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1. Introduction

The investment process is described by the complete set of actions taken by a port-

folio manager, including the definition of the investment objectives and the associated

strategic allocation, the construction of tactical asset allocation and stock selection,

and general rules for portfolio monitoring (see for example Grinold and Kahn 1999).

The security selection step focuses on identifying the most promising investment op-

portunities, represented by specific assets. Different approaches might be employed at

this stage, inspired by technical analysis or based on a more fundamental analysis. In

general, security selection methodologies can be classified as qualitative or quantitative.

The latter presumes the existence and the use of some quantitative tools.

The broad class of quantitative security selection instruments includes the so-called

equity screening rules, methodologies whose purpose is to rank a large set of assets in

order to focus attention on the best ones or to exclude the worst ones. Screening rules

can be used directly as security selection tools or might simply represent a first step in

a security selection procedure; in fact, they permit to restrict the investment universe

to a reasonably limited set of assets, to be analysed in greater detail by analysts. We

stress that screening rules should, when used as asset allocation tools (for instance by

directly investing in the best assets) might turn out to be suboptimal, since they do

not control for the correlation across assets.

Relevant and relatively simple examples of screening rules are given by performance

measures; these are quantities that, in most cases, represent a remuneration per unit

of risk, or risk adjusted returns. In the last decade, the financial economics litera-

ture has discussed a large number of alternative performance measures; see the surveys

by Aftalion and Poncet (2003), Le Sourd (2007), Bacon (2008), Cogneau and Hubner

(2009a,b) and Caporin et al. (2014). The available performance measures can be clas-

sified into four large families, as suggested by Caporin et al. (2014), to highlight and

understand their differences: relative performance measures (rewards per unit of risk),

absolute performance measures (risk-adjusted measures referred to a benchmark or to

a set of risk factors), measures derived from utility functions and measures expressed as

functions of return distribution features. It is also important to note that performance

measures belonging to the same class are heterogeneous since they can be based on

different quantities (such as utility functions, moments, partial moments or quantiles)

or different information sets (different selections of risk factors). Furthermore, if per-
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formance measures are used to order assets (as equity screening rules), the ranks they

produce for a common set of assets might be sensibly different; see Caporin and Lisi

(2011). The last finding confirms that alternative measures have different views over

assets, and the construction of an ’optimal’ equity screening tool should take those

different viewpoints into account.2

Differently, within a performance evaluation framework, several authors have consid-

ered the problem of determining the optimal portfolio weights by maximizing different

performance measures. They aim at finding the ’best’ performance measure; see for

example Farinelli et al. (2008, 2009), among others. The outcomes of these studies

are not completely conclusive, since different performance measures provide superior

results over different samples and different assets.

A possible solution to the above-mentioned limitations is the construction of a com-

posite performance index to be used within an equity screening program, or to guide

the allocation of a portfolios without taking into account a single performance measure.

To our best knowledge, Hwang and Salmon (2003) is the first and unique paper propos-

ing a combination of performance measures. The authors propose the construction of

a combined index by resorting to a copula function. However, given a number of is-

sues, including the need of recovering by simulation the performance measure densities,

they do not provide an empirical analysis supporting their proposal. We follow the

spirit of Hwang and Salmon (2003), and contribute to this strand of the quantitative

finance literature by introducing a new approach for the construction of a composite

performance index. Differently from the cited paper, our approach is computationally

feasible, thanks to the adoption of a linear combination criterion. Moreover, we high-

light a number of computational and implementation issues, suggesting methods that

allow overcoming most of them. Finally, we provide an extensive empirical example.

The combination criterion we propose, called Backward/Forward, follows the general

idea of linearly combining existing performance measures with positive weights. These

weights are determined by means of an optimisation step. The underlying criterion

function explicitly takes into account the risk-return trade-off evaluated on a historical

and rolling basis. By construction, and due to the rolling window evaluation approach,

2We do not consider performance measures based on portfolio holdings as their computation requires
access to detailed portfolio composition over time; see Wermers (2006).
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the Backward/Forward method provides performance combination weights that can

vary over time, thus allowing for changes in preferences across performance measures.

Backward/Forward is implicitly robust to dynamic features of returns densities, as these

will affect the evaluation of performance measures that are the inputs of our screening

algorithm. The final product of the linear combination of performance measures is a

composite performance index, which can then be used to generate asset screens.

Apart from introducing the Backward/Forward composite index, we discuss several

implementation issues that further detail and clarify the methodology. These include

the selection of performance measures, their evaluation and the optimisation of the

objective function with respect to the combination weights. All those elements have a

relevant role in the evaluation of the composite index and clearly illustrate the flexibility

and the features of the proposed approach.

The Backward/Forward composite index is determined within a pre-specified equally

weighted (1/N) asset allocation scheme. Such allocation choice is only a tool simplifying

the identification of the composite performance index. The use of an equally weighted

strategy might be questionable, but represents a reasonable compromise. In fact, the

1/N strategy, also known as Talmud strategy (Duchin and Levy, 2009), assigns an equal

weight to each asset in the portfolio. Several studies in the literature show that the

1/N strategy outperforms in-sample and in particular, out-of-sample the Markovitz rule

(Jobson and Korkie, 1980; Michaud and Michaud, 2008; Duchin and Levy, 2009; De

Miguel et al., 2009). The reason for this essentially relates to the estimation errors on the

expected returns and covariance matrix which lead to poor estimates. Consequently, not

only the naive 1/N investment rule is at least statistically equivalent to the Markowitz

optimised portfolio but also other optimising models presented in the literature do not

consistently and statistically provide a Sharpe ratio (or a certain equivalent return)

higher than the 1/N portfolio (De Miguel et al., 2009). Recently, Tu and Zhou (2012)

propose a combination of the 1/N rule with four sophisticated strategies including

the Markowitz rule and empirical findings on this theory-based combination show an

improvement in terms of performances with respect to the naive 1/N rule. Such an

extension goes beyond the purpose of this paper but it can be easily implemented as a

further step.

We present an empirical application that illustrates the use of the Backward/Forward

index in portfolio allocation. We show how the Backward/Forward composite perfor-
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mance index can be used as an equity asset allocation screener.

The remainder of the paper proceeds as follows. In Section 2 we define the invest-

ment objective and introduce the Backward/Forward composite index. In Section 3,

we discuss several implementation aspects. Section 4 contains the empirical application

on, and Section 5 concludes.

2. The investment problem and the objective function

Our main purpose is to deal with the security selection problem faced by an investor

(a portfolio manager), who is willing to allocate her portfolio over a subset of assets

included in her investment universe, and wants to select them by using a combination

of different performance measures. The selection takes place by means of what we call

an equity screening tool, also referred to as preselection in the large scale portfolio

literature; see, among others, Ortobelli et al. (2011).

We assume the investor follows a one–step allocation rule and thus she chooses at

time t assets to form the portfolio with an investment horizon of one period, ending at

t+1. To be consistent, the equity screening is based on a criterion function depending

on a set of performance measures evaluated using the information available at time

t. Therefore, given the information set at time t, the investor first determines the

performance measures and then computes the composite performance index. This index

is used as an equity screening tool, and helps the investor to identify the most interesting

assets - those with higher composite performance index value. The investor computes

the performance measures starting from asset returns and asset-related information. We

assume that the asset returns densities have finite moments allowing the computation of

most performance measures. Finally, the selected assets are introduced in the portfolio,

with weights to be determined by the investor. We stress we do not make a distributional

assumption for assets returns for a number of reasons. First, because asset returns might

be characterized by different densities that are likely to be non-Gaussian. Second, the

choice of a specific distribution is limitative, opposite to the empirical evidence, and

could lead to the identification of an optimal performance measure. This is the case for

Gaussian returns, agents with negative exponential utility and the Sharpe ratio.

We underline how our procedure does not consider the allocation problem, but

focuses on the asset screening, with the final purpose to construct a ranking of assets

in the investment universe, able to identify a subset which might be considered optimal
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for the subsequent construction of the portfolio. Our approach might be of interest for

a portfolio investment process where a small number of analysts might start from a

very large investment universe and selects a-priori, by means of a screening algorithm,

the assets to be later analysed from a fundamental perspective. Alternatively, again

when dealing with a very large investment universe, the application of modern portfolio

theory, based on the evaluation of the assets covariance, might become complex due to

the lack of the necessary degrees of freedom required to estimate the whole covariance

matrix. One might resort to a variety of computational and statistical techniques to

overcome the problem, but those will be anyway subject to model errors and estimation

errors. A screening algorithm might thus represent an alternative possibility. Finally, a

screening algorithm might also be of interest within a Core-Satellite allocation strategy

and could represent the rational for the selection of the Satellite part of the portfolio.

We thus assume that the investor includes in her portfolio M assets chosen from

a larger group containing N assets. Note that M << N in order to avoid excessive

transaction and rebalancing costs, also if M should not be too small, otherwise diver-

sification benefits will tend to vanish. In this study, we fix M = 25, 50, or 100. Those

values are reasonable in small and medium-sized managed portfolios, and will allow

us to verify if changes in the number of assets will provide relevant variations in the

portfolio turnover and, as a consequence, on rebalancing costs.

Our main contribution is the peculiar screening rule we propose, the Backward/Forward

index, which is based on an optimised linear convex combination of performance mea-

sures. Our claim is that the combination will take advantage of different views on the

assets, or, similarly, of different information, including the asset returns density, the

relationship between asset returns and risk factors and the use of alternative utility

functions. According, an equity screening procedure based on our composite index

should be more efficient than a screening rule based, for instance, on a single perfor-

mance measure. The intuition behind such a claim stems from empirical evidences

on asset returns. In fact, the Sharpe ratio is an optimal measure under a normality

assumption. However, when return densities deviate from normality, higher order mo-

ments, partial moments or quantiles may have additional informative content, see for

instance Farinelli and Tibiletti (2008).

Given the choice of M and the investment universe of N assets, the objective of

the investor is to select the M assets to be included in her portfolio according to an
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optimality criterion. The optimality criterion leading to the assets choice is thus crucial,

and is described in the following. We stress here that it must be distinguished from the

optimality criterion chosen by the investor to allocate her portfolio over the M assets

and it is based on a combination of performance measures.

Let us first introduce some notations. We define for each asset j at time t a composite

performance index, CIj,t, which is a function of Q performance indices pi,j,t, where

i = 1, 2, ...Q, and j = 1, 2, ...N . Note that this index is computed using the information

set up to time t, I t, and is used to allocate the portfolio in time t with investment horizon

t + 1. We impose the simplifying assumption that the set of performance measures is

fixed and known a-priori: the value of Q is fixed over time, and the Q performance

measures used in the combination do not change over time.

We suggest the following composite index for asset j at time t based on a linear

combination of the Q performance measures:

CIj,t (w1, w2, ..., wQ) =

Q∑

i=1

wipi,j,t, j = 1, 2, ..., N, (1)

wi ≥ 0, i = 1, 2, ..., Q,

Q∑

i=1

wi = 1,

where we impose weights to be positive and to sum up to one. Note that the weights are

the same for all assets and are time-invariant. To simplify the notation, the composite

index appears as a function of only the weights while in reality it is also a function

of the performance measures. Nevertheless, given that the purpose of the analysis is

to estimate the combination weights given a collection of performance measures, we

suppressed the latter from the compact representation of the composite index.

If the composite index is known, the best M assets are those with the M highest

values of CIj,t. Those can be later used to allocate a portfolio across the M assets

following a given allocation strategy/approach. However, the performance combination

weights w = {w1, w2, ...wQ} have to be estimated and we propose to determine them

by maximizing the following criterion function:

max
w

f (w) =
1

m

t∑

l=t−m+1

rp,l − λ
1

m

t∑

l=t−m+1

(rp,l − µp)
2 , (2)
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rp,l =
1

M

∑

j∈At(w)

rj,l, (3)

At (w) =
{
j ∈ Ω|CIj,t (w) ≥ C̃IM,t (w)

}
, (4)

where Ω is the set of all assets, C̃Ik,t (w), k = 1, 2, . . . , N is the sequence of ordered

values of the composite index, C̃IM,t (w) is the M-th largest value of the composite

index, At (w) is the set of the M assets with the highest score of the CIj,t (w) index

(note this set depends on the choice of the weights’ vector); rp,l is the time l return of

the equally weighted portfolio over the assets included in At (w); and µp is a calibrated

return level. Note that the criterion function is optimised with respect to the weights

by means of a numerical algorithm, as discussed in a following section. Moreover, the

composite index, which is a function of the weights, is also included in the criterion

function, whose maximization follows an iterative approach (see Section 3). The Back-

ward/Forward composite index is obtained from equation (1) with weight recovered

from the maximization of (2). Therefore, the optimal CIj,t is a by-product of the max-

imization step (as the index is computed for the evaluation of the criterion function).

The Backward/Forward composite index can then be used as a screener to rank assets,

and thus lead to a Backward/Forward equity screening rule.

The composite index has weights constant across assets. We are aware of the

strength and relevance of such an assumption, which we motivate in two ways. First,

the estimation of asset-specific combination weights would sensibly increase the compu-

tational complexity, making the evaluation of the criterion function extremely complex

and time consuming. Second, the change in the combination weights across assets

would make difficult the cross-sectional comparison of the composite index. In fact, the

composite index would assigning different weights to different measures, leading to an

increase in the heterogeneity across assets.

It is easily seen that the first term of the criterion function is the average return

of the portfolio over the last m observations and the second term is similar to a risk

measure, weighted by a risk aversion coefficient λ. The risk measure depends on the

choice of µp, which we set either equal to the average portfolio return, thus making

the second term equivalent to the portfolio variance; alternatively, we fix µp equal to

the average return of a benchmark over the last m observations, making the second
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term equivalent to a variance tracking error. Finally, we suggest to set the risk aversion

coefficient between 1 and 50, mimicking the standard choices in the mean-variance

framework.

The overall criterion function is thus similar to a mean-variance utility function.

However, (2) is not optimised with respect to the portfolio weights, which are fixed, but

with respect to the performance measure weights. The intuition behind this criterion

function is that we are determining the weights which would have maximized, using

up-to-date information, the difference between the return and the risk of the allocated

portfolio (where the risk is weighed by a risk aversion coefficient). The risk is either

monitored in absolute terms, by using the portfolio variance, or in relative terms, by

comparing the portfolio returns to those of a benchmark index. This second option is

a reasonable choice if the investor is an investment manager. The criterion function is

thus a backward evaluated mean-variance function which is used to forward allocate

the portfolio with 1/M weights. We stress that the use of an equally-weighted portfolio

allocation at this stage is just a device to estimate the performance combination weights

and is not imposing that an equally weighted strategy has to be used to allocate the

portfolio across the M assets with highest composite index.

The proposed approach to define the Backward/Forward composite performance

index entails a number of implicit assumptions. From a statistical point of view, the

construction of performance measures at the single asset level implies a focus on the

marginal distributions of each asset included in the analysis. According, the composite

index in (1) is an equity screening tool since it does not provide optimal asset allocation.

In fact, a relevant aspect is not taken directly into account, i.e. the correlation across

assets. Dependence among assets has only an implicit role in the portfolio return

and risk in (2) and (3), but it is not an explicit element considered in the criterion

function. Anyhow given that (2) penalises excessive risks and that the portfolio is

equally weighted, the effect of asset correlation is partially sterilised. It might be

possible that highly correlated assets with relatively good performances are included in

the equally weighted portfolio, thus reducing the diversification benefits, and for this

reason, we suggest the use of (1) within an investment process, but not directly as an

asset allocation tool.

A second aspect not directly covered by the Backward/Forward composite index

is the dependence between performance measures. To reduce the potential negative
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impact of highly correlated performance measures (which would limit the benefits of the

composite index), we suggest to include performance measures with low rank correlation

in (1), following Eling and Shumacher (2007), Eling (2008), Eling et al. (2011) and

Caporin and Lisi (2011).

The function f (w) includes fixed performance weights, but when we estimate the

weights over rolling samples the performance combination weights change. In fact, they

update with respect to the changing relevance of the underlying performance measures.

We first relate such a feature to the evidence provided in Caporin and Lisi (2011) that

show time-variation in the rank correlation across performance measures, suggesting

that their informative content is not stable over time. The change in the performance

measure relevance is also associated with a change over time of the asset return densities,

or equivalently, of their moments and quantiles. In fact, if these elements vary over time,

performance measurements vary over time and their views over competing assets change

over time.

To capture potential changes in the asset returns densities, and in particular on their

moments or quantiles, we consider a rolling evaluation of the performance measures,

as in Biglova et al. (2004). In that way we can capture time-varying features of the

asset return moments and quantiles, which are the constituents of most performance

measures. If the conditional values of the cited quantities were time-varying, a rolling

methodology would take that into account. On the contrary, if they were time-invariant,

we would only have an effect coming from sampling errors, which could be controlled

by changing the size of the rolling window. We are thus implicitly assuming that the

sample estimators of moments, quantiles, and quantities obtained as transformations

of sample data (such as utility functions) are consistent and unbiased estimators of the

corresponding conditional quantities. The time-change in return densities might also

be controlled by working on relatively low data frequencies, such as monthly.

3. Implementation issues

In the following, we discuss a number of issues that should be considered in the im-

plementation of the Backward/Forward composite performance index. These elements

clarify first the definition of two elements which are pre-requisites of the equity screen-

ing methodology: the investment universe and the benchmark. Later, we highlight the
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flexibility of the equity screening approach, widening the concept of performance mea-

sures, which might include other indicators such as the asset market value. We then

move to the evaluation of performance measures and to the possibility of standardizing

their values. Finally, we deal with the optimisation of the criterion function f (w),

suggesting the use of genetic algorithms. Given its relevance, a dedicated subsection

discusses the latter aspect.

Investment universe. When the allocation is performed over time for different t,

our approach does not require the portfolio cardinality M and the number of assets N

to be fixed. These two quantities could change over time, thus allowing changes in the

universe of available assets (companies may die, or might be involved in mergers and

acquisitions, or new companies can be included in the investment universe) as well as

changes in the portfolio strategies (increasing/decreasing the diversification).

Benchmark. If a benchmark is included in the criterion function, its choice also

has to be carefully considered. In fact, the benchmark has to be chosen such that it is

representative of the N assets included in the analysis. This is required to evaluate an

appropriate tracking error. The benchmark and the assets should thus include the effect

of dead companies. In fact, the use of a specific equity market index as benchmark,

together with N currently traded assets exposes the equity screening to a survivorship

bias. An alternative approach that overcomes the bias and excludes dead companies

is to create a synthetic benchmark using a set of N selected assets and their market

values. We follow this last approach for simplicity.

Definition of performance measure. Our approach is flexible, and the term

”performance measures” could be interpreted in a wider sense. In fact, we can opti-

mally combine a set of indicators associated with listed companies. These indicators

could be performance measures, but could also be liquidity measures, technical analy-

sis indicators or company-specific variables (revenues, employees, balance sheet ratios).

From a different viewpoint, the Backward/Forward composite index might be sepa-

rately evaluated for a set of risk measures, as well as for a set of reward measures.

Our approach is thus potentially close to a multi-criteria methodology, similar in some

respects, to Ballestro et al. (2007).

Companies’ market value. Liquidity is one of the possible market constraints
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that could affect our equity screening strategy. In fact, the selected assets can differ in

terms of market value and thus liquidity, making the allocation of the optimal portfolio

problematic. In extreme cases, Backward/Forward composite index, and the equity

screen it provides, could suggest to invest in companies with small market value, whose

shares might be characterised by limited liquidity. As a result, the implementation of

the portfolio could be characterised by large costs (transaction costs as well as large

deviations in the price due to the liquidity problems or the impossibility of creating the

portfolio because some trades could not be executed in the market due to the absence

of a counterpart). To mitigate this aspect, and thus force the optimal portfolio to invest

in small caps only if their performances are really relevant, we suggest to introduce the

market value as a further performance measure. This would capture the liquidity effect:

higher the market value, higher the liquidity. Clearly, other measures of stock liquidity

can also be considered.

Evaluation of performance measures. The performance indicators chosen to

build the Backward/Forward composite index are generally computed on a given sam-

ple. In order to follow the evolution over time of the asset return densities, we suggest

to evaluate performance measures over a rolling window of m observations. The value

of m depends on the time frequency of observations and on the total sample length;

some examples could be 60 or more months, about 50 weeks, or 40 or more days. In

general terms, we suggest to use between 40 and 60 observations to avoid excessive

volatility in performance measure values that might induces relevant changes in the

construction of the composite index, in the assets included in At (w) and consequently,

a large turnover in the portfolio. On the contrary, longer samples could significantly

smooth performance measures sequences, leading to a very low turnover, but would not

capture local (medium period) changes in performance measure relative rankings. With

respect to the data frequency, we suggest the use of monthly data. Higher frequencies

will induce relevant and frequent changes on the portfolio combination weights and on

the asset rankings.

Standardisation. Given a list of Q performance measures, our final purpose is the

construction of a composite index. However, we must recognise that different perfor-

mance measures could have different ranges, thus making their combination dependent

on the scale of the chosen performance measures. For this reason, we suggest to con-
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sider standardised performance measures as inputs of the composite index. Let pi,j,t be

a given performance measure, we suggest to compute the composite index CIj,t using

the following quantities as inputs:

p̄i,j,t =
pi,j,t −min {pi,j,t}

N

j=1

max {pi,j,t}
N

j=1 −min {pi,j,t}
N

j=1

. (5)

Such a standardisation makes the performance indices to vary between 0 and 1, thus

avoiding the scale effect, and ideally putting all performance measures on the same

playing field.

3.1. Objective function optimisation

The determination of the Backward/Forward composite index requires the solution

of a non-trivial optimisation problem. For each point in time, the evaluation of f (w)

in (2) conditional to a vector of weights w requires the following steps:

• Evaluate the performance measures pi,j,t;

• Compute the standardized performance measures p̄i,j,t;

• Determine for each asset the composite index CIj,t (w) =
∑Q

i=1wip̄i,j,t;

• Identify the set At (w);

• Obtain the ex-post return of the allocation rp,l =
1
M

∑
j∈At(w) rj,l and the objective

function f (w).

The criterion function f (w) is a non-linear and non-differentiable function of perfor-

mance measure weights w. In fact, these enter only in the construction of the set At (w)

that contains the assets with the highest values of the index CIj,t (w). Furthermore,

different values of the weights could provide the same set of ’best’ assets, thus mak-

ing the optimisation of f (w) computationally demanding.We first provide a graphical

example to clarify the computational problems that might arise in the optimisation of

the objective function detailed in Section 2. Let us assume we have three performance

measures and thus two weights to be estimated (the third one is obtained through the

constraint). We report in Figure (1) the value of the criterion function for all possible

weight combinations. Notably, the surface has many flat areas and thus local maxima.
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Consequently, optimisation methods based on derivatives of the function f (w) do not

guarantee the identification of the global optima.

To enforce the identification of the global optima, we thus suggest the use of genetic

algorithms, in particular the Differential Evolution algorithm (DE) developed by Storn

and Price (1997), which is a population-based optimiser. One particular feature of the

DE algorithm is that it encodes every type of parameter as floating-point numbers. As

reported in Price et al. (2005), this provides different advantages with respect to the

bit–flipping algorithm of traditional Genetic Algorithms implementations. For instance,

it induces better scales on large problems and a faster convergence. In turn, this implies

a reduced computational effort.

In the DE, the starting point is determined by sampling the objective function at

different random initial points of the parameters, i.e. the Q performance combination

weights. Moreover, each parameter in our objective function is bounded in [0,1] since it

represents the coefficient of a convex combination. Initial points (also called population

members in the DE framework) are thus sampled from a Q−dimensional domain. In

the empirical application we used the DE optimisation package for Matlab developed

by Markus Buehren and available in MatlabCentral. This package is based on the

code of Storn and Price (1997). Note that a single evaluation of the objective function

took on average 15 seconds using an Intel 3.4 GHZ Intel Core 7 processor machine.

The execution time can however be reduced using the parallel processing on multiple

cores. We set the number of population members as suggested by the author equal

to 10 by the number of parameters, thus 10Q. The algorithm stops when one of the

following conditions is met: the maximum number of iterations is reached (we set the

maximum at 100); the function evaluation lasts for a maximum of 60 seconds and all

possible combination of parameters have been tested. For a detailed description of the

algorithm, see Storn and Price (1997), Maringer (2005) and Price et al. (2004). For

applications of the DE algorithm in finance, see Maringer (2005), Gilli et al. (2008),

Hagstromer and Binner (2009), Krink et al. (2009), Krink and Paterlini (2011) and

Gilli and Schumann (2012), among others. For other applications of genetic algorithms

in finance see Mohr et al. (2013), among others.

To further support our suggestion, we perform a comparison of different solvers

(global and local optimisers) when facing an optimisation that admits several local

optima. We consider the following solvers: the differential evolution algorithm (DE), a
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genetic algorithm (GA) and interior point algorithm (IP).3

We start by simulating 1000 different starting values for the parameters of interest

(the performance measure weights), and feed with them the solvers in the estimation

of the objective function on the same data. We expect that global optimisers, DE and

GA, will identify the global optima with a much larger frequency compared to the IP

approach. Figure 2 contains the frequency histogram of the maximum objective func-

tion values across the 1000 replications. The distribution for IP (white) highlights the

presence of several local optima, while the DE (dark grey) and GA (light grey) distribu-

tions are centered around the same value, but with a different dispersion. This clearly

emerges from (1). The averages of the objective function values for 1000 optimisations

are quite similar for the DE and GA, but DE shows a lower standard deviation. On the

other hand, the IP algorithm provides the highest dispersion, reflecting the shortfall

of the gradient optimisation when dealing with multiple local optima (note also that

this corresponds most likely to lower values of the objective function). Overall, this

small simulation experiment confirms the appropriateness of the DE algorithm for our

optimisation problem.

4. Equity screening with composite indices on the US market

We consider the US stock Market for an empirical assessment of the Backward/Forward

composite index within an asset allocation framework. The composite index is applied

as an equity screening rule, and our purpose is to verify its advantages in terms of port-

folio returns. We first select the performance measures to take into account, and later

describe the data. Moreover, we introduce alternative naive equity screening rules that

are compared to our proposal. The empirical results are reported in a fourth subsection.

4.1. Selected performance measures

The results of our approach clearly depend on the choice of performance measures

combined in the index CIj,t (w). The following surveys might be used to select among

the large set of performance measures proposed in the financial economics literature:

Aftalion and Poncet (2003), Le Sourd (2007), Bacon (2008), Cogneau and Hubner

(2009a,b) and Caporin et al. (2014). In addition, Eling and Shumacher (2007), Eling

3For details on the solvers we consider, see Storn and Price (1997) for Differential Evolution,
Goldberg (2000) for Genetic Algorithm, and Bonnans et al. (2006) for the interior point algorithm.
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(2008), Eling et al. (2011) and Caporin and Lisi (2011) report comparisons among

alternative performance measures. The measures we consider have been selected in

order to include well-known quantities, like the Sharpe, Sortino, Treynor, and Appraisal

ratio, as well as measures based on partial moments, quantiles and drawdowns, which

are not much common. Our purpose is to provide an empirical application showing the

benefits associated with the combination of different measures. In the application, we

evaluate the performance measures at time t− 1 and use the equity screening outcome

for selecting assets to be hold up to time t. The on-line appendix reports a detailed list

of performance measures, including also their equations, while here we simply list the

measures we use in the empirical analyses together with the symbol used to identify

them. Our selection includes traditional performance measures, the Sharpe ratio (Sh)

of Sharpe (1966 and 1994), the expected return over the Mean Absolute Deviation

(ERMAD) introduced by Konno (1990) and Konno and Yamazaki (1991), the Appraisal

ratio (AR), the Treynor index (Treynor, 1965), or Risk Adjusted Return (RaR), and the

M2 index by Modigliani and Modigliani (1997). Those measures provide risk-adjusted

returns differing in the way they measure the asset risk, ranging from volatility, to

systematic and idiosyncratic risk, up to the benchmark risk. We also include measures

based on the drawdowns: the Calmar ratio (CR) of Young (1991), the Sterling ratio

(SR) of Kestner (1996), and the ratio (BR) by Burke (1994). These three measures

provide risk-adjusted returns with a focus on the extreme risks as monitored by the

drawdowns. We then include measures based on partial moments: the Sortino ratio

(Sr) by Sortino and Van der Meer (1991), and the Kappa 3 (K3) measures by Kaplan

and Knowles (2004). This third group of measures modifies both the return and risk

measures extrapolating these elements form the returns empirical density, and using the

entire density support. Finally, we consider a measure based on quantiles, the expected

return over absolute Value-at-Risk (VR) of Dowd (2000). This last measure considers

again the returns distribution to recover a risk measure, but focuses only on the lower

tail. In the empirical analyses, we consider a rolling evaluation of the performance

measures over a window of m = 60 months. As mentioned in the previous section, the

Market Value (MV) of each company will be included as an additional performance

measure to penalise smaller companies.
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4.2. Dataset description and benchmark construction

Our dataset is based on the constituents of the S&P Composite 1500 (as of Febru-

ary 22nd, 2012). The time series were downloaded from Datastream at a monthly

frequency from the 31st of January 1990, to the 31st of January 2012, for a total of

265 observations. We also recovered a proxy of the risk free asset, the JP Morgan 1

Month Cash bond index. To cope with survivorship bias, we restricted the dataset to a

collection of assets constantly available in the analysed sample. Following this criterion,

we restricted our attention to 695 assets.4

The S&P1500 market index cannot be used as a benchmark to evaluate the perfor-

mances of the equity screening approach based on the Backward/Forward composite

index. In fact, our selected sample does not include a relevant part of the assets compos-

ing the S&P1500. Moreover, the S&P1500 composition changes over time.5 Therefore,

we build a benchmark that is coherent with the selected assets. This index corresponds

to the value-weighted index composed of the 695 selected assets.6

4.3. Portfolio allocation and naive equity screening

We apply our equity screening approach, based on the Backward/Forward compos-

ite index, to the selected assets by estimating performance measures on rolling windows

of 60 months. Starting from the end of January 1995 (the first month where 60 monthly

returns are available), we identify, across the 695 assets, the 50 assets that maximise

the criterion function in (2). We used two specifications for the Backward/Forward

composite index discussed in Section 2, differing in the risk component on the criterion

function (2): the portfolio variance (VO) and the tracking error volatility (TE).7 More-

over, we make use of two different values for the risk aversion parameter, 1 and 20. The

first corresponds to a mild penalisation of the risk, while the second mimics the choices

of a more risk-averse investor. Finally, we compare our screening algorithm to a naive

equity screening rule based on the Sharpe ratio. Therefore, with a rolling procedure

similar to that outlined before, we select the 50 assets that have higher Sharpe ratios.

4The list of assets is available upon request.
5The time series of the S&P 1500 constituents is not available to us through Datastream.
6Additional details on the benchmark are available in the on-line supplementary material.
7We set the term µp equal to the average portfolio return in the first case, while µp is equal to the

benchmark return in the second case.
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To compare the obtained asset screens, we use them to allocate the wealth of alterna-

tive investors, each using a specific equity screening rule. For the portfolio allocation

of the 50 selected assets, we opt for an equally weighted portfolio rule where each asset

has an equal weight of 2%. As already noticed, equally weighted portfolios have been

shown to have performances comparable to, if not better than, optimised portfolios;

see De Miguel et al. (2009). Moreover, when optimised portfolios are used, differences

among their returns/risk/performances might be due both to the screening rules, and

to the estimation error associated with the portfolio weights, and thus the estimation

error might hide any discrepancy among screening rules. We compute the monthly

realised returns of equally weighted portfolios based on different screening rules. The

portfolio composition is modified on a monthly basis, where our criterion function (2)

is optimised each month, and Sharpe ratios are estimated every month. At the end, we

have a total of 205 monthly portfolio returns. These returns are compared by means

of: standard descriptive analyses, including the computation of some risk measures; a

horse-race over the range February 1995 to January 2012; the weights associated with

the different performance measures; the associated turnover of portfolios.

We define the turnover as the difference in the portfolio’s composition in the period t

with respect to the period t− 1. This indicator highlights the variability in selection in

terms of assets for a given strategy,

TOi = 1−
| Ii,t ∩ Ii,t−1 |

M
∈ [0, 1], (6)

where Ii,t, It−1 are the set of selected assets in the two period for the strategy i, | · |

indicates the cardinality of the set, and M the number of selected assets. Moreover, we

compare the performances also to those of the benchmark, computed as described in

the previous subsection.

4.4. Performance results

Table (2) includes the descriptive analysis of the portfolios, while Figure (3) shows

the cumulated returns from 1995 to 2012. Compared to the benchmark, all equity

screening-based portfolios provide higher cumulated returns. If we consider an investor

with an initial wealth of 1, the portfolio with the highest cumulative return (8.53) is

given by the criterion function which considers the tracking error volatility and a risk

aversion coefficient equal to 1. The second highest portfolio in terms of cumulative re-
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turns (6.69) is based on the criterion function which depends on the portfolio variance.

The risk-aversion coefficient has a relevant impact; in fact, the TE and VO portfolios

with risk aversion set to 20 are less profitable than the Sharpe-based portfolio. Respec-

tively, (3.26) and (3.68) compared with the Sharpe-based (5.36). The result is even

stronger if we analyse the turnover, which is sensibly higher for higher values of the

risk aversion. In the TE strategy, it changes from 0.1822 to 0.2457. Similarly, it in-

creases from 0.1862 to 0.2208 in the VO strategy. Figure (4) reports the corresponding

boxplots of the distribution returns for the various strategies. In the considered case,

the strategies with and without the lower market value bound are very similar to each

other. As we might expect, the strategies with a higher risk aversion provides a lower

dispersion compared to the others. In particular, the VO strategy with the lower bound

in the market value is the best in terms of volatility.

Comparing the Sharpe index of the portfolios, the Sharpe-based portfolio seems to

be the preferred choice (0.2288), except for the VO case with risk aversion coefficient

set to 20 which provides a Sharpe ratio equal to 0.2314. Such a result is a consequence

of the criterion used for portfolio construction, and might be expected.

In terms of risk measures, we observe that all portfolios based on screening rules are

more risky than the benchmark, which gives an annualized volatility equal to 0.1538.

However, we stress that all screening-based portfolios have not been optimised to reduce

the risk, but are simply based on an equally weighted allocation scheme. As a result,

risk reductions might be achieved by optimising portfolio weights across the selected

assets, or by generalizing the criterion function and introducing weights in equation (3).

The latter choice would require the joint optimisation of the criterion function in (2)

with respect to both the portfolio weights and the performance combination weights.

Such a generalization is left to future research as we focus here on the introduction of

the composite performance index. Finally, we emphasise that risk measures decrease

with increasing risk aversion, as expected. Moreover, for a risk aversion coefficient equal

to 20, risk measures they are better than the benchmark and also preferred to those

of the Sharpe-based portfolio, with the exception of the TE case where the annualized

volatility is higher than that of the benchmark (for the other risk measures the strategy

provides better results than the benchmark). As an example, by increasing the risk

aversion, the VaR at 5% in the TE strategy changes from 0.0935 to 0.0668 while in the

VO strategy from 0.0872 to 0.0573.
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Overall, the introduction of screening rules provides higher returns than the bench-

mark, with a preference for the Backward/Forward algorithm compared to simpler

screening based only on the Sharpe ratio. Risk measures are different across screening

strategies, but this is a consequence of the portfolio construction, that is not optimised.

The turnover induced by the screening rules is influenced by the degree of risk aversion,

and becomes higher and more volatile with increasing risk aversion; see Figure (5).

The Figure shows that the turnover induced by a Sharpe-based screening is oscillating

between 10% and 30% on a monthly basis. Similar values are provided by the TE

screening with low risk aversion in a large part of the sample. Deviations are observed

during periods of high volatility (from 2007) and with higher values of the risk aver-

sion. In these two cases, the turnover induced by the TE screening is higher than the

turnover of the Sharpe based screening, and it reaches values close to 50% with low risk

aversion and up to 90% with high risk aversion.

In the Backward/Forward composite index, the weights assigned to the different

performance measures have a relevant role; moreover, they change over time, and react

to the different features of returns time series. Table (3) includes the descriptive statis-

tics for the weights in the tracking error- and volatility-based screening.8 We first point

out that our optimisation algorithm generally assigns a very small weight - which is

close to zero - to the Sharpe ratio, independent of form of the criterion function and of

the risk aversion coefficient. Both the tracking error and portfolio volatility objective

functions provide similar performance measure weights when the risk aversion coeffi-

cient is set to 1; in particular, we observe that the Modigliani-Modigliani index receives

the largest weight. Respectively, 0.56 in the TE strategy and 0.44 in the VO strategy.

Other performance measures receiving a high weight are the Appraisal Ratio and the

Excess Return over Mean Absolute Deviation. The other measures are characterised

by very small average weights and limited standard deviations, which signal that they

receive a relevant weight only occasionally as shown in Table (3) . When the risk aver-

sion coefficient is increased to 20, the difference between the two forms of the criterion

function leads to different average weights assigned to the performance measures. When

we focus on the tracking error-based function, the Market Value, the Appraisal Ratio

and the Excess Return over Mean Absolute Deviation receive a weight larger than 10%.

8A graphical example on the time-varying evolution of weights is included in the on-line appendix.
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In contrast, in the second implementation based on portfolio volatility, the Burke and

RAR measures increase over 10%, while the Market Value falls below 10%. Even for

a large risk aversion level, the performance measures with small average weight have a

large standard deviation, thus confirming their limited relevance. Results support thus

our expectation of variability in the informative content of performance measures, and

might also be seen as a confirmation of the potential interest in performance measures

able to go beyond the Sharpe ratio.

A important element to emphasise is the limited weight assigned to the Market

Value. As a consequence, the selected assets might be characterised by small market

value and thus small liquidity, possibly creating difficulties in the implementation of

portfolios based on these assets. This is confirmed by Figure (6) in which we see a

sharp decrease in the average market value of the selected companies in the second half

of the sample. Such a behavior is common across the different implementations of the

screening algorithm. To force the impact of the Market Value, we run a second set of

evaluations where, in the solution of (2), we constrain its weight with a lower bound of

10%.

Table (2) includes the descriptive statistics and shows the impact of the Market

Value constraint in terms of cumulated returns, risk measures, and Sharpe ratios. Over-

all, to impose a minimum relevance to the companies’ market value leads to a slight risk

reduction: Value-at-Risk, Expected Shortfall, returns volatility and range all improve.

However, the total and average returns, and the Sharpe ratio decrease, except in the

case with tracking error objective function and high level of risk aversion. In addition,

the turnover shows a decrease, which is larger for the cases where the risk aversion is

set to 20. It decreases from 0.2457 to 0.1972 in the TE and from 0.2208 to 0.2013 in

the VO strategy.

To investigate the degree of similarity among the strategies (and the associated

equity screens), we compute a concordance index which highlights the common selection

in terms of assets,

ConcIdx =
| Ii ∩ Ij |

M
∈ [0, 1], (7)

where Ii, Ij are the set of selected assets for the strategy i, j with i 6= j, | · | indicates

the cardinality of the set, and M the number of selected assets. In Table (2), we also

report the average of the concordance index to compare each strategy with the Sharpe
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Portfolio rule. The concordance index is close to 0.6 for both the tracking error volatility

and the portfolio variance criteria. Such a result, on the one side highlights the different

signals coming from the strategies obtained through the performance measures. On the

other side, it is a bit surprising given the small weight assigned to the Sharpe ratio in

the composite index. This is a by-product of the correlation across single performance

index ranks, which can be controlled by selecting measures as suggested by Caporin

and Lisi (2011), but cannot be fully annihilated.

Looking at the Market Value of the selected companies, we note an increase in

the second part of the sample compared to the previous cases; see Figure (6). The

introduction of a lower bound for the Market Value leads to the selection of equities

with an average market value generally higher than the average market value of the

benchmark. Weights assigned to the performance measures are thus partially affected by

the constraint imposed on MV; see Table (4). However, the sets of the most influential

performance measures remain unchanged.

4.5. Robustness Checks

As already mentioned, the number of assets identified by our screening algorithm

can be easily modified. The on-line supplementary material contains the Figures and

Tables associated with the comments here reported. We first consider the selection of

either 25 or 100 assets. The results for these strategies are very similar to the ones with

k = 50 reported in Table (4). The higher the risk aversion for the investor, the lower

the variance of the given returns. By comparing the results across different values of M ,

we note that screening algorithms always beat the benchmark in terms of cumulated

returns but not in terms of risk measures. Nevertheless, we observe a general reduction

in the risk measures for increasing M , and an improvement in the Sharpe ratios for

M = 100. Such a finding depends on the possibility of identifying profitable investment

opportunities (that is assets) the performance of which might be changing over time,

leading to assets being ”above average quality” but not necessarily ”top performers”. If

a small number of assets is included, the selected equities are subject to more frequent

changes, as shown by the average turnover (decreasing for increasing M). As a result,

when the number of selected assets increases, the performances improve.

Moreover, we observe that the Sharpe ratios of the portfolios based on Back-

ward/Forward equity screens are better than the naive approach in a few cases only,
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but they are associated with different objective functions: when M = 25 the use of

the tracking error-based objective function, with a large risk aversion and bounded

weight of the Market Value, provides the best results.In contrast, when M = 100, the

results are slightly better for the objective function using the variance of the selected

portfolio and a large risk aversion level, dependent from the presence of a bound on

the weight of MV. The case where M = 50 is in the middle, with the Sharpe ratios of

the naive strategy and our screening rule being very close to each other. Overall, the

empirical application on the US stock market shows that the screening algorithm based

on the Backward/Forward composite index is able to identify profitable investment

opportunities.

In addition, it is pretty clear that the concordance index depends also on the number

of selected assets in the market: the higher the M , the higher the concordance index.

In fact, the concordance indices for M = 25 assets are lower with respect to the ones

associated with either 50 or 100 assets. The same effect appears also for the turnover,

where the higher isM , the less frequent is the change in the composition of the portfolio.

Finally, looking at Tables (3) and (4) it clearly emerges a weight dominance in the

composite index by AR and M2 performance measures. Our approach assigns to M2

and AR measures the higher weights in all the different criteria when the risk aversion

coefficient is set equal to 1. The result holds even if we change the number of selected

assets, M . Conversely, when the investor is more risk adverse (risk aversion coefficient

equal to 20), the weights are more re-distributed on the different performance measures.

We consider at this purpose the realized portfolio returns based on the two strategies

mentioned above. The AR strategy provides a lower dispersion of the returns with

respect to the M2 strategy. Furthermore, increasing the number of assets included in

the portfolio reduces the volatility of the strategy towards the market index.

In our empirical application, the M2 strategy outperforms all the other strategies

in terms of cumulative and annual returns. This result holds for each strategy and for

all the M selected assets. The annual volatility for the different M is lower than the

volatility of the benchmark. The realized returns of the AR strategy is in line with the

other portfolio strategies obtained with the composite index.

It is worth noting the ability of the Backward/Forward methodology to capture

the market “momentum” through the best performance measures according to the

specified criteria. This can be seen also by looking at concordance indices of the
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Backward/Forward-based allocations with respect to the Sharpe, AR and M2 port-

folios. If the risk aversion coefficient is set to 1, TE and VO strategies have an high

degree of similarity with the M2 strategy and the concordance index is on average

higher than 0.70 - third and sixth column for no bounded and bounded MV weights in

the criterion function, respectively. Alternatively, when the risk aversion coefficient is

set to 20, the concordance index among M2 and TE/VO strategy falls down. Instead, it

remains quite stable for Sharpe (SH) and Appraisal Ratio (AR) in TE and VO criteria

for different levels of the risk aversion coefficient.

5. Conclusions

We introduce a new composite index of performance measures, the Backward/Forward

index, to be used as a screening algorithm that selects within an investment universe a

subset of assets. Such an index linearly combines different performance measures where

the combination weights are derived from an optimisation problem that takes into ac-

count past performances associated with the ”optimal” weights and the subsequent

asset ranking. Accordingly, past performances lead to the asset selection for future al-

locations, suggesting the Backward/Forward equity screening name. We discuss several

implementation issues of our screening algorithm and then apply it on the US stock

market. Results show advantages of our composite performance index in a simplified

asset allocation framework. In fact, by comparing simulated equally weighed portfolio

strategies, the proposed composite performance index provides superior results in terms

of realised results.

Several aspects of our analysis might be further extended. Within the proposed

framework it would be interesting to estimate the optimal number of assets M which

might be expressed as a fraction of the total number of assets N , or the optimal weights

of the portfolios, going beyond the use of a simplified equally weighted allocation. In

addition, several constraints can be added to the criterion function, such as limits on

the risk (maximum variances, VaR constraints), maximum transaction costs, turnover

constraints, just to cite some possibilities. From a practical point of view, our empirical

study might be improved by the introduction of ”dead” companies, if a suitable database

is available.
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Table 1: Results for the optimisation for 1000 simulated initial values considering the differential
evolution algorithm (DE), genetic algorithm (GA) and initial point algorithm (IP). Objective is the
average of the objective function values with std the standard deviation and #Fevals the average of
the number of function evaluations.

DE GA IP

objective 0.6255 0.6293 0.2858
std 0.0048 0.0377 0.2966

#Fevals 5 13203 13
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Table 2: Descriptive analysis of benchmark and of the 50 assets portfolio returns. TE denotes portfolios where the criterion function considers
the tracking error volatility, while VO represents portfolio where the criterion function depends on the portfolio variance. Moreover, 1 and
20 identify the risk aversion coefficient value. The columns report the cumulated returns obtained in the range February 1995 to January
2012, the annualized average monthly return and annualized variance, the minimum and maximum monthly returns, the skewness and kurtosis
indices computed on monthly returns, the 5% Value-at-Risk and Expected Shortfall, the Sharpe ratio, the average monthly turnover and the
concordance index.

Cum. Ret. Ret. Ann. Vol. Ann. Min Max Skew Kurt Var(5%) ES(5%) Sharpe Avg-TO Conc.Idx
Bench 2.2030 0.1011 0.1538 -0.1601 0.1044 -0.5778 3.8469 0.0650 0.0963 0.1814 - -

SH 5.3647 0.1404 0.1667 -0.1876 0.1121 -0.8082 4.4216 0.0681 0.1042 0.2288 0.1624 -
TE1 8.5338 0.1783 0.2259 -0.2477 0.1991 -0.5968 4.3472 0.0935 0.1405 0.2111 0.1822 0.5550
TE20 3.2629 0.1169 0.1601 -0.1853 0.1180 -0.6989 4.2987 0.0668 0.0984 0.2002 0.2457 0.5966
VO1 6.6904 0.1611 0.2100 -0.2477 0.1463 -0.7312 4.5592 0.0872 0.1319 0.2067 0.1862 0.6160
VO20 3.6833 0.1186 0.1405 -0.1646 0.1360 -0.8225 5.4076 0.0573 0.0888 0.2314 0.2208 0.5745

Portfolios with a lower bound on Market Value weight in the criterion function (at least 0.1)
TE1 7.3774 0.1686 0.2194 -0.2383 0.1662 -0.6080 4.1221 0.0911 0.1359 0.2063 0.1723 0.5636
TE20 3.8260 0.1222 0.1524 -0.1777 0.1127 -0.6593 4.2221 0.0627 0.0921 0.2194 0.1972 0.5390
VO1 5.8385 0.1530 0.2054 -0.2383 0.1442 -0.7387 4.3963 0.0856 0.1297 0.2013 0.1773 0.6237
VO20 3.1327 0.1113 0.1361 -0.1598 0.0943 -0.9143 5.1529 0.0558 0.0861 0.2248 0.2013 0.5891
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Table 3: Descriptive analysis of performance measure weights in the range February 1995 to January
2012, for the 50 assets portfolio. The minimum is not included since equal to zero for all measures.
RA denotes the levels of the risk aversion. TE identifies tracking-error-based screening while VO refers
to screening with portfolio variance in the objective function. Row headings refer to the performance
measures listed in section 4.1.: MV, market value; ERMAD, return over mean absolut deviation; AR,
appraisal ratio; BR, Burke ratio; SR, Sterling ratio; CR, Calmar ratio; RaR, Risk adjusted return; M2,
Modigliani-Modigliani index; Sr, Sortino ratio; K3, Kappa 3 measure; VR, return over Value-at-risk
ratio; Sh, Sharpe ratio.

Mean Max St.Dev. Mean Max St.Dev.
TE RA = 1 RA = 20
MV 0.0041 0.0911 0.0126 0.2450 0.6544 0.1758

ERMAD 0.1198 0.9987 0.2100 0.3353 0.9340 0.3191
AR 0.2904 0.9386 0.1839 0.2623 0.9588 0.2601
BR 0.0091 0.2149 0.0222 0.0335 0.4865 0.0784
SR 0.0030 0.0727 0.0095 0.0614 0.4955 0.1231
CR 0.0024 0.1074 0.0098 0.0035 0.1238 0.0162

RaR 0.0040 0.2078 0.0193 0.0140 0.3064 0.0470
M2 0.5559 0.9342 0.2175 0.0173 0.4235 0.0647
Sr 0.0018 0.1219 0.0105 0.0024 0.2780 0.0200
K3 0.0053 0.2345 0.0258 0.0195 0.6066 0.0994
VR 0.0017 0.1226 0.0100 0.0048 0.2878 0.0299
Sh 0.0026 0.3199 0.0253 0.0009 0.1770 0.0123
VO RA = 1 RA = 20
MV 0.0033 0.0668 0.0092 0.0100 0.1988 0.0261

ERMAD 0.1869 0.9987 0.2904 0.1634 0.9666 0.2652
AR 0.3204 0.9817 0.2213 0.3917 0.9999 0.3631
BR 0.0140 0.3627 0.0364 0.1306 0.9108 0.1814
SR 0.0081 0.1227 0.0221 0.0563 0.4404 0.1091
CR 0.0032 0.1064 0.0121 0.0204 0.3385 0.0560

RaR 0.0088 0.2840 0.0357 0.1955 0.9066 0.3111
M2 0.4390 0.9814 0.2285 0.0114 0.1933 0.0373
Sr 0.0012 0.0389 0.0042 0.0188 0.7849 0.1005
K3 0.0073 0.2518 0.0291 0.0007 0.0882 0.0064
VR 0.0075 0.4965 0.0528 0.0010 0.0673 0.0074
Sh 0.0001 0.0064 0.0007 0.0001 0.0180 0.0013
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Table 4: Descriptive analysis of performance measure weights in the range February 1995 to January
2012 with MV weight with a lower bound at 10% for the 50 assets portfolio. The minimum is not
included since equal to zero for all measures. RA denotes the levels of the risk aversion. TE identifies
tracking-error-based screening while VO refers to screening with portfolio variance in the objective
function. Row headings refer to the performance measures listed in section 4.1.: MV, market value;
ERMAD, return over mean absolut deviation; AR, appraisal ratio; BR, Burke ratio; SR, Sterling ratio;
CR, Calmar ratio; RaR, Risk adjusted return; M2, Modigliani-Modigliani index; Sr, Sortino ratio; K3,
Kappa 3 measure; VR, return over Value-at-risk ratio; Sh, Sharpe ratio.

Mean Max St.Dev. Mean Max St.Dev.
TE RA = 1 RA = 20
MV 0.1035 0.1820 0.0109 0.3236 0.6889 0.1572

ERMAD 0.1065 0.8988 0.1879 0.3025 0.8406 0.2880
AR 0.2636 0.8447 0.1652 0.2358 0.8629 0.2344
BR 0.0082 0.1585 0.0179 0.0301 0.4378 0.0706
SR 0.0025 0.0851 0.0086 0.0520 0.4459 0.1060
CR 0.0021 0.0966 0.0088 0.0029 0.1114 0.0143

RaR 0.0035 0.1870 0.0173 0.0126 0.2758 0.0423
M2 0.5027 0.8408 0.1950 0.0156 0.3812 0.0582
Sr 0.0013 0.1097 0.0081 0.0021 0.2502 0.0180
K3 0.0029 0.1734 0.0132 0.0176 0.5459 0.0895
VR 0.0010 0.0559 0.0046 0.0044 0.2590 0.0269
Sh 0.0023 0.2879 0.0228 0.0008 0.1593 0.0111
VO RA = 1 RA = 20
MV 0.1029 0.1601 0.0082 0.1086 0.2789 0.0229

ERMAD 0.1653 0.8988 0.2604 0.1484 0.8699 0.2396
AR 0.2890 0.8835 0.1989 0.3519 0.8999 0.3280
BR 0.0126 0.3265 0.0327 0.1187 0.8289 0.1641
SR 0.0069 0.1104 0.0190 0.0516 0.3964 0.0990
CR 0.0027 0.0958 0.0104 0.0162 0.3046 0.0468

RaR 0.0080 0.2556 0.0321 0.1765 0.8160 0.2813
M2 0.3979 0.8833 0.2074 0.0096 0.1682 0.0316
SR 0.0012 0.0350 0.0043 0.0169 0.7955 0.0925
K3 0.0066 0.2267 0.0262 0.0007 0.0794 0.0060
VR 0.0067 0.4468 0.0475 0.0008 0.0583 0.0055
Sh 0.0001 0.0058 0.0006 0.0001 0.0162 0.0011
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Figure 1: Surface of the objective function for the determination of the composite index weights with
three performance measures. The vertical axis refers to the objective function while the other two axis
report the weights of two performance measures (the third being obtained through the constraint on
combination weights).
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Figure 2: Distributions of the objective function values with 1000 simulated initial values for DE (dark
grey), GA (light grey) and IP (white).
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(c) VO1
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Figure 3: Cumulated returns of the strategies and of the benchmark in the range 1995-2012
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Figure 4: Boxplot for the different strategies with k = 50: TE denotes strategies based on the Tracking
Error Volatility criterion function, while VO refers to the portfolio variance criterion function; the first
number, 1 or 20 is the risk aversion coefficient; finally, FREE denotes strategies without constraints
on the Market Value weight, while LB10 indicates the use of a lower bound set at 10% assigned to the
Market Value in the construction of the Backward/Forward index.
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(a) TE1
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Figure 5: Turnover induced by Sharpe-based screening (dotted line) and by the TE screening with risk
aversion coefficient equal to 1 (bold line - left picture) and equal to 20 (bold line - right picture)
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(a) Free MV
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(b) MV=10%

Figure 6: Average market value of the assets selected by the TE screening with risk aversion equal to
1 with unconstrained (bold line - left figure) or constrained market value weight (market value fixed
at 10% - bold line - right figure). The figures also report the average market value of the companies
included in the benchmark (dashed line), and the 95% quantile of the market value of the companies
included in the benchmark (dotted line).
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