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Abstract. We consider stochastic differential games with N players, linear-Gaussian dynamics
in arbitrary state-space dimension, and long-time-average cost with quadratic running cost. Admis-
sible controls are feedbacks for which the system is ergodic. We first study the existence of affine
Nash equilibria by means of an associated system of N Hamilton–Jacobi–Bellman (HJB) and N
Kolmogorov–Fokker–Planck (KFP) partial differential equations. We give necessary and sufficient
conditions for the existence and uniqueness of quadratic-Gaussian solutions in terms of the solvability
of suitable algebraic Riccati and Sylvester equations. Under a symmetry condition on the running
costs and for nearly identical players, we study the large population limit, N tending to infinity,
and find a unique quadratic-Gaussian solution of the pair of mean-field game HJB–KFP equations.
Examples of explicit solutions are given, in particular for consensus problems.
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1. Introduction. We consider a system of N stochastic differential equations
(SDEs)

(1.1) dX i
t = (AiX i

t − αi
t)dt+ σidW i

t , X i
0 = xi ∈ R

d , i = 1, . . . , N ,

where Ai, σi are given d×d matrices with det(σi) �= 0, (W 1
t , . . . ,W

N
t ) are N indepen-

dent d-dimensional standard Brownian motions, and αi
t : [0,+∞[→ R

d is a process
adapted to W i

t which represents the control of the ith player of the differential game
that we now describe. For each initial positions X = (x1, . . . , xN ) ∈ R

Nd, we consider
for the ith player controls whose associated process is ergodic and the long-time-
average cost functional with quadratic running cost
(1.2)

J i(X,α1, . . . , αN ) := lim inf
T→∞

1

T
E

[∫ T

0

(αi
t)

TRiαi
t

2
+ (Xt −Xi)

TQi(Xt −Xi) dt

]
,

where E denotes the expected value, Ri are positive definite symmetric d×d matrices,
Qi are symmetric Nd×Nd matrices, and Xi ∈ R

Nd are given reference positions.
For this N -person game we study the following two problems:
1. the synthesis of Nash equilibrium strategies in feedback form, and of the

probability distribution for the position of each player at the equilibrium,
from a system of elliptic partial differential equations associated to the game;
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L-Q N-PERSON AND MEAN-FIELD GAMES 3023

2. the large population limits as N → ∞ of these strategies and distributions
and their connection with the mean-field games partial differential equations
introduced by Lasry and Lions [30, 32].

The first problem is classicaly formulated within the theory of Hamilton–Jacobi–
Bellman (HJB) equations associated to N -person differential games, as was done in
[8, 9] for compact state space. This leads to a system of N PDEs in R

Nd strongly
coupled in the gradients of the unknown value functions. Instead, we exploit the
independence of the dynamics of different players, which makes the game merely cost-
coupled, and follow the approach of Lasry and Lions [30, 32] leading to a system of N
nonlinear PDEs in R

d of HJB type coupled withN Kolmogorov–Fokker–Planck (KFP)
equations for the invariant measure of the process associated to the Nash equilibrium.
This has several advantages, including a much weaker coupling of the new system
of PDEs. We refer to [4] for more information on the connections between the two
approaches. In view of the linear-quadratic-Gaussian structure of the game, we look
for solutions of the HJB–KFP system in the class of quadratic value functions and
multivariate Gaussian distributions and give necessary and sufficient conditions for
both existence and uniqueness of solutions in this class. This produces Nash equilibria
in the form of affine feedbacks.

The second problem is set in the framework of nearly identical players, as in [2].
We first characterize the existence and uniqueness of identically distributed solutions,
and then take the limit of these solutions as N → ∞ and show that it solves the
system of two mean-field games PDEs in R

d

(1.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−tr

(
σσT

2 D2v
)
+

1

2
∇vTR−1∇v −∇vTAx+ λ = V̂ [m](x),

−tr
(

σσT

2 D2m
)
− div

(
m · (R−1∇v −Ax)

)
= 0,∫

Rd m(x) dx = 1 , m > 0 ,

in the unknowns (v,m, λ) with v,m ∈ C2(Rd) and λ ∈ R, where tr and div are the
trace of a matrix and the divergence operator, respectively, and V̂ [m] is an integral
operator sending probability densities into quadratic polynomials defined in terms of
the blocks of the matrix Qi. Moreover, the solution obtained in the large population
limit is the unique having v quadratic and m Gaussian. We also show that such a
solution is unique among general solutions of (1.3) under a condition on a submatrix
of Qi meaning that imitation is not rewarding in the large population limit.

The strategy of proof for both problems is the same: we insert the coefficients
of the quadratic value function and of the Gaussian distribution into the system of
partial differential equations and show that this reduces the problem to the solvability
of an algebraic Riccati equation (ARE) and a Sylvester equation. Besides proving
the existence of solutions, these matrix equations can be used to solve explicitly
some examples or can be solved numerically in more complex cases. There is a large
literature on the numerical resolution of Riccati equations for which we refer, e.g., to
[13] and its bibliography.

We find explicit formulas for the solutions of (1.3) in the case the diffusion matrix
σ and the cost matrix R are constants times the identity matrix, and the drift A of
the system is either a symmetric or a nondefective matrix. In particular we treat cost
functionals depending on the state via the quadratic form

(1.4) F i(X1, . . . , XN ) =
1

N − 1

∑
j �=i

(X i −Xj)TPN(X i −Xj), i = 1, . . . , N,

with PN → P̂ > 0, a model arising in consensus problems. We recall that a consensus
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3024 MARTINO BARDI AND FABIO S. PRIULI

process aims at reaching an agreement among several agents on some common state
properties. This is an active area of research within multiagent control and coordi-
nation. We refer to [36] for the motivations of consensus problems, their connection
with mean field control theory, and references to the large literature on the subject.
Note that the cost functional (1.4) pushes the players to take positions close to each
other. We show the existence of a quadratic-Gaussian solution with mean μ for each
solution of Aiμ = 0. Therefore, such solutions and the corresponding Nash equilibria
can be infinitely many: note that here imitation is rewarding.

Most of the results of this paper and explicit formulas for the solutions were
derived by Bardi in [2] in the case of one-dimensional state space, i.e., d = 1, where
the analysis is much simpler because the search for quadratic-Gaussian solutions leads
to scalar polynomial equations of degree at most two. For d > 1, instead, we arrive at
some nontrivial AREs coupled with Sylvester equations that require a much heavier
use of matrix algebra and do not admit explicit solutions in general. In a sequel
of the present paper [37], Priuli studies several singular limits of the N -person and
mean-field games considered here, such as the vanishing viscosity, the cheap control,
and the vanishing discount limit.

Linear-quadratic (LQ) differential games have a large literature; see the books
[6, 19] and the references therein. Large population limits for multiagent systems
were studied by Huang, Caines, and Malhame, independently of Lasry and Lions.
They introduced a method named Nash certainty equivalence principle [24, 25, 26]
that first produces a feedback from a mean-field equation and then shows that it is
an ε-Nash equilibrium for the N -person game if N is large enough. We cannot review
here the number of papers inspired by their approach, but let us mention [34] and
[11] for LQ problems, [7] about robust control, [35] for recent progress on nonlinear
systems, [36] for consensus problems, [29] on the rate of convergence as N → ∞, and
the references therein. Some of these papers also deal with ergodic cost functionals,
e.g., [26, 34], but their assumptions and methods differ from ours.

Concerning the Lasry–Lions approach to mean-field games, besides their pioneer-
ing papers [30, 31, 32] let us mention the lecture notes [15] and [23], [1] on numerical
methods, [21] on discrete games, [16] on the long time behavior of solutions, [20] on
the large population limit for nonlinear ergodic control of several populations, and
the thesis [17] on multipopulation models. A very recent survey on mean-field games
focusing on the comparison with the theory of mean-field type control is [10]. There
is a wide spectrum of applications of mean-field games that we do not try to list here
and refer instead to the quoted literature.

The paper is organized as follows. In section 2 we define admissible strategies,
introduce the system of HJB–KFP PDEs associated to the N -person game, and recall
some known facts about matrices and AREs. In section 3 we present our main result
about Nash equilibrium strategies for the N -players game. In section 4 we define the
games with nearly identical players and give the existence and uniqueness result in that
case. Section 5 is devoted to the analysis of the limit when the number of players tends
to infinity, under natural rescaling assumptions on the matrix coefficients of the game.
Finally, in section 6 we present various explicit sufficient conditions for the validity of
the previous theory and some explicit solutions, in particular for consensus problems.

2. Preliminaries.

2.1. Some properties of symmetric matrices. In the following, we will use
the notation Matd×d(R) for the linear space of real d × d matrices, Symd for the
subspace of real symmetric d× d matrices, and Id for the identical d× d matrix.
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L-Q N-PERSON AND MEAN-FIELD GAMES 3025

Given a matrix M ∈ Symd, we say that M is positive semidefinite (resp., positive
definite) if for all x ∈ R

d, there holds xTMx ≥ 0 (resp., if for all x ∈ R
d \ {0}, there

holds xTMx > 0). We will also use the notation Sym+
d for the set of real symmetric

and positive definite d× d matrices.
Finally, given a (real) d×d matrix M , we denote its spectrum by spec(M). Recall

that eigenvalues of a matrix M depend continuously on the coefficients of the matrix
(see [38]), so that if we have Mn → M , then in particular the eigenvalues of Mn

converge to eigenvalues of M .
We summarize in the following proposition some facts that will be used to prove

our results.
Proposition 2.1. The following facts hold:
(i) Let H ∈ Symd and K ∈ Sym+

d . Then, HK is diagonalizable with real eigen-
values. Moreover, the number of positive (resp., negative) eigenvalues of HK
is equal to the number of positive (resp., negative) eigenvalues of H. The
same holds for KH.

(ii) By defining for every matrix M ∈ Symd

(2.1) ‖M‖ := max {|�| ; � ∈ spec(M)} ,
we obtain a norm. Moreover, if M is positive semidefinite, then ‖M‖ is
simply the largest eigenvalue of M , i.e.,

‖M‖ = max spec(M) .

(iii) Let H,K ∈ Symd be positive semidefinite matrices and let L ∈ Sym+
d . If

H −K is positive semidefinite, then ‖H‖ ≥ ‖K‖ and

max spec(HL) ≥ max spec(KL) .

Sketch of the proof. We refer to [38] for a proof of (i) and (ii). Concerning (iii),
the part about ‖H‖ ≥ ‖K‖ follows from Weyl’s inequalities (see [38]): by setting
λ∗(M) := max spec(M), we obtain

‖K‖ = λ∗(K) ≤ λ∗(H) + λ∗(K −H) ≤ λ∗(H) = ‖H‖ .
The remaining part requires recalling that the spectrum of a matrix remains the same
under changes of basis, and that H −K ≥ 0 implies MTHM −MTKM ≥ 0 for all
matrices M ∈ Matd×d(R). Therefore, we obtain

λ∗(HL) = λ∗(
√
LHL(

√
L)−1) = λ∗(

√
LH

√
L) ≥ λ∗(

√
LK

√
L) = λ∗(KL) ,

and this completes the proof.

2.2. Admissible strategies. We consider strategies whose corresponding solu-
tion to (1.1) is ergodic.

Definition 2.2. A strategy αi
t is said to be admissible (for the ith player) if it

is a process adapted to the Brownian motion W i
t with E[|αi

t|2] bounded on [0, T ] for
all T , and such that the corresponding solution X i

t to (1.1) satisfies the following:
• E[(X i

t )(X
i
t)

T ] is bounded on [0, T ] for every T .
• X i

t is ergodic in the following sense: there exists a probability measure mi =
mi(αi) on R

d such that∫
Rd

|x| dmi(x) < ∞
∫
Rd

|x|2 dmi(x) < ∞
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3026 MARTINO BARDI AND FABIO S. PRIULI

and

lim
T→+∞

1

T
E

[∫
Rd

g(X i
t) dt

]
=

∫
Rd

g(x) dmi(x) ,

locally uniformly w.r.t. the initial state X i
0 for all functions g which are poly-

nomials of degree at most 2.
Below, we prove that affine strategies are admissible. Preliminarily, let us intro-

duce the notation N (μ, V ) for a multivariate Gaussian distribution with mean μ ∈ R
d

and covariance V ∈ Sym+
d , i.e., a distribution with density

γ exp

{
− 1

2
(x− μ)TV −1(x− μ)

}
, where γ := (2π)−d/2

√
det(V ) .

Moreover, we say that a probability measure is an invariant measure for the process
Xt in R

d if ∫
Rd

E[φ(Xt) |X0 = y] dμ(y) =

∫
Rd

φ(x) dμ(x)

for all t ≥ 0 and φ : Rd → R bounded and uniformly continuous.
Proposition 2.3. For the affine feedback

(2.2) αi(x) = Kix+ ci , x ∈ R
d ,

with Ki ∈ Matd×d(R) such that the matrix Ai−Ki has only eigenvalues with negative
real part, and ci ∈ R

d, consider the process αi
t := αi(X i

t), where X i
t solves

(2.3) dX i
t = [(Ai −Ki)X i

t − ci]dt+ σidW i
t .

Then αi
t is admissible. Moreover, the process X i

t has a unique invariant measure
mi given by a multivariate Gaussian N (μ, V ) with mean μ = (Ai − Ki)−1ci and
covariance matrix V which satisfies the algebraic relation

(2.4) (Ai −Ki)V + V (Ai −Ki)T + σi(σi)T = 0 ,

and X i
t is ergodic w.r.t. such a measure mi.

Remark 2.1. Note that (2.4) satisfied by the covariance matrix V admits a unique
solution. Indeed, it is a Sylvester equation of the form

MY + Y N = −σi(σi)T

with M = NT , so that the matrices M and −N have no eigenvalues in common
(see [19, Lemma 2.31]).

Proof of Proposition 2.3. It is well known (see, for instance, [14, Theorem 4.3]) that
given a matrix M ∈ Matd×d(R) whose eigenvalues have all strictly negative real part,
it is always possible to find a matrix P ∈ Sym+

d such that MTP +PM = −I. We now
claim that, by denoting with P i the symmetric positive definite matrix corresponding
to M = Ai − Ki, V (x) := xTP ix is a Lyapunov-like function for the system (2.3).
Indeed, by denoting with L the infinitesimal generator of the process, we have

LV (x) = tr

(
σi(σi)T

2
P i

)
+ xTP i(Ai −Ki)x+

(
(Ai −Ki)x

)T
P ix

= tr

(
σi(σi)T

2
P i

)
− |x|2 ,
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which is strictly negative outside a ball of radius R >
√

σi(σi)T

2 P i. Hence, the

existence of a unique invariant measure mi for (2.3) follows by exploiting the theory
of Khasminskii [28] or the results in [3]. Observing that if a unique invariant measure
exists, then such a measure is also ergodic in the sense of Definition 2.2 (see, e.g., [18,
Theorem 5.16]), we have verified the second property required by admissibility.

It is well known (cf. [27, section 5.6]) that, for solutions of linear stochastic
equations (2.3), the mean vector mi(t) := E[X i

t ] and the covariance matrix vi(t) :=
E[(X i

t )(X
i
t)

T ] are, respectively, solutions of

ṁi(t) = (Ai −Ki)mi(t)− ci

and

v̇i(t) = (Ai −Ki) vi(t) + vi(t)(A
i −Ki)T + σi(σi)T ,

whence boundedness of first and second moments follows.
Finally, since a multivariate Gaussian N (μ, V ) with μ = (Ai − Ki)−1ci and V

solving (2.4) is indeed a stationary solution of (2.3), by uniqueness we get mi =
N (μ, V ).

2.3. Algebraic Riccati equations. We recall here some basic facts about
AREs.

Proposition 2.4. Consider the ARE

(2.5) YRY −Q = 0

with R ∈ Sym+
d and Q ∈ Symd, and introduce the following notation:

(2.6) ΞS :=

[
Id
S

]
∈ Mat2d×d(R) , H :=

(
0 R
Q 0

)
∈ Mat2d×2d(R) ,

where S is any element of Matd×d(R), and ImΞS for the d-dimensional linear subspace
of R2d spanned by the columns of ΞS . Then the following facts hold:

(i) Y is a solution of (2.5) if and only if ImΞY is H-invariant, i.e., if and only
if Hξ ∈ ImΞ for all ξ ∈ ImΞ.

(ii) If the matrix H has no purely imaginary nonzero eigenvalues, then (2.5) has
solutions Y such that Y = Y T .

(iii) If Q is positive definite, then all eigenvalues of H are real and different from
zero, and (2.5) has a unique symmetric solution Y such that the matrix RY
has only positive eigenvalues. In particular,

(2.7) spec(RY ) = spec(H) ∩ (0,+∞) ,

and Y is also the unique symmetric positive definite solution to (2.5).
Sketch of the proof. The proof follows from standard arguments about Riccati

equations that can be found in [19, 33]. We give here some explicit references for
sake of completeness. Part (i) is contained in Proposition 7.1.1 of [33]. Part (ii) is
a particular case of Theorem 8.1.7 in [33]. Concerning (iii), if we assume Q positive
definite, then � is an eigenvalue for H if and only if � is a solution of the equation

0 = det(H− �I2d) = det

( −�Id R
Q −�Id

)
= det(�2Id −RQ)

i.e., if and only if �2 is an eigenvalue of the d×d matrixRQ. But we are assuming that
both R and Q are positive definite, so RQ has only positive eigenvalues and therefore
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3028 MARTINO BARDI AND FABIO S. PRIULI

all eigenvalues of H are in R \ {0}. Now Theorem 8.3.2 of [33] ensures that there is a
unique solution Y of (2.5) in Symd such that RY has only positive eigenvalues and
such solution is characterized by (2.7). In turn, (2.7) implies that Y ∈ Sym+

d . Finally,
assume there is another solution Z ∈ Sym+

d . Then RZ would have only positive
eigenvalues too, and hence we would have Z = Y by the characterization above.

2.4. HJB and KFP equations associated to the N-person game. We
focus our attention on the game (1.1)–(1.2) in order to write the system of HJB–KFP
equations associated to the game (1.1)–(1.2), as in [2, 30, 32]. We start by remarking
that the part of the cost depending on the state of the game can be also written as

F i(X1, . . . , XN) := (X −Xi)
TQi(X −Xi) =

N∑
j,k=1

(Xj −Xi
j
)TQi

jk(X
k −Xi

k
) ,

(2.8)

where the matrices Qi
jk are d×d blocks of Qi. The standing assumptions on the game

are summed up in the following condition:
(H) Assume that σi in (1.1) are invertible matrices, that Ri in (1.2) belong to

Sym+
d , and that Qi in (1.2) are symmetric matrices. Moreover, assume that

blocks Qi
ii belong to Sym+

d as well.
Remark 2.2. Each block Qi

jk collects the costs for player i per unit of displace-

ment of players j and k from their reference positions Xi
j
and Xi

k
, respectively.

The assumption Qi
ii > 0 means that his own reference position Xi

i
is a preferred

position for the ith player. This condition has a clear interpretation and makes
some calculations easier, but for the validity of Theorem 3.1 it can be weakened to
Qi

ii + (Ai)TRiAi/2 > 0.
For the game (1.1)–(1.2) under consideration, we observe that the ith Hamiltonian

takes the form

Hi(x, p) := min
ω

{
−ωT Ri

2
ω − pT

(
Aix− ω

)}
= −pTAix+min

ω

{
−ωT Ri

2
ω − pTω

}
.

Since the minimum is attained at (Ri)−1p, we get

Hi(x, p) = −((Ri)−1p)T
Ri

2
((Ri)−1p)− pT

(
Aix− (Ri)−1p

)
= pT

(Ri)−1

2
p− pTAix.

We introduce the notation

(2.9) f i(x;m1, . . . ,mN) :=

∫
Rd(N−1)

F i(ξ1, . . . , ξi−1, x, ξi+1, . . . ξN )
∏
j �=i

dmj(ξj)

for any N -vector of probability measures (m1, . . . ,mN), and

νi :=
(σi)(σi)T

2
∈ Matd×d(R) .

The classical system of N HJB equations in R
Nd whose solutions generate Nash

feedback equilibria is, for i = 1, . . . , N ;

(2.10) −
N∑
j=1

tr(νi D2
xjvi)+Hi(xi,∇xivi)+

∑
j �=i

∂Hj

∂p
(xj ,∇xjvj) ·∇xjvi+λi = F i(X);
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L-Q N-PERSON AND MEAN-FIELD GAMES 3029

see [8, 9] and the references therein, where X := (x1, . . . , xN ), and the unknowns
are vi(X) and the constants λi, i = 1, . . . , N . Note that this system of PDEs is
strongly coupled via the terms ∇xjvj appearing in the ith equation. In view of the
independence of the dynamics of the different players, we follow the approach by
Lasry and Lions [30, 32] and suppose that the solution vi of (2.10) depends only on
xi, i = 1, . . . , N . We consider the linearization around vi of the ith equation of (2.10),
that is,

−tr(νi D2mi)− div

(
mi ∂H

i

∂p
(x,∇vi)

)
= 0 in R

d, i = 1, . . . , N,

and assume that this system has positive solutions mi with
∫
Rd m

i(x) dx = 1. Next we

multiply the ith equation in (2.10) by Πj �=im
j(xj) and integrate over R(N−1)d w.r.t.

dxj , j �= i. Then we arrive at the system of HJB–KFP equations in R
d

(2.11)

⎧⎪⎪⎨⎪⎪⎩
−tr(νi D2vi) +Hi(x,∇vi) + λi = f i(x;m1, . . . ,mN ),

−tr(νi D2mi)− div

(
mi ∂H

i

∂p
(x,∇vi)

)
= 0,∫

Rd m
i(x) dx = 1 , mi > 0,

i = 1, . . . , N,

where vi : Rd → R, λi are real numbers and, with a slight abuse of notation, we
have denoted with mi a measure as well as its density. As in [2], since we are not in
the periodic setting of [30, 32], the solutions vi are expected to be unbounded and
cannot be normalized by prescribing the value of their average. This is the system we
will study in the next two sections. It will be fully justified by Theorem 3.1, where
we construct directly a Nash equilibrium in feedback form from a solution of (2.11)
without resorting to the harder system (2.10).

3. N-person game. First, define the following auxiliary matrix B∈MatNd×Nd(R)
as

(3.1) B :=
(Bαβ

)
α,β=1,...,N

, Bαβ := −Qα
αβ − δαβ

(Aα)TRαAα

2
∈ Matd×d(R) ,

where δαβ is the Kronecker delta, and an auxiliary vector

(3.2) P :=

⎛⎜⎜⎝
−∑N

j=1 Q
1
1j X1

j

...

−∑N
j=1 Q

N
Nj XN

j

⎞⎟⎟⎠ ∈ R
Nd .

Also, denote with [B, P ] ∈ MatNd×(Nd+1)(R) the matrix whose columns are the
columns of B and the vector P , i.e.,

(3.3) [B, P ] :=
(B1, . . . ,BNd, P

)
,

Bj being the columns of the matrix B. With this notation we can state the following
conditions for existence and uniqueness of solution to the associated system of HJB
and KFP equations:

(E) For each i ∈ {1, . . . , N}, every symmetric and positive definite solution Y of
the ARE

(3.4) Y
νiRiνi

2
Y =

(Ai)TRiAi

2
+Qi

ii
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3030 MARTINO BARDI AND FABIO S. PRIULI

is also a solution to the Sylvester equation

(3.5) Y νiRi −RiνiY = RiAi − (Ai)TRi

Moreover, the matrices B ∈ MatNd×Nd(R) and [B, P ] ∈ MatNd×(Nd+1)(R)
have the same rank, where B is the matrix defined in (3.1), P is the vector
defined in (3.2), and [B, P ] is the matrix defined in (3.3).

(U) The block matrix B defined by (3.1) is invertible.
Some explicit conditions on the data ensuring (E) are discussed in section 6. Our

main result for the games with N players is the following.
Theorem 3.1. Assume that the N -players game having dynamics (1.1) and

costs (1.2) satisfies assumptions (H). Then, the associated system of 2N HJB–KFP
equations (2.11) admits solutions (vi,mi, λi)1≤i≤N of the form vi quadratic function
and mi multivariate Gaussian, i.e., of the form

(3.6) vi(x) = xT Λi

2
x+ (ρi)Tx , mi = N (μi, (Σi)−1) , λi ∈ R ,

for suitable symmetric matrices Λi and Σi, Σi positive definite, and vectors ρi, μi ∈
R

d, if and only if condition (E) is satisfied. In particular, Σi is the unique solution
in Sym+

d of the Riccati equation (3.4), Λi = Ri(νiΣi + Ai), μ = (μ1, . . . , μN ) solves
Bμ = P , and ρi = −RiνiΣiμi.

Moreover, solutions of the form (3.6) are unique if and only if condition (U) is
satisfied and, if this is the case, the affine feedbacks

(3.7) αi(x) = (Ri)−1∇vi(x) , x ∈ R
d, i = 1, . . . , N

provide a Nash equilibrium strategy for all initial positions X ∈ R
Nd, among the

admissible strategies, and J i(X,α) = λi for all X and all i.
Proof. The proof will be divided in several steps. Steps 1 to 4 study the particular

form taken by system (2.11) when solutions are assumed to have the form (3.6).
Step 5 proves the equivalence between existence and (E). Step 6 proves the equivalence
between uniqueness and (U). Finally, Step 7 shows that the affine strategies (3.7) give
a Nash equilibrium for the game (1.1)–(1.2).

Step 1. We start by inserting functions of the form (3.6) into the system (2.11),
beginning with the second equation (KFP). Notice that the hypothesis on the measure
mi can be rewritten in terms of its density, which we denote again as mi, as follows:

(3.8) mi(x) = γi exp

{
− 1

2
(x− μi)TΣi(x− μi)

}
, γi = (2π)−d/2

√
det(Σi) ,

for a matrix Σi ∈ Sym+
d and a vector μi ∈ R

d. In particular, from (3.8) we deduce
∇mi(x) = −mi(x)Σi(x − μi). Similarly, the condition on the value function can be
rewritten in terms of its gradient as follows:

(3.9) ∇vi(x) = Λix+ ρi .

Hence, by substituting these expressions in the second equation of (2.11) and recalling
the expressions of Hi and ∇mi, we obtain

0 = − tr(νi D2mi)− div

(
mi ∂H

i

∂p
(x,∇vi)

)
= − div

(
νi∇mi +mi ∂H

i

∂p
(x,∇vi)

)
= div

(
mi

(
νiΣi(x− μi)− (Ri)−1∇vi +Aix

))
.
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Therefore, (3.9) implies

0 = div
(
mi

(
νiΣi(x− μi)− (Ri)−1Λix− (Ri)−1ρi +Aix

))
= mi tr(νiΣi − (Ri)−1Λi +Ai)

+∇mi · [νiΣi(x − μi) + (Ai − (Ri)−1Λi)x− (Ri)−1ρi
]

= −mi
{
(x− μi)TΣiνiΣi(x − μi) + (x− μi)TΣi(Ai − (Ri)−1Λi)x

− (x− μi)TΣi(Ri)−1ρi − tr(νiΣi − (Ri)−1Λi +Ai)
}
.

Since mi(x) > 0, this means that the other factor must vanish for every x ∈ R
d. But

such a factor is a quadratic form, and this means that its coefficients must be zero.
In turn, this leads to the following matrix relations:

(3.10) νiΣi − (Ri)−1Λi +Ai = 0 , νiΣiμi + (Ri)−1ρi = 0 .

In conclusion, a necessary and sufficient condition for having solutions to the KFP
equation, of the form (3.6), is that the value function vi is related to the measure mi

through

(3.11) Λi = Ri
(
νiΣi +Ai

)
, ρi = −RiνiΣiμi ,

where the equality for Λi also imposes that the matrix Ri
(
νiΣi +Ai

)
is symmetric.

Step 2. Let us consider now the first equation of (2.11) (HJB). By exploit-
ing (3.11), we have

tr(νi D2vi) = div(νi ∇vi) = div(νiRiνiΣi(x− μi) + νiRiAix)

= tr(νiRiνiΣi + νiRiAi) ,

Hi(x,∇vi) =
1

2
(∇vi)T (Ri)−1∇vi − (∇vi)TAix ,

and hence the equation can be rewritten as

−tr(νiRiνiΣi + νiRiAi) +
1

2
(x − μi)TΣiνiRiνiΣi(x− μi) +

1

2
xT (Ai)TRiAix

+
1

2

(
xT (Ai)TRiνiΣi(x− μi) + (x− μi)TΣiνiRiAix

)
− (x − μi)TΣiνiRiAix− xT (Ai)TRiAix+ λi = f i(x;m1, . . . ,mN)

or, equivalently,

−tr(νiRiνiΣi + νiRiAi) +
1

2
(x− μi)TΣiνiRiνiΣi(x− μi)− 1

2
xT (Ai)TRiAix

+
1

2

(
xT (Ai)TRiνiΣi(x− μi)− (x− μi)TΣiνiRiAix

)
+ λi = f i(x;m1, . . . ,mN ) .

Taking into account that Ri, νi, and Σi are all symmetric matrices, the term in the
second line vanishes and we obtain

−tr(νiRiνiΣi + νiRiAi) + (x− μi)TΣi ν
iRiνi

2
Σi(x− μi)

− xT (Ai)TRiAi

2
x+ λi = f i(x;m1, . . . ,mN ) .(3.12)
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3032 MARTINO BARDI AND FABIO S. PRIULI

We can now exploit (3.8) to compute explicitly the expression of f i. Indeed, since
mi = N (μi, (Σi)−1), we have

f i(X i;m1, . . . ,mN ) =

N∑
j,k=1

∫
Rd(N−1)

(Xj −Xi
j
)TQi

jk(X
k −Xi

k
)
∏
� �=i

dm�(X�)

= (X i −Xi
i
)TQi

ii(X
i−Xi

i
) + (X i −Xi

i
)T

⎛⎝∑
k �=i

Qi
ik(μ

k −Xi
k
)

⎞⎠
+

⎛⎝∑
j �=i

(μj −Xi
j
)TQi

ji

⎞⎠ (X i −Xi
i
)

+
∑

j,k �=i ,j �=k

(μj −Xi
j
)TQi

jk(μ
k −Xi

k
)

+
∑
j �=i

(
tr(Qi

jj(Σ
i)−1) + (μj −Xi

j
)TQi

jj(μ
j −Xi

j
)
)

=: (X i)TF i
2X

i + (X i)TF i
1,1 + F i

1,2X
i + F i

0 ,

where we have used the relation E[vTMv] = tr(MΣ−1) + (μ)TMμ, which holds for
any symmetric matrix M and any vector of random variables v whose expected value
is μ and whose covariance matrix is Σ−1, to compute explicitly the last quadratic
term. For later use, we write explicitly the expressions of F i

2 , F
i
1,1, F

i
1,2, and F i

0 :

F i
2 = Qi

ii ,

F i
1,1 = −Qi

iiXi
i
+

⎛⎝∑
j �=i

Qi
ij(μ

j −Xi
j
)

⎞⎠ ,

F i
1,2 = −(Xi

i
)TQi

ii +

⎛⎝∑
j �=i

(μj −Xi
j
)TQi

ji

⎞⎠ ,

F i
0 = (Xi

i
)TQi

iiXi
i − (Xi

i
)T

⎛⎝∑
j �=i

Qi
ij(μ

j −Xi
j
)

⎞⎠−
⎛⎝∑

j �=i

(μj −Xi
j
)TQi

ji

⎞⎠Xi
i

+
∑

j,k �=i ,j �=k

(μj −Xi
j
)TQi

jk(μ
k −Xi

k
)

+
∑
j �=i

(
tr(Qi

jj(Σ
i)−1) + (μj −Xi

j
)TQi

jj(μ
j −Xi

j
)
)
.

Once again, we can interpret (3.12), which is equivalent to the first equation
of (2.11), as an equality between quadratic forms to be satisfied for every x ∈ R

d. This
means that we must equate the corresponding coefficients. Notice that the assumption
of Qi symmetric in (2.8) implies that (Qi

jk)
T = Qi

kj for every j, k ∈ {1, . . . , N}. In

particular, Qi
ii ∈ Symd. Hence, F i

1,1 = (F i
1,2)

T and the two conditions on the linear
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terms

−xT ΣiνiRiνiΣi

2
μi = xTF i

1,1 − (μi)T
ΣiνiRiνiΣi

2
x = F i

1,2x

do coincide. This leads to three conditions on the coefficients of the quadratic forms
which have to be satisfied by the matrices Σi, the vectors μi, and the real numbers
λi:

Σi ν
iRiνi

2
Σi − (Ai)TRiAi

2
= F i

2(3.13)

− ΣiνiRiνiΣi

2
μi = F i

1,1 ,(3.14)

(μi)T
ΣiνiRiνiΣi

2
μi − tr(νiRiνiΣi + νiRiAi) + λi = F i

0 ,(3.15)

R =
νiRiνi

2
, Q =

(Ai)TRiAi

2
+Qi

ii .

Hence, its solutions can be found as d-dimensional invariant graph subspaces of the
2d × 2d matrix H defined in (2.6). Since our standing assumptions (H) imply that
both R and Q are positive definite, we can apply Proposition 2.4(ii)–(iii) to conclude
that (3.13) has a unique solution Σi in Sym+

d , representing the inverse of the covariance
matrix for our multivariate Gaussian mi.

Step 4. Concerning (3.14), we can rewrite the condition as

(3.16) − ΣiνiRiνiΣi

2
μi −

∑
j �=i

Qi
ijμ

j = −
N∑
j=1

Qi
ij Xi

j

or, equivalently, by collecting the relations (3.16) for i = 1, . . . , N ,

(3.17) B

⎛⎜⎝ μ1

...
μN

⎞⎟⎠ = P ,

where B is the Nd × Nd matrix defined in (3.1) and P is the vector in R
Nd de-

fined by (3.2). Here, we have also used the fact that each Σp solves the Riccati
equation (3.13) to rewrite the terms Bpp as

Bpp = − ΣpνpRpνpΣp

2
= − (Ap)TRpAp

2
−Qp

pp ,

i.e., in the form expected in (3.1). Finally, (3.15) becomes

λi = F i
0 − (μi)T

ΣiνiRiνiΣi

2
μi + tr(νiRiνiΣi + νiRiAi) .

Step 5. So far we have mostly manipulated the equations of (2.11), under the
assumptions (3.6), arriving at an equivalent system of matrix equations (3.11), (3.13),
(3.14), and (3.15).

Now let us assume that condition (E) holds. We have seen that each equa-
tion (3.13), for i ∈ {1, . . . , N}, is an ARE which admits a unique symmetric and
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positive definite solution Σi. By (E), the matrices Σi also satisfy the Sylvester equa-
tion (3.5) and thus

RiνiΣi +RiAi = ΣiνiRi + (Ai)TRi =
(
RiνiΣi +RiAi

)T

,

so that, by setting Λi according to the first relation in (3.11), we obtain a symmetric
matrix as required. Moreover, the assumption on B and [B, P ] in (E) ensures the
existence of a solution (μ1, . . . , μN ) to the linear system (3.17) of Nd equations in
Nd unknowns. By using the solutions Σi and μi in (3.15) and in the second relation
of (3.11), we also find admissible values λi and ρi, and these complete the construction
of a solution of the form (3.6).

Vice versa, let us assume that a solution of the form (3.6) exists for suitable
matrices Λi ∈ Symd, Σ

i ∈ Sym+
d , and suitable vectors ρi, μi. Then, by the analysis in

Step 1, we necessarily have (3.11). Furthermore, by the analysis in Step 2, Σi must
solve the ARE (3.13) and μi and λi must be given by solutions to (3.14) and (3.15). In
particular, the system (3.17) admits at least a solution, and this implies the condition
on the rank of B and [B, P ]. Finally, by combining the symmetry of Λi with (3.11),
one has that the (unique) solution to (3.13) has to satisfy

0 = Λi − (Λi)T = RiνiΣi +RiAi −
(
RiνiΣi +RiAi

)T

,

which is equivalent to (3.5). Thus, both requirements of (E) must be necessarily
satisfied.

Step 6. We now focus our attention on the uniqueness. For (3.13) there is nothing
to prove, because uniqueness of solution in Sym+

d always follows from Proposition 2.4
under hypotheses (H). For (3.14), the equivalence between (U) and the uniqueness
of solution (μ1, . . . , μN ) is evident when considering the equivalent form (3.17). Fi-
nally, once we have a unique choice for the matrices (Σ1, . . . ,ΣN ) and for the vectors
(μ1, . . . , μN ), the uniqueness of λi, Λi, and ρi is verified immediately.

Step 7. It remains to prove that the affine feedbacks (3.7) provide a Nash equi-
librium strategy for the game. Consider

αi(x) = (Ri)−1∇vi(x) = (Ri)−1(Λix+ ρi) = (νiΣi +Ai)x− νiΣiμi .

By Proposition 2.3, we know that αi(x) is admissible and that the ergodic measure
associated to the process X i

t which solves

dX i
t = [−νiΣiX i

t + νiΣiμi]dt+ σidW i
t

is a multivariate Gaussian N (μ, V ) with mean

μ = (−νiΣi)−1(−νiΣiμi) = μi

and covariance matrix V = (Σi)−1, since

(−νiΣi)(Σi)−1 + (Σi)−1(−νiΣi)T + σi(σi)T = −2νi + σi(σi)T = 0 ,

and (2.4) admits a unique solution (see Remark 2.1). In other words, the invariant
measure coincides with the measure mi satisfying (3.8).

D
ow

nl
oa

de
d 

01
/2

8/
16

 to
 1

47
.1

62
.2

2.
21

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

L-Q N-PERSON AND MEAN-FIELD GAMES 3035

We now consider any other admissible strategy αi and obtain from Dynkin and
Itô’s formula

E
[
vi(X i

T )− vi(X i
0)

]
= E

[∫ T

0

∇vi(X i
s) · (AiX i

s − αi
s) + tr

(
σi(σi)T

2
D2vi(X i

s)

)
ds

]
.

Hence, from νi = σi(σi)T /2 and the fact that the map (x, y) �→ xTRiy is an inner
product, one obtains

E
[
vi(X i

T )− vi(X i
0)
]
= E

[∫ T

0

(
tr(νiD2vi) + (∇vi)TAix− (∇vi)Tαi

s

)
(X i

s) ds

]

= E

[∫ T

0

(
tr(νiD2vi)+(∇vi)TAix−(

(Ri)−1∇vi
)T
Riαi

s

)
(X i

s)ds

]

≥ E

[∫ T

0

(
tr(νiD2vi) + (∇vi)TAix− 1

2
(∇vi)T (Ri)−1∇vi

)
(X i

s)

− 1

2
(αi

s)
TRiαi

s ds

]
= E

[∫ T

0

tr(νiD2vi(X i
s))−Hi(X i

s,∇vi(X i
s))−

1

2
(αi

s)
TRiαi

s ds

]

with equality holding if αi = αi. Therefore, the first equation in (2.11) implies

E
[
vi(X i

T )− vi(X i
0)
] ≥ E

[∫ T

0

λi − f i(X i
s)−

1

2
(αi

s)
TRiαi

s ds

]

= λiT − E

[∫ T

0

f i(X i
s) +

1

2
(αi

s)
TRiαi

s ds

]
.

Hence, by dividing by T and letting T → +∞, we get

(3.18) λi ≤ lim inf
T→+∞

1

T
E

[∫ T

0

f i(X i
s) +

1

2
(αi

s)
TRiαi

s ds

]
,

because the left-hand side of the original inequality vanishes due to vi being quadratic
and the strategies being admissible (and therefore E[X i

t ] ≤ C and E[(X i
t )(X

i
t)

T ] ≤ C
for some constant C).

To prove that the cost λi corresponds to a Nash equilibrium, it remains to verify
that the right-hand side of (3.18) is J i(X,α1, . . . αi−1, αi, αi+1, . . . , αN ). This prop-
erty follows from the ergodicity. Indeed, let us consider the probability measures

m̃i := mi = mi(αi) , m̃j := mj = mj(αj) ∀ j �= i ,

which are the invariant measures corresponding to the solution (X1
t , . . . , X

N
t ) obtained

when players adopt the strategies (α1, . . . αi−1, αi, αi+1, . . . , αN ). By recalling that
the functions f i are polynomials of degree less or equal to two in the variable xi, we
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obtain

1

T
E

[∫ T

0

f i(X i
s) ds

]
=

1

T
E

⎡⎣∫ T

0

⎛⎝∫
Rd(N−1)

(X −Xi)
TQi(X −Xi)

∏
� �=i

dm̃�(X�)

⎞⎠(X i
s)ds

⎤⎦
=

1

T
E

[∫ T

0

h(X i
s) ds

]
T→∞−−−−→

∫
Rd

h(x) dm̃i(x)

=

∫
RNd

(
(X −Xi)

TQi(X −Xi)
) N∏

�=1

dm̃�(X�)

=

N∑
j=1

∫
Rd

(
(Xj −Xi

j
)TQi

jj(X
j −Xi

j
)
)
dm̃j(Xj)

+
∑
j �=k

∫
R2d

(
(Xj −Xi

j
)TQi

jk(X
k −Xi

k
)
)
dm̃j(Xj) dm̃k(Xk)

= lim
T→+∞

1

T
E

⎡⎣ N∑
j=1

∫ T

0

(
(Xj

s −Xi
j
)TQi

jj(X
j
s −Xi

j
)
)
ds

⎤⎦
+ lim

T→+∞
1

T
E

⎡⎣∑
j �=k

∫ T

0

(
(Xj

s −Xi
j
)TQi

jk(X
k
s −Xi

k
)
)
ds

⎤⎦
= lim

T→+∞
1

T
E

[∫ T

0

F i(X1
s , . . . , X

N
s ) ds

]
,

where we have also used the ergodicity of the pair (Xj
t , X

k
t ) with corresponding mea-

sure given by the product measure obtained from m̃j and m̃k. In conclusion, the
right-hand side of (3.18) is J i(X,α1, . . . αi−1, αi, αi+1, . . . , αN ), and this completes
the proof.

Remark 3.1. Looking at the formulas (3.6) and (3.11), it might seem that the
Nash equilibrium strategies depend on the noise σi, through νi, which is typically
not the case in LQ stochastic problems. In fact, this is not the case in our problem
either: by introducing new variables V i := νiΣi, it is immediate to verify that the
feedback strategies only depend on these new variables V i, which are determined by
the Riccati equations

(V i)T
Ri

2
V i = Qi

ii +
(Ai)TRiAi

2
,

and thus do not depend on the noise statistics σi. The same holds for the equilibrium
strategies of Theorem 4.3 in the next section. This allows to take the small noise
or vanishing viscosity limit νi → 0 under some additional conditions, extending the
results on the case d = 1 in [2]; see the sequel of this paper [37].

4. Nearly identical players. In this section we introduce assumptions saying
that the players are almost identical, as in [2], and prove that there exists a Nash
equilibrium with the same feedback and the same distribution for all players, although
the values can be different. The first condition is a symmetry assumption on the cost
of each player:
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(S) Every player is influenced in the same way by other players, i.e., for each
i ∈ {1, . . . , N} and each j, k �= i

F i(X1, . . . , Xj, . . . , Xk, . . . , XN) = F i(X1, . . . , Xk, . . . , Xj, . . . , XN) .

We can easily prove the following lemma.
Lemma 4.1. Assumption (S) holds if and only if there exist matrices Bi, Ci, Di

and vectors Δi such that

Qi
ij =

Bi

2
, Qi

jj = Ci , Xi
j
= Δi ∀ j �= i ,

Qi
jk = Di ∀ j, k �= i , j �= k .

Under assumption (S), the quadratic costs F i take the following form:

F i(X1, . . . , XN)

= (X i −Xi
i
)TQi

ii(X
i −Xi

i
)

+ (X i −Xi
i
)T

Bi

2

⎛⎝∑
k �=i

(Xk −Δi)

⎞⎠+

⎛⎝∑
j �=i

(Xj −Δi)
T

⎞⎠ Bi

2
(X i −Xi

i
)

+
∑
j �=i

(Xj −Δi)
TCi(X

j −Δi) +
∑

j,k �=i ,j �=k

(Xj −Δi)
TDi(X

k −Δi)

In particular, they can be written in the form usually arising in mean-field games,
namely,

F i(X1, . . . , XN) = V i

⎡⎣ 1

N − 1

∑
j �=i

δXj

⎤⎦ (X i) ,

where δXj is the Dirac measure on R
d centered in the point Xj and V i is the operator,

mapping probability measures m on R
d, with finite second moments, into quadratic

polynomials, defined by the expression

V i[m](X)

:= (X i −Xi
i
)TQi

ii(X
i −Xi

i
)

+ (N − 1)

∫
Rd

(
(X i −Xi

i
)T

Bi

2
(ξ −Δi) + (ξ −Δi)

T Bi

2
(X i −Xi

i
)

)
dm(ξ)

+ (N − 1)

∫
Rd

(ξ −Δi)
T (Ci −Di)(ξ −Δi) dm(ξ)

+

(
(N − 1)

∫
Rd

(ξ −Δi) dm(ξ)

)T

Di

(
(N − 1)

∫
Rd

(ξ −Δi) dm(ξ)

)
.

Indeed, it is enough to recall that for any choice of vectors w1, . . . , wN and of an index
i ∈ {1, . . . , N}, there holds

∑
j,k �=i ,j �=k

wT
j Diwk =

⎛⎝∑
j �=i

wT
j

⎞⎠Di

⎛⎝∑
j �=i

wj

⎞⎠−
∑
j �=i

wT
j Diwj .

Definition 4.2. We say that the players are nearly identical if costs F i satisfy
(S) and if all players have the same
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3038 MARTINO BARDI AND FABIO S. PRIULI

• control systems, i.e., Ai = A and σi = σ (and therefore νi = ν) for all i,
• costs of the control, i.e., Ri = R for all i,

• reference positions, i.e., Xi
i
= H (own reference position, or happy place)

and Δi = Δ (reference position of the other players) for all i,
• primary costs of displacement, i.e., Qi

ii = Q and Bi = B for all i.
Note that the players are not fully identical because the secondary costs of dis-

placement Ci and Di can be different among them. Observe that in this framework,
the hypotheses (H) specialize to

(4.1) det(σ) �= 0 , R ∈ Sym+
d , Q ∈ Sym+

d .

Let us rewrite part of the computations from the previous section for nearly
identical players. First, the right-hand side f i (2.9) of the HJB equation becomes, for
given measures mi = N (μi, (Σi)−1),

f i(X i;m1, . . . ,mN )

= (X i −H)TQ(X i −H)

+ (X i −H)T
B

2

⎛⎝∑
k �=i

(μk −Δ)

⎞⎠ +

⎛⎝∑
j �=i

(μj −Δ)T

⎞⎠ B

2
(X i −H)

+ (N − 1) tr((Ci −Di) (Σ
i)−1) +

∑
j �=i

(μj −Δ)T (Ci −Di)(μ
j −Δ)

+

⎛⎝∑
j �=i

(μj −Δ)T

⎞⎠Di

⎛⎝∑
j �=i

(μj −Δ)

⎞⎠ .

Hence, if we search for identically distributed solutions for all players, i.e., if we search
for measures of the form m1 = · · · = mN = N (μ,Σ−1), we obtain

f i(X i;m1, . . . ,mN )

= (X i −H)TQ(X i −H)

+ (N − 1) (X i −H)T
B

2
(μ−Δ) + (N − 1) (μ−Δ)T

B

2
(X i −H)

+ (N − 1) tr((Ci −Di)Σ
−1) + (N − 1) (μ−Δ)TCi(μ−Δ)

+ (N − 1)(N − 2) (μ−Δ)TDi(μ−Δ) .

Let us investigate the existence of solutions such that

(4.2) vi(x) = xT Λ

2
x+ ρTx , mi(x) = γ exp

{
− 1

2
(x− μ)TΣ(x− μ)

}
for suitable symmetric matrices Λ,Σ with Σ positive definite, suitable vectors μ, ρ,
and a suitable constant γ depending only on the matrix Σ and on the dimension of
the space. By repeating the same computations done in section 3, it is immediate to
verify that the KFP equation in (2.11) for the measure reduces, as in (3.11), to the
matrix relations

(4.3) Λ = R
(
νΣ+A

)
, ρ = −RνΣμ .
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By interpreting again the HJB equation for the value function in (2.11) as an equality
between quadratic forms, we obtain the system of equations

Σ
νRν

2
Σ− ATRA

2
= Q(4.4)

−ΣνRνΣ

2
μ = −QH + (N − 1)

B

2
(μ−Δ) ,(4.5)

μT ΣνRνΣ

2
μ− tr(νRνΣ + νRA) + λi = F̃ i

0(4.6)

with

F̃ i
0 = HTQH − (N − 1)

(
HT B

2
(μ−Δ) + (μ−Δ)T

B

2
H

)
+ (N − 1) tr((Ci −Di)Σ

−1) + (N − 1) (μ−Δ)TCi(μ−Δ)

+ (N − 1)(N − 2) (μ−Δ)TDi(μ−Δ) .

In particular, the first equation, (4.4), has exactly the same form as (3.13), i.e., it
is again an ARE which admits a unique solution Σ in Sym+

d under hypotheses (4.1).
By plugging (4.4) into (4.5), this can be rewritten as

−
(
Q +

ATRA

2
− (1−N)

B

2

)
μ = −QH + (1−N)

B

2
Δ ,

which admits a unique solution μ ∈ R
d whenever the matrix

(4.7) B′ := Q+
ATRA

2
− (1−N)

B

2

is invertible. Finally, once Σ and μ have been found, they can be used in the third
equation (4.6) and in (4.3) to obtain the values λi ∈ R, i = 1, . . . , N , the matrix Λ,
and the vector ρ.

For nearly identical players, the appropriate analogues of the conditions (E) and
(U) are the following:

(E′) Every symmetric and positive definite solution Y of the ARE

(4.8) Y
νRν

2
Y =

ATRA

2
+Q

is also a solution to the Sylvester equation

(4.9) Y νR −RνY = RA−ATR .

Moreover, the matrices B′ ∈ Matd×d(R) and [B′, P ′] ∈ Matd×(d+1)(R) have
the same rank, where B′ is the matrix defined in (4.7), P ′ := −QH + (1 −
N) B

2 Δ, and [B′, P ′] is defined as in (3.3).
(U′) The matrix B′ defined in (4.7) is invertible.
It is immediate to verify that the analysis performed above proves the following

theorem.
Theorem 4.3. Consider an N -players game with dynamics (1.1) and costs (1.2).

Assume that players are nearly identical and that (4.1) holds. Then, the associated
system of 2N HJB–KFP equations (2.11) admits solutions (vi,mi, λi), i = 1, . . . , N ,
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with v1 = · · · = vN = v quadratic function and m1 = · · · = mN = N (μ,Σ−1)
multivariate Gaussian, i.e., of the form (4.2), if and only if condition (E′) is satisfied.
In particular, Σ is the unique solution in Sym+

d of the Riccati equation (4.8), μ solves
(4.5), Λ and ρ are given by (4.3), and λi by (4.6).

Moreover, solutions of the form (4.2) are also unique if and only if condition (U′)
is satisfied and, if this is the case, the affine feedbacks

αi(x) = α(x) := R−1∇v(x) , x ∈ R
d, i = 1, . . . , N

provide a Nash equilibrium strategy for all initial positions X ∈ R
Nd, among the

admissible strategies, and J i(X,α) = λi for all X and all i = 1, . . . , N .
Remark 4.1. Note that the distribution m and the solution v found in this

theorem are the same even if the cost functionals of the players differ in the terms
involving the matrices Ci and Di. These terms only affect the values of the game λi.
(This motivates the name “secondary costs” given to them.) This result supports the
existence of a large population limit, which we study in the next section.

Remark 4.2. Note that the invertibility of B in (3.1) is a stronger requirement
than the invertibility of the matrix B′ in (4.7). Indeed, if we take a game such that
Q + ATRA/2 = B/2 , then B consists of blocks Bαβ = −B ∈ Matd×d(R) for all
α, β = 1, . . . , N and thus is not invertible since it satisfies rank(B) = rank(B) ≤ d.
On the other hand, the matrix B′ = NB/2 is invertible, provided B is invertible.
Therefore, there can be infinitely many quadratic-Gaussian solutions although only
one of them is identically distributed; see [2] for an explicit example.

5. The large population limit. In this section we study the convergence of
Nash equilibria when the number N of players goes to infinity. Assume for simplicity
that the control system, the costs of the control, and the reference positions are always
the same, i.e., that A, σ,R,H , and Δ are all independent from the number of players
N . We denote with

QN , BN , CN
i , DN

i

the primary and secondary costs of displacement, respectively, which are assumed to
depend on N . We assume that these quantities, when N → +∞, tend to suitable
matrices Q̂, B̂, Ĉ, D̂ with their natural scaling, i.e., as N → +∞ there holds

(5.1) QN → Q̂ , BN (N − 1) → B̂ , CN
i (N − 1) → Ĉ , DN

i (N − 1)2 → D̂ ∀ i .

We define an operator acting on probability measures with finite second moments
m ∈ P2(R

d) that describes the cost for an average player of the density m of the other
players

V̂ [m](X) := (X −H)T Q̂(X −H)

+

∫
Rd

(
(X −H)T

B̂

2
(ξ −Δ) + (ξ −Δ)T

B̂

2
(X −H)

)
dm(ξ)

+

∫
Rd

(ξ −Δ)T Ĉ(ξ −Δ) dm(ξ)

+

(∫
Rd

(ξ −Δ) dm(ξ)

)T

D̂

(∫
Rd

(ξ −Δ) dm(ξ)

)
.
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Since both V i
N [m] and V̂ [m] are quadratic forms on R

d, for all i and all m ∈ P2(R
d), it

is immediate to deduce that the convergence of the matrix coefficients in (5.1) implies,
as N → +∞,

V i
N [m](X) → V̂ [m](X) , locally uniformly in X .

By denoting with λi
N , vN , andmN the solutions found in Theorem 4.3 of section 4,

we expect that the limits of these solutions satisfy, like in [2, 30, 32], the system of
two mean field HJB–KFP equations

(5.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−tr(νD2v) +

1

2
∇vTR−1∇v −∇vTAx+ λ = V̂ [m](x) ,

−tr(νD2m)− div
(
m · (R−1∇v −Ax)

)
= 0 ,∫

Rd m(x) dx = 1 , m > 0 .

Along the lines of hypotheses (H), the natural assumptions on the coefficients of (5.2)
are the following:

(5.3) ν ∈ Sym+
d , R ∈ Sym+

d , Q̂ ∈ Sym+
d .

We look for solutions of (5.2) such that

(5.4) v(x) = xT Λ

2
x+ ρTx , m(x) = γ exp

{
− 1

2
(x− μ)TΣ(x − μ)

}
for suitable symmetric matrices Λ,Σ with Σ positive definite, suitable vectors μ, ρ,
and a suitable constant γ depending only on the matrix Σ and on the dimension of
the space.

By repeating the computations done in sections 3 and 4, it is immediate to verify
that the KFP equation for the measure in (5.2) reduces to the matrix equations

(5.5) Λ = R
(
νΣ+A

)
, ρ = −RνΣμ .

Concerning the HJB equation for the value function, one can proceed as in the previous
sections, obtaining the system of matrix equations

Σ
νRν

2
Σ− ATRA

2
= Q̂ ,(5.6)

− ΣνRνΣ

2
μ = −Q̂H +

B̂

2
(μ−Δ) ,(5.7)

μT ΣνRνΣ

2
μ− tr(νRνΣ + νRA) + λ = F̂0(5.8)

with

F̂0 = HT Q̂H −
(
HT B̂

2
(μ−Δ) + (μ−Δ)T

B̂

2
H

)
+ tr(ĈΣ−1) + (μ−Δ)T (Ĉ + D̂)(μ−Δ) .

In particular, under assumptions (5.3), the first equation is an ARE which admits
a unique solution Σ in Sym+

d . Also, we can rewrite the second equality in the form

−
(
Q̂+

ATRA

2
+

B̂

2

)
μ = −Q̂H − B̂

2
Δ ,
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which admits a unique solution μ whenever the matrix

(5.9) B∞ := Q̂+
ATRA

2
+

B̂

2

is invertible. Finally, once Σ and μ have been found, one can insert them into the
third equation and (5.5) to obtain the value λ, the matrix Λ, and the vector ρ required
by (5.4).

In this case, the existence and uniquess of solutions to (5.2) is then related to the
following conditions:
(E∞) The symmetric and positive definite solution Y of the ARE

(5.10) Y
νRν

2
Y =

ATRA

2
+ Q̂

is also a solution to the Sylvester equation

(5.11) Y νR −RνY = RA−ATR .

Moreover, the matrices B∞ ∈ Matd×d(R) and [B∞, P∞] ∈ Matd×(d+1)(R)

have the same rank, where B∞ is the matrix defined in (5.9), P∞ := −Q̂H +
B̂
2 Δ ∈ R

d, and [B∞, P∞] is defined analogously to (3.3).
(U∞) The matrix B∞ defined in (5.9) is invertible.

The main results of this section are the following two theorems.
Theorem 5.1.

(i) [Solutions to mean-field PDE] Assume (5.3). Then, the system of HJB–
KFP equations (5.2) admits solutions (v,m, λ) with v quadratic function and
m multivariate Gaussians N (μ,Σ−1), i.e., of the form (5.4), if and only if
condition (E∞) is satisfied. In particular, Σ is the unique solution in Sym+

d

of the Riccati equation (5.6), μ solves (5.7), Λ and ρ are given by (5.5), and
λ by (5.8).
Moreover, solutions of the form (5.4) are also unique if and only if condition
(U∞) is satisfied.

(ii) [Convergence as N → ∞] Consider a sequence of differential games of the
form (1.1)–(1.2) with N nearly identical players and assume that (5.1) is
verified as N → ∞. Also, assume that (4.1) and (E′) with Q = QN hold
for all N ∈ N, and that (5.3), (E∞), and (U∞) are satisfied. Then, the
solutions (vN ,mN , λ1

N , . . . , λN
N ) found in Theorem 4.3 converge as N → ∞

to the quadratic-Gaussian solution (v,m, λ) of the mean-field system (5.2)
found in (i) in the following sense: vN → v in C1

loc(R
d) with second derivative

converging uniformly in R
d, mN → m in Ck(Rd) for all k, and λi

N → λ for
all i.

The uniqueness statement in the previous theorem is only among solutions of
(5.2) with v quadratic and m Gaussian. A natural question is whether the HJB-
KFP system of PDEs admits other C2 solutions that are not of the form (5.4) and
therefore other mean-field equilibria. We add a normalization condition on v to avoid
addition of constants, and make a simple assumption that ensures the monotonicity of
V̂ w.r.t. the scalar product in the Lebesgue space L2. Then an argument of Lasry and
Lions [30, 32] implies uniqueness among general solutions satisfying natural growth
conditions at infinity.
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Theorem 5.2. The integral operator V̂ satisfies
∫
Rd(V̂ [m]−V̂ [n])(x) d(m−n)(x) ≥

0 for all probability measures m, n ∈ P2(R
d) if and only if the matrix B̂ is positive

semidefinite.
Then for B̂ ≥ 0 there is at most one solution (v,m, λ) of (5.2) with m ∈ P2(R

d),
|∇v(x)| ≤ C(1+ |x|) for some C > 0, and such that v(0) = 0; in particular, under the
assumptions of Theorem 5.1, the solution given by that theorem is the unique solution
with such properties.

Remark 5.1. The condition BN > 0 means that in the N -person game there is
a positive cost for the ith player if his displacement w.r.t. his happy state H is the
same as the average displacement of the other players from their reference position
Δ. Therefore, the condition B̂ ≥ 0 in the last theorem means that imitation among
players is not rewarding in the large population limit. Note also that B̂ ≥ 0 implies
(U∞) by (5.3), but not vice versa.

Proof of Theorem 5.1. The analysis performed on (5.5)–(5.8) already proves part
(i). It remains to prove part (ii). Let (vN ,mN , λ1

N , . . . , λN
N ) be a solution of the

differential game for N nearly identical players found in Theorem 4.3. Then,
(5.12)

vN = xT ΛN

2
x+ (ρN )Tx , mN (x) = γN exp

{
− 1

2
(x − μN )TΣN (x− μN )

}
,

where ΣN and μN solve (4.4) and (4.5), respectively, ΛN and ρN are given in terms of
ΣN and μN by (4.3), and γN is a constant depending only on d and the matrix ΣN .
To pass to the limit as N → +∞ in the ARE (4.4), we first note that (4.4) and (5.6)
are both AREs of the form (2.5) with

RN = R =
νRν

2
QN =

ATRA

2
+QN , Q =

ATRA

2
+ Q̂ ,

and the corresponding 2d× 2d matrices of the form (2.6) are given by

HN =

(
0 RN

QN 0

)
, H =

(
0 R
Q 0

)
.

Next, we claim that the sequence ΣN is bounded w.r.t. the norm of the largest eigen-
value, which was introduced in (2.1). Indeed, by property (iii) of Proposition 2.4

(5.13) spec(RΣN ) = spec(HN ) ∩ (0,+∞) ,

and the convergence HN → H implies the convergence of the eigenvalues. Hence, for
N large enough

max
{
spec(RΣN )

} ≤ max
{
spec(H) ∩ (0,+∞)

}
+ 1

and in particular the maximum eigenvalue of RΣN is bounded. Since R is symmetric
positive definite, this implies that ‖ΣN‖ is bounded as well. Indeed, by denoting with
λmin > 0 the smallest eigenvalue of R, we have R− λminId ≥ 0 and

‖ΣN‖ =
1

λmin
‖λminΣN‖ ≤ max spec(RΣN ) < +∞ ,

thanks to Proposition 2.1(iii). Therefore, ΣN has a converging subsequence, which
we denote with ΣNk

, whose limit Σ satisfies (5.6), i.e.,

Σ
νRν

2
Σ− ATRA

2
= Q̂ .
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If we can prove that Σ ∈ Sym+
d , then we have Σ = Σ by uniqueness in Sym+

d of
solutions to (5.6). Since in general the limit of a sequence in Sym+

d is only semidefinite,
we further exploit the continuous dependence of the eigenvalues on the coefficients of
the matrix. For k large enough, by (5.13),

min
{
spec(RΣNk

)
}
>

1

2
min

{
spec(H) ∩ (0,+∞)

}
> 0 ,

and this implies

min
{
spec(RΣ)

} ≥ 1

2
min

{
spec(H) ∩ (0,+∞)

}
> 0 .

Recalling again that R is symmetric positive definite, Σ cannot have zero as eigenvalue
and this proves that the limit of ΣNk

is Σ. Since we can repeat this argument to show
that every subsequence of ΣN has a convergent subsequence whose limit is Σ, we
conclude that ΣN → Σ as N → +∞.

Concerning the convergence of μN to μ, we know that these vectors are, respec-
tively, solutions to the linear systems

B′
NμN = P ′

N , B∞μ = P∞ ,

where B′
N was defined in (4.7), B∞ was defined in (5.9), and the vector P ′

N , P∞ are
given, as in the previous sections, by

P ′
N = −QNH + (1−N)

BN

2
Δ , P∞ = −Q̂H +

B̂

2
Δ .

Here we use that the matrix B∞ is invertible by (U∞). Owing to B′
N → B∞, it

follows that B′
N is invertible as well for N large enough. In particular, for such N ,

μN = (B′
N)−1P ′

N , and we can pass to the limit as N → ∞ proving that μN → μ.
Finally, by passing to the limit in the explicit formulas (4.3) and (4.6)

ΛN = R
(
νΣN +A

)
, ρN = −RνΣNμN ,

λi
N = F̃ i

0 − (μN )T
ΣNνRνΣN

2
μN + tr(νRνΣN + νRA) ,

it is easy to verify that ΛN → Λ, ρN → ρ, and λi
N → λ for each i. Now we can pass

to the limit in the formulas of the quadratic-Gaussian solutions (5.12) and deduce the
convergence of the value function and of the invariant measure from the convergence
of the coefficients, and this completes the proof.

Proof of Theorem 5.2. For any m, n ∈ P2(R
d)

(
V̂ [m]− V̂ [n]

)
(x) =

∫
Rd

[
(x −H)T

B̂

2
(ξ −Δ) + (ξ −Δ)T

B̂

2
(x−H)

]
d(m− n)(ξ)

+

∫
Rd

(ξ −Δ)T Ĉ(ξ −Δ) d(m− n)(ξ)

+

(∫
Rd

(ξ −Δ) dm(ξ)

)T

D̂

(∫
Rd

(ξ −Δ) dm(ξ)

)
−

(∫
Rd

(ξ −Δ) dn(ξ)

)T

D̂

(∫
Rd

(ξ −Δ) dn(ξ)

)
.
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Observe that only the first term of this expression depends on the variable x. Then∫
Rd

(
V̂ [m]− V̂ [n]

)
(x) d

(
m− n

)
(x)

=

∫
Rd

∫
Rd

[
(x−H)T

B̂

2
(ξ −Δ)

]
d
(
m− n

)
(x) d

(
m− n

)
(ξ)

+

∫
Rd

∫
Rd

[
(ξ −Δ)T

B̂

2
(x−H)

]
d
(
m− n

)
(x) d

(
m− n

)
(ξ) .

The first term can be written as∫
Rd

∫
Rd

[
(x −H)T

B̂

2
(ξ −Δ)

]
d
(
m− n

)
(x) d

(
m− n

)
(ξ)

=

(∫
Rd

x d
(
m− n

)
(x)

)T
B̂

2

(∫
Rd

ξ d
(
m− n

)
(ξ)

)
.

The second term can be treated in the same way, leading to∫
Rd

(
V̂ [m]− V̂ [n]

)
(x) d

(
m− n

)
(x) =

(∫
Rd

x d
(
m− n

)
(x)

)T

B̂

(∫
Rd

x d
(
m− n

)
(x)

)
.

It is now clear that if B̂ is positive definite, then
∫
Rd(V̂ [m]− V̂ [n])(x) d(m− n)(x) ≥ 0

for all probability measures m, n. Vice versa, for every fixed vector η ∈ R
d, we can

consider the multivariate Gaussian measures m = N (η, Id) and n = N (0, Id) on R
d,

and apply the inequality above to obtain

0 ≤
∫
Rd

(
V̂ [m]− V̂ [n]

)
(x) d(m − n)(x) = ηT B̂ η ,

which implies B̂ ≥ 0. This completes the proof of the equivalence between mono-
tonicity of the operator V̂ and the positive semidefinitess of B̂. The uniqueness of
solutions when B̂ ≥ 0 can be proved by the same arguments of [2, 30, 32].

Remark 5.2. We believe that, in general, the assumptions (5.1) and (E∞) do
not ensure condition (E′) with Q = QN for N large enough, mostly because (4.9) is
equivalent to the symmetry of ΣNνR − RA, and this property is easily lost under
small perturbations. When condition (E′) is violated, it would be interesting to verify
whether the strategy resulting from the solution to (5.3) could provide an ε-Nash
equilibrium for the N -player game, by using the techniques from [24, 25, 36]. However,
this investigation is beyond the scope of this paper and is left to a future work.

Remark 5.3. An interesting open issue is the rate of convergence of the solutions
if the order of convergence of the data in (5.1) is given. In the general case the rate
of convergence of ΣN → Σ does not follow from our analysis. However, an estimate
can be obtained when we have an explicit formula for the solution of the Riccati
equation, as in the examples presented in section 6, where it is possible to prove that
‖Σ−ΣN‖ = O(‖Q−QN‖). See also Remark 14 of [2] on the possibility of expanding
explicit solutions in powers of 1/N .

6. Examples. So far we have used the abstract condition (E) with (U) to
translate the existence and uniqueness of solutions having the form (3.6) to the system
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of PDEs (2.11) into algebraic matrix equations. In this section we show that in some
cases such conditions can be easily verified and the solution to the PDEs (2.11) can
be computed explicitly. For simplicity we limit ourselves to nearly identical players
and the mean-field game. Therefore, we focus on the corresponding conditions (E′)
and (U′).

In the last part, we discuss some consensus models for which infinitely many
solutions can be exhibited.

6.1. Symmetric system. Consider anN -players game with dynamics (1.1) and
costs (1.2) and assume that (H) holds, that players are nearly identical, and for all
i ∈ {1, . . . , N}

(a) the dynamics (1.1) involve drift matrices Ai ≡ A ∈ Symd and diffusion ma-
trices σ = sId with s ∈ R \ {0};

(b) the matrix R in the control costs (1.2) satisfies R = rId with r > 0.
Then it is easy to verify the part of (E′) concerning solutions of (4.8) and (4.9).
Indeed, both matrices

ν =
s2

2
Id =: ν̄Id

and R commute with any other matrix. Then, Sylvester’s equation (4.9) can be
rewritten as

r
(
A−AT

)
= r ν̄ (Y − Y ) = 0 ,

i.e., it reduces to a symmetry condition on A, which is ensured by (a). Moreover, an
explicit expression of the matrix Σ can be calculated. Indeed, the matrix 2

r Q+A2 is

symmetric and positive definite and thus admits a square root E ∈ Sym+
d , i.e.,

E2 :=
2

r
Q+A2 .

If we now consider the ARE (4.4), we find that

r
ν̄2

2
Σ2 = Q+

r

2
A2 =

r

2
E2 ,

which implies

Σ =
1

ν̄
E =

1

ν̄

√
2

r
Q+A2 .

To verify the part of condition (E′) dealing with the matrix B′, we assume in
addition, using the notation of Lemma 4.1,

(c) the primary costs of displacement Bi in Qi satisfy Bi = B ≥ 0 for all i =
1, . . . , N .

Then we can rewrite (4.7) as

B′ = Q+
r

2
A2 +

N − 1

2
B =

r

2
E2 +

N − 1

2
B ,
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so B′ is invertible and both (E′) and (U′) are satisfied. Thus the linear system (4.5)
has the unique solution

μ = (B′)−1

(
QH +

N − 1

2
BΔ

)
,

where H and Δ are the reference positions of the players, as in Definition 4.2. Now
the expressions found for Σ and μ can be used in (4.3) and (4.6) to obtain Λ, ρ and
λ1, . . . λN , completing the explicit construction of the unique solution of quadratic–
Gaussian type.

In conclusion, for games with N nearly identical players which satisfy (H), con-
ditions (a), (b), and (c) are sufficient to guarantee the existence of a unique solution
to (2.11) of the form (4.2), and hence of a unique affine Nash equilibrium strategy
given by

α(x) = Ax+ E(x− μ) .

For the large population limit, we assume that the scaled coefficients satisfy (5.1)
as N → +∞ and
(a∞) A ∈ Symd, ν = ν̄Id with ν̄ > 0;
(b∞) R = rId with r > 0;
(c∞) B̂ ≥ 0.

Once again, Sylvester’s equation reduces to the symmetry of A, the solution to

ARE (5.6) can be given explicitly as Σ = 1
ν̄

√
2
r Q̂+A2, and the invertibility of

B∞ = Q̂ + r
2 A

2 + B̂
2 is immediate. Moreover, it is easy to verify that ΣN → Σ and

that μN → μ, which in turn imply convergence of the unique solution to the N -players
game to the unique solution of the mean-field game (5.2).

Remark 6.1. The equivalence between A symmetric and Sylvester’s equation
implies that if A is not symmetric, condition (E′) fails and therefore no solution
of (2.11) with a quadratic value function exists. Indeed, in this case one gets an affine
vector q(x) = Λx + ρ which solves, together with a multivariate Gaussian m, the
equation

−tr(ν D2m)− div

(
m
∂H

∂p
(x, q)

)
= 0 ,

but q is not the gradient of a quadratic function of the form (4.2), because Λ /∈ Symd.

6.2. Nondefective system. In this section we extend the previous analysis
beyond the symmetry assumption on the drift matrix A to the case of A nondefective.
We recall that a matrix M ∈ Matd×d(R) is said to be nondefective if, for every
eigenvalue λ ∈ spec(M), the corresponding eigenspace has dimension equal to the
multiplicity of λ or, equivalently, when there exists a base of Rd consisting of right
(or left) eigenvectors of M .

Proposition 6.1. Let M be any d×d real matrix. Then the following properties
hold:

(i) There exists an invertible and symmetric symmetrizer for M , i.e., there exists
a matrix Y ∈ Matd×d(R) such that

det(Y ) �= 0 , Y T = Y , Y M = MTY .

(ii) If M is nondefective, then the symmetrizer Y can be chosen positive definite.
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3048 MARTINO BARDI AND FABIO S. PRIULI

(iii) If M is nondefective, σ is invertible, and we consider a linear SDE

(6.1) dxt = (Mxt − αt)dt+ σdWt ,

then there exists a linear change of coordinates x �→ ξ such that (6.1) can be
rewritten in the form

(6.2) dξt = (M̃ξt − α̃t)dt+ σ̃dWt

with M̃ symmetric matrix and σ̃ invertible.
Sketch of the proof. We refer to [39] for the proof of (i). (ii) Bhaskar proved in [12]

that the real symmetrizer Y can be chosen of the explicit form Y = (U−1)TV T , where
U and V are d×d (complex) matrices having as columns left and right eigenvectors of
A, respectively. By orthogonality between left and right eigenvectors, it is immediate
to see that V TU = I, and hence that

Y = (U−1)TV T = V V T

is real and positive definite.
(iii) By choosing P ∈ Matd×d(R) orthogonal such that

Y = PTDP

with D diagonal, and Z ∈ Sym+
d such that D = Z2, one can verify that the linear

change of coordinates ξ = ZPx = Z−1PY x allows one to rewrite the stochastic linear
equation in the required form (6.2) with

M̃ := Z−1PYMPTZ−1 , α̃ := ZPα , σ̃ := ZPσ .

This completes the proof.
Observe that, if we consider a differential game with N nearly identical players,

dynamics (1.1), and costs (1.2), and if we assume that the drift matrix A is nonde-
fective, then we can perform the change of coordinate in Proposition 6.1 to pass to
a new SDE with symmetric drift. Let us denote, as in the proof of the proposition,
with Y = PTZ2P the symmetrizer matrix for M with P orthogonal matrix and Z
diagonal and positive definite matrix. Then, the new game will have costs given by

J̃ i(Ξ, α̃1, . . . , α̃N ) := lim inf
T→∞

1

T
E

⎡⎣∫ T

0

(α̃i
t)

T R̃α̃i
t

2
+

N∑
j,k=1

(Ξj − Ξi
j
)T Q̃i

jk(Ξ
k − Ξi

k
)dt

⎤⎦,
where the new variables Ξ ∈ R

Nd and α̃1, . . . , α̃N ∈ R
d satisfy for k ∈ {1, . . . , N}

Ξk = ZPXk , α̃k = ZPαk ,

and the matrices R̃ and Q̃i
jk are given by

R̃ = Z−1PRP−1Z−1 , Q̃i
jk = Z−1PQi

jkP
−1Z−1

for the same matrices Z ∈ Sym+
d and P orthogonal used to symmetrize A. One can

easily verify that replacing (a) and (b) with
(a′) dynamics (1.1) are given by drift matrices Ai ≡ A with A nondefective and

diffusion matrices σ = sPTZ−1 with s ∈ R \ {0},
(b′) matrix R in control costs (1.2) satisfies R = rY with r > 0,
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it is possible to repeat the arguments of section 6.1, after the change of coordinates
ξ = ZPx, and to prove that for games with N nearly identical players satisfying (H),
(a′), (b′), and (c) there exists a unique solution to (2.11) of the form (4.2). Similar
conditions in the case of A only nondefective can be given for the limit problem (5.2)
as well.

Remark 6.2. These arguments apply to general N -players games too, without
the assumption of nearly identical players, whenever all drift matrices A1, . . . , AN

are symmetric or simultaneously symmetrizable (i.e., if the symmetrizers Y 1, . . . , Y N

given by Proposition 6.1 coincide). For more general games one has either to require
that more blocks of the cost matrices Qi are null or to study the Nd dimensional
linear SDE for Xt = (X1

t , . . . , X
N
t ).

6.3. Consensus models. In this section we apply the previous theory to some
simple models of consensus in multiagent systems inspired by [36] to which we refer
for motivations and bibliography. Consider costs whose part depending on the state
is

(6.3) F i(X1, . . . , XN ) =
1

N − 1

∑
j �=i

(X i −Xj)TPN(X i −Xj), i = 1, . . . , N,

with PN ∈ Sym+
d . Then each player seeks a position as close as possible to the

positions of the other players. Note that F i has the symmetry property (S) and the
blocks of the matrix Qi are, in the notation of section 5,

(6.4) QN = PN , BN = − 2

N − 1
PN , CN

i =
1

N − 1
PN , DN

i = 0,

and reference states H = Δ = 0.
Assume also that the dynamics and cost of the control is the same for all players,

so that they are nearly identical. For simplicity suppose also the conditions (a) and
(b) of section 6.1, although the analysis can be carried over to merely nondefective
matrices A.

The matrix B′ defined in (4.7) is

B′ = PN +
r

2
A2 + (N − 1)

BN

2
=

r

2
A2 ∀N,

and (4.5) for the mean μ ∈ R
d of the distribution of the players is B′μ = 0. Then

the condition (E′) holds, and the existence part of Theorem 4.3 proves the following:
there exists an identically distributed quadratic-Gaussian solution (vN ,mN , λN ) with
mN ∼ N (μ,Σ−1

N ) if and only if μ is such that Aμ = 0.
Moreover, the covariance matrix is the same for all μ

(6.5) ΣN =
1

ν̄

√
2

r
PN +A2 ,

and the Nash feedback equilibrium is

αN (x) = Ax+
1

ν̄

√
2

r
PN +A2 (x− μ) .

In particular, there is a unique solution if and only if detA �= 0, and then the mean
is μ = 0.
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The large population limit is straightforward if we assume that PN → P̂ > 0 as
N → ∞. Condition (5.1) is satisfied with

Q̂ = P̂ , B̂ = −2P̂ , Ĉ = P̂ , D̂ = 0 ,

and passing to the limit in (6.5) one gets Σ̂ = 1
ν̄

√
2
r P̂ +A2. Then the mean-field

games PDEs (5.2) have a solution (v,m, λ) with m ∼ N (μ, Σ̂−1) if and only if μ ∈ R
d

is such that Aμ = 0.
Remark 6.3. The paper by Nourian et al. [36] uses a cost term of the form

F i(X1, . . . , XN) :=

∣∣∣∣∣∣Xi − 1

N − 1

∑
j �=i

Xj

∣∣∣∣∣∣
2

, i = 1, . . . , N,

instead of (6.3). Then QN = Id and BN = − 2
N−1Id. Although the secondary costs

are different, this is a special case of the above, with PN = Id for all N . In fact,

B′ is the same and ΣN = Σ̂ = 1
ν̄

√
2
r Id +A2, so we get the same conclusions on the

quadratic-Gaussian solutions of N -person as well as mean-field game.
Remark 6.4. The existence of infinitely many Gaussian solutions in a mean-field

game model of population distribution with rewarding imitation among players was
first observed by Guéant [22]. In [2] the LQ mean-field game of section 5 was studied
for d = 1, A = 0, and H = Δ and it was observed that for Q̂ �= −B̂/2 there is a
unique quadratic-Gaussian solution with μ = H , whereas for Q̂ = −B̂/2 there are
infinitely many, one for any μ ∈ R

d.
Remark 6.5. Analogous computations can also be made for consensus models

where the dynamics and cost of the control are not the same for all players. In such a
case, the matrix B′ above is replaced by the matrix B defined in (3.1), which becomes
here

B =
1

N − 1

⎛⎜⎝
√
P
...√
P

⎞⎟⎠
⎛⎜⎝

√
P
...√
P

⎞⎟⎠
T

− diag

(
N P

N − 1
+

(A1)TR1A1

2
, . . . ,

N P

N − 1
+

(AN )TRNAN

2

)
,(6.6)

i.e., B a “block-rank-one” perturbation of a Nd × Nd block-diagonal matrix with

d × d blocks − N P
N−1 − (Aα)TRαAα

2 . It is easy to verify that, if there exists ξ �= 0 in⋂N
α=1 Ker(Aα), then η := (ξ, . . . , ξ)T ∈ R

Nd provides a solution to Bη = 0, which
is (3.17) for this model. Therefore, in this case we find infinitely many Gaussians
solutions mi ∼ N (μi, (Σi)−1) for each player i = 1, . . . , N with μi = ξ and Σi solv-
ing (3.13). In fact, owing to known formulas for matrices of the form (6.6), it is possible

to prove that the invertibility of B is equivalent to
⋂N

α=1 Ker(Aα) = {0}, providing
a complete understanding of the conditions required to have a unique quadratic-
Gaussian solution for this consensus model.
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