a stratified space. Actually the notion
of t-structure is a generalization of the notion of torsion pair on an abelian category (see for example [? ]). In their
work [? ] Happel, Reiten and Smalø related the study of torsion pairs to Tilting theory and t-structures. In particular
given an abelian category C one can construct many non-trivial t-structures on its derived category Db(C) by the
procedure of tilting at a torsion pair (see 4.5).

Inspired by the fundamental role of localizing subcategories in the study of problems of gluing abelian categories
or even triangulated categories we propose in this work a bridge between the two previous abstract contexts. The main
progress in the present paper is to show how the process of (co-) localizing moves from a basic abelian category to
the level of its tilt, with respect to a torsion pair, and viceversa.

On the one side we deal with a (co-) Giraud subcategory C of D, looking the way torsion pairs on D reflect on C
and, conversely, torsion pairs on C extend to D: in particular we find a one to one correspondence between arbitrary
torsion pairs (T ,F ) on C and the torsion pairs (X,Y) on D which are “compatible” with the (co-) localizing functor
(Theorems 3.4 and 3.5).

On the other side, we compare this action of “moving” torsion pairs from D to C (and viceversa) with a “tilting
context”: more precisely, we look at the associated hearts HD and HC with respect to the torsion pairs (T ,F ) on C
and (X,Y) onD, respectively, proving thatHC is still a (co-) Giraud subcategory ofHD, and that the “tilted” torsion

1



R. Colpi, L. Fiorot, F. Mattiello / 00 (2016) 1–15 2

pairs in the two hearts are still related (Theorem 5.6). Here the ambient abelian category D is arbitrary, with the
unique request that the inclusion functor of C intoD admits a right derived functor as an absolute Kan extension (see
Definition 5.2).

Finally given any abelian categoryD endowed with a torsion pair (X,Y), and considering any Giraud subcategory
C′ of the associated heart HD which is “compatible” with the “tilted” torsion pair on HD, we prove in Theorem 5.9
how to recover a Giraud subcategory C of D such that C′ is equivalent to the heart HC (with respect to the induced
torsion pair).

We would like to thank the anonymous referee for helpful comments and corrections which improved the paper
and for drawing our attention to Maltsiniotis paper [? ].

1. Serre, Giraud and co-Giraud subcategories

We begin by fixing some notations on Serre, Giraud and co-Giraud subcategories. A complete account on quotient
categories and Serre classes can be found in [? , Chapter 3] and [? , Section 1.11].

Definition 1.1. Let D be an abelian category. A Serre class S in D is a full subcategory S of D such that for any
short exact sequence 0→X1→X2→X3→0 inD the middle term X2 belongs to S if and only if X1, X3 belong to S.

The data of an abelian category D and a Serre class S of D allow to construct a new abelian category, denoted
by D/S, called the quotient category of D by S (see [? ]). It turns out that D/S is abelian and the canonical functor
T : D → D/S is exact. A Serre class S in D is called a localizing subcategory (resp. co-localizing subcategory) if
the functor T admits a right adjoint (resp. left adjoint) section functor S . In this case, the left exact (resp. right exact)
functor S ◦ T is called the localization functor. This localization functor is exact if and only if S is exact (see [? ,
Chapter 3]).

Definition 1.2. An abelian category with a distinguished Giraud subcategory is the data (D,C, `, i) of two abelian

categories D and C and two adjoint functors C
i

// D
`oo (with ` left adjoint of i) such that ` is exact and i fully

faithful.
Dually an abelian category with a distinguished co-Giraud subcategory is the data (D,C, j, r) of two abelian

categories D and C and two adjoint functors D
r

// C
j

oo (with j left adjoint of r) such that r is exact and j fully

faithful.

Therefore a localizing Serre subcategory S of D defines a distinguished Giraud subcategory (D,D/S,T, S ).
Conversely, given a distinguished Giraud subcategory (D,C, `, i), the kernel of the functor `, i.e., the full subcategory
S of D whose objects S in S satisfy `(S ) � 0, defines a localizing Serre subcategory S = Ker(`) of D whose
associated quotient category is (equivalent to) C.

Let us denote by η : idD → i ◦ ` (resp. ε : ` ◦ i→idC) the unit (resp. the counit) of the adjunction (`, i), and by S⊥

the full subcategory ofD whose objects are defined by:

S⊥ := {D ∈ D |D(S ,D) = 0,∀S ∈ S}.

Let us notice that since i is fully faithful the counit of the adjunction ε is an isomorphism of functors. In particular for
any D ∈ D, we have that `(η(D)) = ε−1

`(D) is an isomorphism. It turns out that

S⊥ = {D ∈ D | ηD : D→i`(D) is a monomorphism}. (1)

Indeed for any D ∈ D we have Ker(ηD) ∈ S (since `(Ker(ηD)) = Ker(`(ηD)) = 0 because `(ηD) is an isomorphism)
and hence given X ∈ S⊥ the kernel map Ker(ηX) ↪→ X is zero and so ηX is a monomorphism. On the other hand
let us consider D ∈ D such that ηD is a monomorphism; then for any object S in S (i.e., `(S ) = 0) we have
D(S ,D) ⊆ D(S , i`(D)) � C(`(S ), `(D)) = 0 and so D ∈ S⊥.
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Dually, starting from a distinguished co-Giraud subcategory (D,C, j, r), and denoting by ε : j◦ r → idD the counit
of the adjunction ( j, r), the kernel of the functor r defines a co-localizing subcategory S = Ker(r) of D such that

⊥S := {D ∈ D |D(D, S ) = 0,∀S ∈ S}
= {D ∈ D | εD : jr(D)→ D is an epimorphism}.

Moreover, since j is fully faithful, the unit of the adjunction η : idC→r ◦ j is an isomorphism of functors.

Remark 1.3. Giraud and co-Giraud subcategories very often appear in the literature in very different settings. For ex-
ample a well known result due to Popescu and Gabriel (see, for instance, [? , Chapter 10]) tells that any Grothendieck
category is in a natural way a Giraud subcategory of the category R-Mod of all the left R-modules, for a suitable ring
R. On the other hand, the Yoneda tensor-embedding M 7→ − ⊗RM naturally makes R-Mod to be a co-Giraud sub-
category of the Grothendieck category (FPR,Ab) whose objects are the covariant functors from the finitely presented
right R-modules to the abelian groups, and the morphisms are the natural transformations between them. This allows,
for instance, to deal with the extensively studied notion of pure-injective module by means of injective objects in
(FPR,Ab), thanks to a result of Gruson and Jensen [? ]. Dually, the Yoneda Hom-embedding M 7→ HomR(−,M) nat-
urally makes R-Mod to be a Giraud subcategory of the Grothendieck category of contravariant functors (RFPop,Ab).
Auslander proposed to study the representation theory of R in terms of the ambient category (RFPop,Ab), and in [? ]
and [? ] he and Reiten studied deeper the subcategory of the finitely presented objects of (RFPop,Ab), developing the
powerful theory of almost split sequences for Artin algebras.

2. Torsion and Torsion-free Classes

Definition 2.1. Given an abelian category C, a torsion class T in C is a full subcategory of C which is closed under
taking (existing) coproducts, quotients and extensions. Dually a torsion free class F in C is a full subcategory of C
which is closed under taking (existing) products, subobjects and extensions.

A torsion pair (T ,F ) in C is the data of a torsion class T and a torsion free class F such that C(T ,F ) = 0 and
any object C ∈ C is the middle term of a short exact sequence 0→ T → C → F → 0 with T ∈ T and F ∈ F .

A torsion class T cogenerates Cwhen any object in C is a subobject of a suitable object in T , and, dually, a torsion
free class F generates C when any object in C is a factor of a suitable object in F . Typically, cogenerating torsion
classes arise from Tilting theory and generating torsion free classes arise from Cotilting theory (see, for instance, [? ,
Chapter I.3] and [? , Section 2]).

Remark 2.2. If C is a subcomplete abelian category in the sense of [? ] (that is, C is an abelian category such that for
any family {Au | u ∈ U} of subobjects of a fixed object A, the infinite sum

∑
u∈U Au and the infinite product

∏
u∈U(A/Au)

exist in C), then any torsion class T (torsion-free class F ) on C induces a torsion pair (T ,F ) on C.

The reader is referred to [? , Chapter 1] for more details.
In what follows, our aim is to move torsion classes trough exact functors and subsequently trough a distinguished

Giraud (resp. co-Giraud) subcategory C ofD. Since any torsion class (resp. torsion free class) is closed under coprod-
ucts and quotients (resp. products and subobjects), it seems to us natural to use the left (resp. right) adjoint functor `
(resp. i) in order to move torsion classes (resp. torsion free classes) from C toD (resp. fromD to C).

Lemma 2.3. (Dual to 2.4). Let C be an abelian category and T a torsion class on C. Let ` : D→C be a functor
between abelian categories which respects arbitrary colimits. Then the class

`←(T ) = {D ∈ D | `(D) ∈ T }

is a torsion class inD.
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Proof. Clearly, the class `←(T ) is closed under taking coproducts and quotients, because so is T and ` respects
arbitrary colimits by assumption. Let us show that `←(T ) is closed under extensions. Consider a short exact sequence
inD

0 // X1 // D // X2 // 0

with X1, X2 ∈ `
←(T ). By applying the functor ` (which is right exact) to this sequence we get an exact sequence in C

`(X1) // `(D) // `(X2) // 0

with `(X1), `(X2) ∈ T . Taking the kernel K of the morphism `(D)→`(X2), we see that K is an epimorphic image of
`(X1) and so K ∈ T , therefore `(D) ∈ T as extension of objects in a torsion class. We conclude that D ∈ `←(T ).

Lemma 2.4. (Dual to 2.3). Let C be an abelian category and F a torsion-free class on C. Let r : D→C be a functor
between abelian categories which respects arbitrary limits. Then the class

r←(F ) = {D ∈ D | r(D) ∈ F }

is a torsion-free class inD.

3. Moving Torsion Pairs trough Giraud subcategories

Given an abelian category D with a distinguished Giraud subcategory C, by Lemma 2.3, the class `←(T ) := {D ∈
D | `(D) ∈ T } is a torsion class onD.

Proposition 3.1. LetD be an abelian category with a distinguished Giraud subcategory C. Suppose that C is endowed
with a torsion pair (T ,F ). Then the classes (T̂ , F̂ ):

T̂ := `←(T ) = {X ∈ D | `(X) ∈ T }
F̂ := `←(F ) ∩ S⊥ = {Y ∈ D | Y ∈ S⊥ and `(Y) ∈ F }

define a torsion pair onD such that i(T ) ⊆ T̂ , i(F ) ⊆ F̂ , `(T̂ ) = T , `(F̂ ) = F .

Proof. For any T ∈ T we have `i(T ) � T , which proves that i(T ) ⊆ T̂ . Moreover given F ∈ F it is clear that
i(F) ∈ S⊥ and `i(F) � F ∈ F , hence i(F ) ⊆ F̂ . We deduce that T = `i(T ) ⊆ `(T̂ ) ⊆ T and F = `i(F ) ⊆ `(F̂ ) ⊆ F ,
which prove that `(T̂ ) = T and `(F̂ ) = F . Let us show that (T̂ , F̂ ) is a torsion pair onD.

Given X ∈ T̂ and Y ∈ F̂ ,
D(X,Y) ↪→ D(X, i`(Y)) � C(`(X), `(Y)) = 0

where the first inclusion holds since Y ∈ F̂ ⊆ S⊥ and S⊥ = {D ∈ D | ηD : D→i`(D) is a monomorphism} by (1). It
remains to prove that for any D inD there exists a short exact sequence

0 // X // D // Y // 0

with X ∈ T̂ and Y ∈ F̂ .
Given D inD there exist T ∈ T and F ∈ F such that the sequence

0 // T // `(D) // F // 0 (2)

is exact in C. Let define X := i(T ) ×i`(D) D; then we obtain the diagram

0 // i(T ) // i`(D) // i(F)

0 // X //

OO

D //

ηD

OO

D/X
?�

OO

// 0

(3)
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whose rows are exact (the first because the functor i is left exact since it is a right adjoint, while the second by
definition) and the map D/X ↪→ i(F) is injective since the first square is cartesian.

Let us apply the functor ` to (3) remembering that ` is exact (so in particular it preserves pullbacks and exact
sequences) and that ` ◦ i � idC:

0 // T // `(D) // F // 0

0 // `(X) //

�

OO

`(D) //

id`(D)

OO

`(D/X)

�

OO

// 0.

The first row coincides with (2) which is exact, `(X) � T ×`(D) `(D) � T ∈ T , which proves that X ∈ T̂ and so
`(D/X) � F ∈ F , and the third vertical arrow of (3) proves that D/X ∈ S⊥, thus D/X ∈ F̂ .

The following is a corollary of 2.4:

Corollary 3.2. LetD be an abelian category with a distinguished Giraud subcategory C. Suppose thatD is endowed
with a torsion pair (X,Y). Then the class i←(Y) := {C ∈ C | i(C) ∈ Y} is a torsion free class on C.

Proposition 3.3. Let D be an abelian category with a distinguished Giraud subcategory C. Suppose that D is
endowed with a torsion pair (X,Y),and let

`(X) := {T ∈ C | T � `(X),∃ X ∈ X}
`(Y) := {F ∈ C | F � `(Y),∃Y ∈ Y}

Then (`(X), `(Y)) defines a torsion pair on C if and only if i`(Y) ⊆ Y. In this case, i←(Y) = `(Y).

Proof. First let us suppose that i`(Y) ⊆ Y. Then since ` ◦ i � idC one has i←(Y) = `(Y) and by Corollary 2.4 this is a
torsion free class on C. Given T ∈ `(X) (i.e., T � `(X), with X ∈ X) and F ∈ i←(Y), one has C(T, F) = C(`(X), F) �
D(X, i(F)) = 0, since i(F) ∈ Y by the definition of i←(Y). Now let C ∈ C. There exist X ∈ X, Y ∈ Y and a short exact
sequence inD

0 // X // i(C) // Y // 0.

Applying the functor ` to the previous sequence we get a short exact sequence in C

0 // `(X) // C // `(Y) // 0

where `(X) ∈ `(X) and `(Y) ∈ `(Y), which proves that (`(X), `(Y)) is a torsion pair on C.
Conversely, if (`(X), `(Y)) is a torsion pair on C then for every X ∈ X and every Y ∈ Y one has 0 = C(`(X), `(Y)) �

D(X, i`(Y)), therefore i`(Y) ∈ Y.

From 3.1 and 3.3 we derive the following correspondence:

Theorem 3.4. Let D be an abelian category with a distinguished Giraud subcategory C. There exists a one to one
correspondence between torsion pairs (X,Y) onD satisfying i`(Y) ⊆ Y ⊆ S⊥ and torsion pairs (T ,F ) on C.

Proof. From one side, taking a torsion pair (T ,F ) in C, the torsion pair (T̂ , F̂ ) (defined in Proposition 3.1) satisfies
i`(F̂ ) ⊆ F̂ and one can easily verify that (`(T̂ ), `(F̂ )) = (T ,F ).

On the other side given (X,Y) a torsion pair on D satisfying i`(Y) ⊆ Y ⊆ S⊥, its corresponding torsion pair on
C is (`(X), `(Y)) (by Proposition 3.3) for which it is clear that `̂(Y) := `←(`(Y)) ∩ S⊥ = Y (since Y ⊆ S⊥) and so
(X,Y) = (`̂(X), `̂(Y)).

Dually, one obtains:

Theorem 3.5. LetD be an abelian category with a distinguished co-Giraud subcategory C. There exists a one to one
correspondence between torsion pairs (X,Y) onD satisfying jr(X) ⊆ X ⊆ ⊥S and torsion pairs (T ,F ) on C.
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4. t-structures induced by torsion pairs

Definition 4.1. A t-structure on a triangulated categoryD is a pair t = (D≤0,D≥0) of strictly full subcategories ofD
such that, settingD≤n := D≤0[−n] andD≥n := D≥0[−n], one has

(0) D≤0 ⊆ D≤1 andD≥0 ⊇ D≥1.
(i) D(X,Y) = 0 for every X inD≤0 and every Y inD≥1.

(ii) For any object X ∈ D there exists a distinguished triangle:

A→ X → B→ A[1]

inD such that A ∈ D≤0 and B ∈ D≥1.

Proposition 4.2. [? , Proposition 1.3.3] Let t = (D≤0,D≥0) be a t-structure on a triangulated categoryD.

(i) The inclusion ofD≤n inD admits a right adjoint τ≤n, and the inclusion ofD≥n inD a left adjoint τ≥n, called the
truncation functors.

(ii) For every X inD there exists a unique morphism d : τ≥1(X)→ τ≤0(X)[1] such that the triangle

τ≤0(X)→X→τ≥1(X)
d
→

is distinguished. This triangle is (up to a unique isomorphism) the unique distinguished triangle (A, X, B) with A
inD≤0 and B inD≥1.

(iii) The category Ht := D≤0 ∩ D≥0 is abelian, and the truncation functors induce a functor Ht : D → Ht, called
the t-cohomological functor (H0

t (X) = τ≥0τ≤0(X) � τ≤0τ≥0(X) and for every i ∈ Z, Hi
t(X) = H0

t (X[i]), see [? ,
Theorem 1.3.6]).

In particular, given an abelian category C its (unbounded) derived category D(C) is a triangulated category which
admits a canonical t-structure, called the natural t-structure, whose class D(C)≤0 (resp. D(C)≥0) is that of complexes
without cohomology in positive (resp. negative) degrees. We will denote by H: D(C)→ C its cohomological functor
and by t≤n resp. t≥n its truncation functors. As explained by A. Beligiannis and I. Reiten in their work [? ], one can
regard a t-structure on a triangulated categoryD as a generalization of a torsion pair, where the role of the torsion class
is provided byD≤0, while that of the torsion free class is played byD≥1. Moreover, given a torsion pair on an abelian
category C one can construct a t-structure on its derived category D(C), as explained in [? ] and [? , Proposition 1.8].

Proposition 4.3. Let (T ,F ) be a torsion pair on an abelian category C. The classes

t(T ) = D≤0
t = {C• ∈ D(C) | H0(C•) ∈ T , Hi(C•) = 0 ∀i > 0}

t(F ) = D≥0
t = {C• ∈ D(C) | H−1(C•) ∈ F , Hi(C•) = 0 ∀i < −1}

define a t-structure on D(C) which is called the t-structure induced by the torsion pair t.

Remark 4.4. Let C be an abelian category endowed with the trivial torsion pair (C, 0). The t-structure associated to
this trivial torsion pair is the natural t-structure on D(C).

Remark 4.5. Let C be an abelian category with a torsion pair (T ,F ). The heart associated to the t-structure (D≤0
t ,D≥0

t )
on D(C) is the full subcategoryHC := t(T ) ∩ t(F ) of D(C) called the tilt of C by the torsion pair (T ,F ). It is shown
in [? ] that HC is an abelian category where short exact sequences are induced by distinguished triangles in D(C).
The objects ofHC are represented, up to isomorphism, by complexes of the form

X : X−1 x
−→ X0, with Ker(x) ∈ F and Coker(x) ∈ T ,

while a morphism φ : X→Y inHC is a formal fraction φ = (s)−1 ◦ f , where:
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1. X
f
−→ Z is a representative of a homotopy class of maps of complexes

X−1

f −1

��

x // X0

f 0

��

Z−1 z
// Z0

where we recall that X
f
−→ Z is null-homotopic if there is a map r0 : X0 → Z−1 such that

f 0 = zr0 and f −1 = r0x

2. Y
s
−→ Z is a representative of a homotopy class of maps of complexes and it is a quasi-isomorphism, i.e., it is a

map of complexes which induces isomorphism in cohomology:

0 // Ker(y)

�

��

// Y−1

s−1

��

y
// Y0

s0

��

// Coker(y)

�

��

// 0

0 // Ker(z) // Z−1 z
// Z0 // Coker(z) // 0

Every distinguished triangle X•1→X•2→X•3
[+1]
→ X•1[1] in D(C) provides a long exact sequence of t-cohomology in the

heartHC:
· · ·H−1

t (X3)→H0
t (X1)→H0

t (X2)→H0
t (X3)→H1

t (X1) · · ·

Moreover given an object C in C, its t-cohomology objects inHC are Hi
t(C) = 0 for any t < 0, t > 1; H0

t (C) = t(C)[0]
is the torsion part of C (with respect to the torsion pair (T ,F )) placed in degree zero, while H1

t (C) = C
t(C) [1]. The tilted

pair (F [1],T [0]) is a torsion pair inHC with category equivalences F [1] � F and T [0] � T (see [? , Corollary 2.2]).

Remark 4.6. In [? ] the authors introduced the notion of a tilting object for an arbitrary abelian category, proving
that for any ring R and for any faithful torsion pair (X,Y) in R-Mod the heart H(X,Y) of the t-structure in D(R)
associated to (X,Y) is (an abelian category) with a tilting object T = R[1]. Then, again the first author with Gregorio
and Mantese in [? ] showed that the heart is a prototype for these categories, in the sense that an abelian category
D admits a tilting object T if and only if D is equivalent to the category H(X,Y) for a suitable torsion pair (X,Y)
in Mod-End(T ) which is “tilted” by T , and with Gregorio in [? ] proved that H(X,Y) is a Grothendieck category
if and only if the torsion pair is cogenerated by a cotilting module in the sense of [? ]. This allows us to deal with
a more general notion of a“tilting context”: given an abelian category D endowed with a faithful torsion pair (X,Y)
(i.e., such that Y generates D), we get a new abelian category H(X,Y) endowed with a torsion pair (Y[1],X[0])
which is “tilting”, in the sense that the torsion class Y[1] cogenerates the category H(X,Y) and there are category
equivalences Y[1] � Y and X[0] � X induced by exact functors.

Let C be an abelian category endowed with a torsion pair (T ,F ). Since we need to use different torsion pairs we
will use the notation (t(T ), t(F )) instead of (D≤0

t ,D≥0
t ) to denote the t-structure associated to the torsion pair (T ,F ).

For the same reason when we need to clarify the torsion pair we will denote by τt(T ), τt(F ) the truncation functors
instead of τ≤0

t , τ≥1
t .

As showed in [? ], there exists an injective function between the poset of torsion pairs in C and that of t-structures
in D(C). Moreover one can recover those t-structures on D(C) which are induced by torsion pairs by means of the
following fact proved by Polishchuk in [? , Lemma 1.2.2].

Theorem 4.7. Given C an abelian category. There exists a bijection between

1. torsion pairs on C
2. t-structures (T ≤0,T ≥0) on D(C) such that D(C)≤−1 ⊂ T ≤0 ⊂ D(C)≤0.
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5. Tilted Giraud subcategories

For sake of simplicity, in this section we deal with the case of Giraud subcategories, although the case of co-Giraud
subcategories can be proved by a dual argument.

In the sequel we will use the notion of derived functor in the stronger sense due to Maltsiniotis [? ] (see also [? ])
via the notion of absolute Kan extension.

Definition 5.1. [? , 2.1 and 2.5] Let P : C → C′ be a functor. A left Kan extension of a functor F : C → D along P is
a pair (F′, α) where F′ : C′ → D is a functor and α : F → F′ ◦ P a natural transformation satisfying the following
universal property: for any other pair (G, β) (with G : C′ → D a functor and β : F → G◦P a natural transformation)
there exists a unique natural transformation γ : F′ → G such that β = (γ ? P)α. In particular, when a left Kan
extension exists, it is unique up to a unique isomorphism.
An absolute left Kan extension of F along P is a pair (F′, α) where F′ : C′ → D is a functor and α : F → F′ ◦ P a
natural transformation such that for any functor H : D → E the pair (H ◦ F′,H ? α) is a left Kan extension of H ◦ F
along P. Any absolute left Kan extension is a left Kan extension.

The previous definitions applied to the derived categories provide the following:

Definition 5.2. [? , 3.2] Let F : K(C) → K(D) be a triangulated functor between the homotopy categories of two
abelian categories C,D. Let us denote by pC (resp. pD) the canonical localization functor from the homotopy category
K(C) (resp. K(D)) to its derived category D(C) (resp. D(D)).

- The total right derived functor of F is a left Kan extension (RF, α) of pD ◦ F along pC.
- The absolute total right derived functor of F is an absolute left Kan extension (RF, α) of pD ◦ F along pC.

In the present paper, we will deal with absolute total right derived functors referring to them simply as ab-tot right
derived functors.

Remark 5.3. Whenever F : C → D is an exact functor, by abuse of notation we may denote by F : D(C)→ D(D) the
induced functor between the derived categories, which coincides with its ab-tot right derived functor. Moreover, by
[? ], when the category C has an injective model structure, then any left exact functor C → D admits an ab-tot right
derived functor, which can be computed in the usual way via injective replacements.

Lemma 5.4. Let D and C be abelian categories and ` : D → C be an exact functor. Suppose that D is endowed
with a torsion pair (X,Y) and that (T ,F ) = (`(X), `(Y)) defines a torsion pair on C. Then ` ◦ τt(Y) = τt(F ) ◦ ` and
` ◦ τt(X) = τt(T ) ◦ `.

Proof. Since ` is exact it admits an ab-tot derived functor ` : D(D) → D(C) which is computed simply applying the
functor ` termwise. Moreover, from `(X) = T and `(Y) = F we derive that `(t(X)) ⊆ t(T ) and `(t(Y)) ⊆ t(F ), i.e., `
is an exact functor for the t-structures (t(X), t(Y)) on D(D) and (t(T ), t(F )) on D(C) (see [? , 1.3.16]). Let D• ∈ D(C)
and

τt(X)(D•) // D• // τt(Y)(D•) +1 // (4)

its distinguished triangle, with τt(X)(D•) ∈ t(X) and τt(Y)(D•) ∈ t(Y). By applying the functor ` to (4) we get the
distinguished triangle in D(C)

`(τt(X)(D•)) // `(D•) // `(τt(Y)(D•)) +1 // (5)

with `(τt(X)(D•)) ∈ t(T ) and `(τt(Y)(D•)) ∈ t(F ), so (5) is the distinguished triangle associated to `(D•), which proves
that ` ◦ τt(Y) = τt(F ) ◦ ` and ` ◦ τt(X) = τt(T ) ◦ `.

Remark 5.5. Under the assumptions of Lemma 5.4 and following the notations of Remark 4.5 we have l(HD) ⊆
HC and so l induces an functor `H : HD → HC which is exact since ` sends distinguished triangles in D(D) into
distinguished triangles in D(C). Moreover, ` commutes with the t-cohomological functors Hi

t .

8
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Theorem 5.6. Let D be an abelian category endowed with a torsion pair (X,Y) and let HD be the corresponding
heart with respect to the t-structure on D(D) induced by (X,Y). Let S be a Serre subcategory ofD and ` : D → C :=
D/S be its corresponding quotient functor, and let us suppose that (`(X), `(Y)) is a torsion pair on C. Then:

1. The class SH = {D• ∈ HD | `H (D•) = 0} (for the definition of `H see Remark 5.5) is a Serre subcategory ofHD.
2. Denote by C′ = HD/SH the quotient category and by `′ : HD → C′ the quotient functor. Then `′ is exact and

the classes (`′(Y[1]), `′(X[0])) define a torsion pair in C′.
3. There is a canonical functor ϕ : C′ → HC such that `H = ϕ ◦ `′. The functor ϕ is an equivalence of categories.
4. Moreover in the case in which (D,C, `, i) is a distinguished Giraud subcategory such that i admits an ab-tot right

derived functor Ri there exists a distinguished Giraud subcategory (HD,HC, `H , iH ) such that iH (`H (X[0])) ⊆
X[0].

Proof. 1. The first statement follows from the exactness of the functor `H (see Remark 5.5). Moreover we observe
that SH ∩ X[0] = (S ∩ X)[0] and SH ∩ Y[1] = (S ∩ Y)[1].

2. Let us show that the classes (`′(Y[1]), `′(X[0])) define a torsion pair on C′. First of all, since any object of C′

may be regarded as an object of HD and the functor `′ is exact, it is clear that any object C• ∈ C′ is the middle term
of a short exact sequence 0 → T • → C• → F• → 0 with T • ∈ `′(Y[1]) and F• ∈ `′(X[0]). It remains to show that
C′(T •, F•) = 0 for every T • ∈ `′(Y[1]) and every F• ∈ `′(X[0]). So let T • ∈ `′(Y[1]) and F• ∈ `′(X[0]). A morphism
f : T • → F• in C′ may be viewed as the class of a morphism U• → F•/V • inHD, where T •/U• and V • are in SH . Let
t(U•) be the torsion part of U• (viewed as an object of HD) with respect to the torsion pair (Y[1],X[0]) in HD and
F•/W• be the torsion-free quotient of F•/V •. We show that the composite morphism t(U•) → U• → F•/V • → F•/W•

also represents the morphism f in C′, i.e., T •/t(U•) ∈ SH and W• ∈ SH and hence f = 0, since it is a morphism from
a torsion to a torsion-free object. The short exact sequence inHD

0→
U•

t(U•)
→

T •

t(U•)
→

T •

U•
→ 0

defines a distinguished triangle in D(D). By applying the cohomological functor for the natural t-structure on D(D)
to this distinguished triangle, we obtain the following long exact sequence inD:

· · · →0→H−1
(

U•
t(U•)

)
→H−1

(
T •

t(U•)

)
→H−1

(
T •
U•

)
→H0

(
U•

t(U•)

)
→H0

(
T •

t(U•)

)
→H0

(
T •
U•

)
→0→· · ·

Now, U•/t(U•) ∈ X[0] while T •/t(U•),T •/U• ∈ Y[1] (as quotients inHD of a torsion object), so the previous sequence
reduces to the short exact sequence inD:

0→ T •
t(U•) [−1]→ T •

U• [−1]→ U•
t(U•) [0]→ 0

and since the middle term T •
U• [−1] ∈ (SH ∩Y[1])[−1] = S∩Y we deduce that T •

t(U•) [−1] ∈ S∩Y = (SH ∩Y[1])[−1]
and so T •

t(U•) ∈ SH . A dual argument shows that W• ∈ SH .
For later purposes, we remark here that Ker(l′) = SH .

3. First of all, the exactness of the functor `H permits to apply [? , Corollary 2, page 368] which claims that there
exists a unique functor ϕ : C′ → HC such that `H = ϕ ◦ `′ and moreover by [? , Corollary 3, page 369] the functor ϕ
is exact. To prove that ϕ is an equivalence, we will show that it is faithful, essentially surjective and full.

Given a morphism C′1
α
→ C′2 in C′ we can suppose that α = `′(β) for a suitable morphism D•

1

β
→ D•

2 in HD; hence
ϕ(α) = ϕ(`′(β)) = `H (β) = 0 if and only if Im(ϕ(α)) = `H (Im(β)) = 0 which is equivalent to ask Im(β) ∈ SH and so
Im(α) = Im(`′(β)) = `′(Im(β)) = 0 which proves that α = 0. This shows that ϕ is faithful.
Let us prove that `H is essentially surjective from which we deduce that ϕ is essentially surjective too. Let us consider
C• = [C−1 y

−→ C0] an object in HC (and hence Ker(y) ∈ F = `(Y) and Coker(y) ∈ T = `(X)). We can suppose that
y = `(x) where x : D−1 → D0 (and so C−1 = `(D−1) and C0 = `(D0)). Hence `(Ker(x)) = Ker(y) ∈ `(Y) which means
that there exists an epimorphism (since Y is closed by subobjects) φ : Ker(x) � Y such that Ker(φ) ∈ S and Y ∈ Y.

9
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Let define D′−1 := Y ⊕Ker(x) D−1; then by the following commutative diagram

Ker(φ)� _

��

id // Ker(φ)� _

��

0 // ker(x) � � //

φ

����

D−1 x //

����

D0

id
��

0 // Y // D′−1 x′ // D0

(6)

we deduce that `(x′) = y but now Ker(x′) ∈ Y. Dually `(Coker(x′)) = Coker(y) ∈ `(X) which means that there exists a
monomorphism ψ : X ↪→ Coker(x′) such that Coker(ψ) ∈ S and X ∈ X. Dually to (6) let define D′0 := X ×Coker(x) D0;
then by the following commutative diagram

D′−1 x //

id
��

D′0 // //
� _

��

X� _

ψ

��

D′−1 x′ // D0 // //

��

Coker(x′)

��

Coker(ψ) id // Coker(ψ)

(7)

we deduce that `(x) = y but now Ker(x) ∈ Y and Coker(x) ∈ X which proves that D• := [D′−1 x
→ D′0] is an object in

HD such that `H (D•) = C•. This proves that `H is essentially surjective and so is ϕ.
It remains to prove that ϕ : C′ → HC is a full functor. The proof of this statement is based on a lifting argument
inspired by Gabriel [? , Corollary 1, page 368].
First of all let us note that the pull-back push-out arguments of diagrams (6) and (7) prove that:

1. given A
α
→ B a morphism such that: Coker(α) ∈ X and `(A)

`(α)
→ `(B) inHC; then there exist an object A′

α′

→ B in
HD and a morphism in K(D)

A
α //

��

B

A′
α′ // B

(8)

which induces an isomorphism Coker(α) � Coker(α′) and it gives rise to a quasi-isomorphism in K(C);

2. dually given C
β
→ D a morphism such that: Ker(β) ∈ Y and `(C)

`(β)
→ `(D) in HC; then there exist an object

C
β′

→ D′ inHD and a morphism in K(D)

C
β′

// D′

��

C
β

// D

(9)

which induces an isomorphism Ker(β′) � Ker(β) and it gives rise to a quasi-isomorphism in K(C).

Moreover we note that the previous quasi-isomorphisms in K(C) induce isomorphisms inHC which proves that their
kernels and cokernels inHD lie in SH and so also `′(α) � `′(α′) and `′(β′) � `′(β) in C′.

Since C′ = HD/SH we have that the objects of C′ are those of HD (via the functor `′). So we have to prove
that given a morphism γ : ϕ(`′(X•)) → ϕ(`′(Y •)) in HC there exists a morphism δ : `′(X•) → `′(Y •) in C′ such that

10
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ϕ(δ) = γ where X•,Y • are objects in HD. The heart HC is a full subcategory of the derived category D(C) hence, as
stated in Remark 4.5 the morphism γ can be represented by the following diagram

X−1 x //

f −1

!!D
D

D
D X0

f 0

!!D
D

D
D Y−1

y
//

g−1

}}

Y0

g0

}}

Z−1 z
// Z0

(10)

where the dashed arrows f −1 and f 0 are morphisms in the quotient category C := D/S such that the left parallelogram
is commutative, while the dotted arrows g−1 and g0 are morphisms in the quotient category C such that the right
parallelogram is commutative and they form a quasi-isomorphism in D(C) between Y • and Z•. First of all we will lift
(10) in a commutative diagram inD and next we will adjust the rows following the arguments of (8) and (9) providing
a lift in C′.

By definition of a morphism in the quotient category C the morphisms f i are defined by f i : X̃i → Z̃i with
αi : X̃i ↪→ Xi and βi : Zi � Z̃i such that Coker(αi),Ker(βi) ∈ S for i ∈ {−1, 0}. Analogously the morphisms gi are
defined by gi : Ȳ i → Z̄i with ji : Ȳ i ↪→ Y i and pi : Zi � Z̄i such that Coker( ji),Ker(pi) ∈ S and i ∈ {−1, 0}. Let
denote by W i = Z̃i ⊕Zi Z̄i and note that Ker(βi) ⊕ Ker(pi) � Ker(Zi � W i) ∈ S. The following commutative diagram
with exact rows

Ker(xα−1) � � // X̃−1 ×X0 X̃0 x′ //
� _

��

X̃0 // //
� _

α0

��

C� _

α′0

��

Ker(α′′
−1) � Coker(α−1) ∈ S

gG

ttjjjjjjjjjjjjjjjj

Ker(xα−1) � � //
� _

α′
−1

��

X̃−1
xα−1 //

� _

α−1

��

X0 // // Coker(xα−1)

α′′
−1

���� ** **TTTTTTTTTTTTTTTT

Ker(x) � � //

����

X−1 x //

����

X0 // // Coker(x) Coker(α′0) � Coker(α0) ∈ S

Coker(α′
−1) � � // Coker(α−1) ∈ S

(11)

provides a morphism in K(D) between X̃−1 ×X0 X̃0 x′
→ X̃0 and X−1 x

→ X0 which induces a quasi-isomorphism in K(C)
(since it is a composition of two quasi-isomorphisms in K(C)).

The following diagram, dual to (11), proves that

S 3 Ker(q0)� _

��

// // Ker(q′0)
� _

��

S 3 Ker(q−1)←↩ Ker(q′
−1)

v�

))SSSSSSSSSSSSSS
Ker(z) � � //

� _

q′′0
��

Z−1 z
// Z0

q0

����

// // Coker(z)

q′0
����

Ker(q0z)

uuuukkkkkkkkkkkkkk
� � //

q′
−1

����

Z−1
q0z

//

q−1

����

W0

����

// // Coker(q0z)

S 3 Ker(q0)←↩ Coker(q′′0 ) K � � // W−1 z′
// W−1 ⊕Z−1 W0 // // Coker(q0z)

(12)

the morphism of complexes in K(D) between Z−1 z
→ Z0 and W−1 → W−1⊕Z−1 W0 is a quasi-isomorphism in K(C). Let

11
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consider the morphisms F−1 (which represents f −1) and F0 (which represents f 0) defined by the following diagram

X̃−1 ×X0 X̃0

F−1

))

x′ //

��

X̃0

��F0

~~

X̃−1

f −1
))

Z−1 z
//

����

Z0

���� %% %%KKKKKKKKKKK X̃0

f 0

��

Z̃−1

����

W0

����

Z̃0oooo

W−1 z′
// W−1 ⊕Z−1 W0

which is commutative in D by definition except for the dotted arrow. Nevertheless F0 ◦ x′ = z′ ◦ F−1 in the quotient
C := D/S hence, working in the categoryD, the image I := Im(F0 ◦ x′ − z′ ◦ F−1) ∈ S so by taking the quotient by I
in the target W−1⊕Z−1 W0 we obtain the following commutative diagram (inD) on the left which lifts the commutative
one (in C) on the right

X̃−1 ×X0 X̃0 x′ //

F−1

��

X̃0

F̄0

��

X−1 x //

f −1

��
�
�
� X0

f 0

��
�
�
�

W−1 z̄′
// (W−1⊕Z−1 W0)

I Z−1 z
// Z0

(13)

By diagram (11) we have Ker(x′) � Ker(xα−1) ⊆ Ker(x) ∈ Y and so Ker(x′) ∈ Y and `(x′) � `(x) ∈ HC hence
the morphism x′ satisfies the hypotheses of (9). By diagram (12) we have: Coker(z̄′) � Coker(z′) � Coker(q0z) �
Coker(z) ∈ X and so Coker(z̄′) ∈ X and `(z̄′) � `(z′) � `(z) ∈ HC hence z̄′ satisfies the hypotheses of (8). These
remarks prove that there exist commutative squares (inD)

A−1 a // A0

��

X̃−1 ×X0 X̃0 x′ // X̃0

W−1

��

z̄′
// (W−1⊕Z−1 W0)

I

B−1 b // B0

A−1

φ−1

��

a // A0

��

φ0

��

X̃−1 ×X0 X̃0 x′ //

F−1

��

X̃0

F̄0

��

W−1

��

z̄′
// (W−1⊕Z−1 W0)

I

B−1 b // B0

where A−1 := X̃−1 ×X0 X̃0 and B0 := (W−1⊕Z−1 W0)
I and the right diagram provides a lifting of ( f −1, f 0) in D with a, b

objects inHD.
Applying the same argument to the right parallelogram of (10) we obtain a lift inD (on the left) of the diagram on

the right (which is commutative in HC and we can suppose to have the same I otherwise if we have an image J , I

12
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we will pass to the quotient by I + J):

C−1

ψ−1

��

c // C0

��

ψ0

��

Ỹ−1 ×Y0 Ỹ0
y′

//

G−1

��

Ỹ0

Ḡ0

��

W−1

��

z̄′
// (W−1⊕Z−1 W0)

I

B−1 b // B0

Y−1
y

//

g−1

��
�
�
� Y0

g0

��
�
�
�

Z−1 z
// Z0

This concludes the proof since we have built a morphism

δ : `′(X•) � `′(A•)→ `′(B•) � `′(C•) � `′(Y •)

such that ϕ(δ) = γ.

4. First we remark that since ` and i are additive, they extend to an adjunction K(C)
i

// K(D)
`oo between the

homotopy categories. By [? ], the ab-tot derived functors ` and Ri form an adjoint pair D(C)
Ri

// D(D)
`oo (with `

left adjoint of Ri), and ` ◦ Ri � idD(C) by the very definition of absolute total derived functor (taking H = `).
Next, the fact that (`,Ri) is an adjoint pair of functors assures that Ri is left t-exact both for the natural t-structure

on D(C) and the natural t-structure on D(D), and for the t-structures (t(T ), t(F )) in D(C) and (t(X), t(Y)) in D(D)
(see [? , 1.3.16]). To prove the latter statement it is enough to show that fixed F• ∈ t(F ) for any X• ∈ t(X)[1] we have
D(D)(X•,Ri(F•)) = 0. This follows from the isomorphism:

D(D)(X•,Ri(F•)) � D(C)(`(X•), F•) = 0

since `(X•) ∈ `(t(X))[1] ⊆ t(T )[1] and F• ∈ t(F ). The first statement is proved similarly. Now let τt(X) : D(D)→ t(X)
be the right adjoint of the inclusion t(X) → D(D) (see [? , Proposition 1.3.3.(i)]). Then the restriction of the
composition τt(X) ◦ Ri to HC gives a functor iH : HC → HD and it is easy to see that `H is left adjoint of iH by
composing the previous adjunctions.

Next, using Lemma 5.4 we have that

`H ◦ iH = ` ◦ τt(X) ◦ Ri|HC � τt(T ) ◦ ` ◦ Ri|HC
� τt(T ) ◦ idHC � idHC

and from this we conclude that iH is fully faithful.
Finally,

iH ◦ `H (X[0]) ⊆ τt(X) ◦ (Ri ◦ `)(D≥0(D)) ⊆ τt(X)(D≥0(D)) ⊆ X[0].

Remark 5.7. Following the previous notations, point 3 of Theorem 5.6 yields the following formula:

HD/SH ' HD/S.

Remark 5.8. Let us explain two examples in which one can apply Theorem 5.6. As a first example let C be an
abelian category satisfying AB4∗ (that is, small products exist in C and such products are exact in C) and with enough
injectives, and i : C → D is an additive functor. Then, by Remark 5.3, i admits an ab-tot right derived functor. Another
interesting case is the one in which the category C admits enough i-acyclic objects. In this case one can use the same
argument as in Theorem 5.6 restricted to the bounded below derived categories in order to obtain an analogous result.
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The next result shows that the context described in Theorem 5.6 is as general as possible.

Theorem 5.9. Let D be an abelian category endowed with a torsion pair (X,Y) and let HD be the corresponding
heart with respect to the t-structure on D(D) induced by (X,Y). Let S′ be a Serre subcategory ofHD and `′ : HD →
C′ := HD/S′ be its corresponding quotient functor, and let us suppose that (`′(Y[1]), `′(X[0])) is a torsion pair on
C′. Then:

1. The class S = {D ∈ D | `′(Hi
t(D)) = 0 ∀i ∈ Z} is a Serre subcategory ofD.

2. Denoted by C := D/S the quotient category and by ` : D→C the quotient functor. Then ` is exact and the classes
(`(X), `(Y)) define a torsion pair on C.

3. There is a canonical functor ϕ : C′ → HC such that `H = ϕ ◦ `′ (for the definition of `H see Remark 5.5). The
functor ϕ is an equivalence of categories.

4. Moreover in the case in which the torsion-free class Y generatesD (or dually if the torsion class X cogenerates
D) and if (HD,C′, `′, i′) is a distinguished Giraud subcategory such that i′ admits an ab-tot right derived functor,
then the functor ` admits a right adjoint i such that the (D,C, `, i) is a distinguished Giraud subcategory of D
which induces the distinguished Giraud subcategory C′ ofHD.

Proof. 1. We have to prove that given a short exact sequence 0→S 1→S→S 2→0 in D the middle term S belongs to
S if and only if S 1, S 2 ∈ S where S is defined as S = {D ∈ D | `′(Hi

t(D)) = 0 ∀i ∈ Z}. Now, any short exact sequence
onD defines a distinguished triangle in D(D) and so one obtain the long exact sequence inHD

···H−1
t (S 2)→H0

t (S 1)→H0
t (S )→H0

t (S 2)→H1
t (S 1)→H1

t (S )→H1
t (S 2)→H2

t (S 1)··· (14)

By 4.5, H−1
t (S 2) = 0 = H2

t (S 1) and for any D ∈ D one has H0(D) = t(D)[0] as a complex concentrated in degree 0
while H1(D) = D

t(D) [1]. So the sequence (14) reduces to the sequence inHD

0→t(S 1)[0]→t(S )[0]→t(S 2)[0]→
S 1

t(S 1)
[1]→

S
t(S )

[1]→
S 2

t(S 2)
[1]→0. (15)

Let us recall that the class
S′ = {E ∈ HD | `′(E) = 0} (16)

is a Serre subcategory ofHD. So from one side it is clear that if S 1, S 2 ∈ S then t(S i)[0], S i
t(S i)

[1] ∈ S′ for any i ∈ {1, 2},
which implies that t(S )[0] and S

t(S ) [1] belong to S′, and so S ∈ S.
On the other side if S ∈ S then t(S )[0], S

t(S ) [1] ∈ S′, and by applying the functor `′ (which is exact by hypothesis)
to (14) we obtain the exact sequence in C′

0→`′(t(S 1)[0])→0→`′(t(S 2)[0])→`′
(

S 1

t(S 1)
[1]

)
→0→`′

(
S 2

t(S 2)
[1]

)
→0.

This proves that t(S 1)[0], S 2
t(S 2) [1] ∈ S′ and `′(t(S 2)[0]) � `′

(
S 1

t(S 1) [1]
)
∈ `′(X[0]) ∩ `′(Y[1]) = 0 which proves that

t(S 2)[0], S 1
t(S 1) [1] ∈ S′ and so S 2 ∈ S and S 1 ∈ S.

2. The proof relies on the same argument we have used in the proof of point 2 of Theorem 5.6.
3. First applying Remark 5.5 we see that the functor ` previously defined induces an exact functor `H : HD → HC.

Let us observe that given x a morphism in D and considering X• := [X−1 x
→ X0] as a complex with X0 placed in

degree 0 we have: Ker(x) ∈ S ∩ Y if and only if Ker(x)[1] = H1
t (X•) ∈ S′ and Coker(x) ∈ S ∩ X if and only if

Coker(x)[0] = H0
t (X•) ∈ S′. We will use this argument in order to prove that S′ = SH .

So given X• := [X−1 x
−→ X0] ∈ SH we have `(X−1)

`(x)
−→ `(X0) is zero in HC, that is: Ker(`(x)) = `(Ker(x)) = 0 and

Coker(`(x)) = `(Coker(x)) = 0. This proves that Ker(x) ∈ S∩Y and so Ker(x)[1] ∈ S′ and also Coker(x) ∈ S∩X and
so Coker(x)[0] ∈ S′. The short exact sequence 0 → Ker(x)[1] → X• → Coker(x)[0] → 0 in HD proves that X• ∈ S′

and hence SH ⊆ S′. On the other side if X• := [X−1 x
→ X0] ∈ S′ the short exact sequence 0 → Ker(x)[1] → X• →

Coker(x)[0]→ 0 proves that both Ker(x)[1] and Coker(x)[0] belong to S′ (since S′ is a Serre class inHD) and hence

14
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Ker(x) ∈ S ∩ Y; Coker(x) ∈ S ∩ X which proves that `(x) is an isomorphism and so S′ ⊆ SH .
Now by point 3 of Theorem 5.6 we have C′ := HD/S′ = HD/SH ' HD/S = HC.

4. Let us suppose that the torsion-free class Y generates D. Then it is clear that `(Y) generates the quotient
categoryD/S and so by [? , Theorem 8.2] the double heartHHD is equivalent toD andHHC � C.
If, moreover, (HD,C′, `′, i′) is a distinguished Giraud subcategory such that i′ admits an ab-tot derived functor, then
we can apply Theorem 5.6 in order to obtain a distinguished Giraud subcategory on the associated hearts. This proves
that the functor ` � ``H admits a right adjoint i such that (D,C, `, i) is a distinguished Giraud subcategory ofD which
induces the distinguished Giraud subcategory C′ ofHD.

Remark 5.10. Following the previous notations, point 3 of Theorem 5.9 states that any quotient category C′ of the
heartHD (satisfying the condition that the quotient functor `′ : HD → C′ moves the torsion pair) is equivalent to the
heart of a quotient category of C. Moreover we remark that if we take (C′, `′) = (HC, `H ) and we apply Theorem 5.9
we reconstruct exactly the category C.
Hence there is a one to one correspondence between quotient categories of D which moves the torsion pair (X,Y)
and quotient categories ofHD which moves the torsion pair (Y[1],X[0]).
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