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Abstract.
The equivalence postulate approach to quantum mechanics aims to formulate quantum

mechanics from a fundamental geometrical principle. Underlying the formulation there exists
a basic cocycle condition which is invariant under D–dimensional Möbius transformations
with respect to the Euclidean or Minkowski metrics. The invariance under global
Möbius transformations implies that spatial space is compact. Furthermore, it implies
energy quantisation and undefinability of quantum trajectories without assuming any prior
interpretation of the wave function. The approach may be viewed as conventional quantum
mechanics with the caveat that spatial space is compact, as dictated by the Möbius symmetry,
with the classical limit corresponding to the decompactification limit. Correspondingly, there
exists a finite length scale in the formalism and consequently an intrinsic regularisation scheme.
Evidence for the compactness of space may exist in the cosmic microwave background radiation.

1. Introduction
The mathematical modelling of observational data on the smallest and largest distance scales
currently rests on two main theories, quantum mechanics and general relativity. On the
smallest scales quantum mechanics, through its incarnation as the Standard Model of Particle
Physics, accounts for all subatomic data with a high degree of precision. The vindication of
the Standard Model received strong support with the observation of a scalar boson resonance
at the Large Hadron Collider (LHC) with the expected Standard Model properties. Higgs
studies will dominate the experimental particle physics program in the next few decades, i.e.:
measuring its couplings to the Standard Model fermions and vector bosons; measuring its
self–couplings; and constraining deviation from the Standard Model by constraining higher
dimensional nonrenormalisable operators suppressed by a higher energy scale.

On the largest scales general relativity receives ample support from observations in celestial,
galactical and cosmological data. In seeking extensions to the two theories, it is hard to compare
the two sets of data as the particle physics experiments rely on billions of controlled events and
a thorough understanding of the background, whereas the astrophysical and, in particular, the
cosmological data, rely on a few, or a single, event, and poor understanding of the background.
This distinction is particularly important when seeking to synthesise the two theories, and
the weight placed on observations in the two domains. It is also vital in the consideration of
future experimental facilities and the prospect that they will lead to improved understanding of
fundamental physics.

While quantum mechanics and general relativity are successful in accounting for observational
data in their respective domains, their synthesis is nothing but settled. Furthermore, the two
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formalisms follow conceptually distinct approaches. The principles of equivalence and covariance
with respect to general diffeomorphism underly general relativity. That is, general relativity
follows from a fundamental geometrical principle. On the other hand, quantum mechanics
does not follow from a geometrical principle. The main tenant of the axiomatic formulation of
quantum mechanics is the probability interpretation of the wave–function.

Thus, quantum mechanics and general relativity follow fundamentally distinct approaches.
However, the two theories are also fundamentally incompatible. This incompatibility is most
clearly seen in the treatment of the vacuum and the vacuum energy. In quantum mechanics
we have to define a vacuum state on which the quantum operators operate and create the
physical states of the Hilbert space. The vacuum is the state which is annihilated by all
annihilation operators. The vacuum should be bounded from below. One issue arises in quantum
field theories due to the existence of an infinite number of states and the normal ordering
ambiguity1. The zero point energy of the vacuum state therefore leads to an infinite contribution
to the vacuum energy. In particle physics experiment we only measure energy differences
and absorb additional infinities in physical parameters that are measured experimentally. If
the number of parameters needed to absorb the infinities is finite the theory is said to be
renormalizable. Otherwise it is said to be nonrenomalisable. The triumph of the Standard
Model is precisely because it contains a relatively small number of such parameters, and is able
to account for a much larger number of experimental observations. This opens the possibility
that the Standard Model is a valid description of the physical data not only at a scale which
is within reach of contemporary experiments, but up to a much larger energy scale. It is clear
then that the first priority of forthcoming experiments is to continue to test the validity of
the Standard Model at increasing energy scales, by using effective field theory approach to
parameterise possible deviations. Furthermore, the set of parameters associated with the Higgs
sector are particularly ripe for experimental picking. Gravity on the other hand is known to
be nonrenomalizable. Furthermore, gravitational measurements are sensitive to the absolute
energy scale. Observations dictate that the vacuum energy is miniscule compared to what we
would expect from particle physics. The dichotomy between the two theories motivates much
of the contemporary research in theoretical particle physics. Different approaches are pursued
to develop a consistent theory that synthesises quantum mechanics and gravity. These include:
effective field theories [2]; Euclidean quantum gravity [3]; asymptotic safety [4]; causal dynamical
triangulation [5]; twistor theory [6]; noncommutative geometry [7]; loop quantum gravity [8];
string theory [9]. What are we to learn from this very partial list? First, we note that all
these approaches aim at quantising general relativity, i.e. quantising spacetime. Second, non of
these theories produces an unequivocal signature that has been confirmed experimentally, and
in that respect, all these attempts should be regarded on equal footing. Nevertheless, the most
developed effort is undoubtedly that of string theory. The main successes of string theory is
that: 1. it provides a viable perturbative approach to quantum gravity; 2. it produce the gauge
and matter structures that underly the Standard Model. As such it provides a framework for the
construction of phenomenologically realistic models, and is therefore relevant for experimental
observations. In that respect, by unifying the gauge and matter sectors with gravity, string
theory provides a framework to study how the parameters of the Standard Model may arise
from a more fundamental theory, and goes beyond the field theoretic Grand Unified Theories.
Moreover, string theory accommodates consistently one of the most intriguing properties of the
observed particles, that of chirality and with it parity violation. It achieves that by its most
important property, modular invariance, which underlies the anomaly cancellation. By achieving
that string theory demonstrated its potential relevance for experimental data, though we may
still be a long way off before we can describe in a detailed and rigorous way how this relevance
1 For lucid introduction to quantum field theories, see e.g. [1].
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is realised in the material world. The state of the art in this endeavour is the derivation of
the Minimal Supersymmetric Standard Model from heterotic–string theory [10]. These models
demonstrate how the detailed structures of the Standard Model may arise from string theory.
In particular, the models enabled the calculation of the Yukawa couplings of the top quark,
bottom quark and tau lepton in terms of the gauge coupling at the unification scale. Assuming
consistency with the low scale gauge data then enables extrapolation of the Yukawa coupling to
the low scale and prediction of the top quark mass of order O(175GeV ) [11] in the vicinity of
the observed value. These results unambiguously demonstrate the potential relevance of string
theory for low scale experimental data. Furthermore, the string consistency conditions dictate
that additional extra degrees of freedom beyond the Standard Model, are needed to obtain a
consistent theory of perturbative quantum gravity, which is an unambiguous prediction of the
theory. These may be interpreted as extra spacetime dimensions, and/or as additional gauge
symmetries beyond those observed in the Standard Model. It is a secondary question whether
we possess the technological tools to detect experimentally these additional degrees of freedom.
The myriad of string solutions which may in principle be compatible with the low energy data
places an additional hindrance on extracting unambiguous experimental signatures from string
theory. Given the hierarchical separation between the strength of the gravitational and gauge
couplings it may be a long while before such an unambiguous correlation may be extracted. In
that respect progress in string theory is likely to be incremental and slow. Another limitation is
that our current understanding of string theory is limited to asymptotic stable string solutions,
and we lack a good understanding of it as a dynamical theory. This hinders the development of
cosmological string scenarios and of a possible dynamical vacuum selection mechanism in string
theory. One then has to resort to analysis in the effective low energy field theory limit of the
string vacua, which is deficient because it misses the massive string spectrum and the possible
roll that it may play in the string vacuum selection mechanism. However, as long as the low
scale data does not indicate departure from perturbative Standard Model parameterisation of
the experimental observations, string theory continues to provide the most detailed framework
to calculate the Standard Model parameters from a more fundamental theory.

String theory therefore provides a viable perturbative framework to explore how the Standard
Model parameters may arise from a fundamental theory and to develop a phenomenological
approach to quantum gravity. However, string theory does not provide a fundamental physical
principle, akin to the equivalence principle of general relativity, that we may use as the basic
hypothesis, and formulate quantum gravity rigoursely staring from that hypothesis. For that
we may need an entirely new approach. In that respect string theory may be viewed as an
effective theory, perhaps in a similar spirit to the view of effective quantum field theories as
effective theories. However, string theory may hint at a possible basic hypothesis from which
string theory may be derived as an effective limit.

An important property of string theory is the relation that it exhibits between different
vacua by perturbative and non–perturbative transformations, and the existence of self–dual
states under the duality transformation. We may envision that the self–dual states, which
represent enhanced symmetry points in the space of vacua, may play a role in the string vacuum
selection mechanism. We may also imagine that the duality structures underlying string theory
may provide a hint at the basic hypothesis from whence string theory may be derived. In that
context, however, it is noted that the string dualities correspond to specific dualities between
concrete vacua and detailed mathematical structures. In that respect they provide examples
that possess too much structure and are not sufficiently rudimentary to provide a basic physical
hypothesis. It therefore does not provide a sufficiently basic physical hypothesis. Rather, we
may consider that the perturbative and non–perturbative dualities exhibited in string theory
may all be regarded as dualities in an extended phase space.

Phase space represents the key transition from the classical to the modern description of
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physical experiments. In that respect we need to establish what is the usefulness of a physical
theory. We should first prioritise physics as an experimental science. We may define physics as
“mathematical modelling of experimental observations”. The aim of a mathematical model is
to predict the outcome of experiments. Starting with some initial conditions, which are fed into
the mathematical model, the predicted outcomes are calculated, and are then confronted with
experiments. Physics is a practical field and an accepted mathematical model is the one most
successful in accounting for a wide range of experimental observations. From that perspective,
as our technological tools develop, our capacity to make experimental observations advances
with time. Consequently, our mathematical modelling evolves with time to accommodate the
expanding body of experimental data. This process is traditionally termed as reductionism.
Namely, as experimental tools evolve we can resolve more refined physical distances. From
celestial in the Galilean era to the sub-nuclear in the LHC era. The process of adapting
our mathematical models to the increased body of experimental data may be labelled as
“unification”, and is likewise a constant theme in the mathematical modelling of experimental
data. Thus, for example, Newton unified terrestrial and celestial observations in Newtonian
mechanics; Maxwell combined the electric and magnetic forces into electromagnetism; Einstein
synthesised mechanics and electromagnetism in special relativity; Glashow, Salam and Weinberg
meshed quantum electrodynamics with Marshak and Sudarshan’s vector minus axial–vector
theory of the weak interactions into the electroweak model. The Standard Model that describe
all the subatomic interactions as gauge theories may also be regarded as unifying the subatomic
interactions under a single physical principle.

The list above represent the steps in the mathematical modelling of experimental data
in which diverse observations are described in a common framework. The next stops on
this route are the ones for which we do not yet have experimental evidence. They may
therefore not necessarily be realised in nature. These include Grand Unified Theories
which unify the electroweak and strong interactions in a simple or semi–simple group. The
main prediction of Grand Unified Theories is proton decay. Global supersymmetry which
combines fermions and bosons in common multiplets. The generic prediction of the simplest
realisations of supersymmetry is the existence of superpartners. However, non–linear realisations
of supersymmetry may exist, in which this will not be the case. Local supersymmetry
implies the existence of a spin 3/2 particle, and consequently the existence of a spin 2
particle. Local supersymmetry therefore unifies gravity with the gauge interactions, albeit in a
nonrenormalisable theory.

In Newtonian mechanics the mathematical modelling of the physical systems uses the position
coordinates of a particle in space and their derivative with respect to time, i.e. the velocities.
Given the position and velocity at some initial time t = ti, and given some force field ~F (~x), the
evolution of the position and velocity coordinates is determined by Newton’s equation of motion.
A fully equivalent classical description is provided by exchanging the velocities of the particles
with their momenta. The transformation is from the configuration space to the phase space. An
equivalent representation of Newton’s equations of motion in classical mechanics is given given
in terms of the Euler–Lagrange equations of motion, which are derived by defining a Lagrangian
function in configuration space. By transforming from the configuration space to the phase
space, we transform the Lagrangian to the Hamiltonian function in phase space by a Legendre
transformation. In the process we transform the second order Euler–Lagrange equations to the
set of first order Hamilton equations of motion. The price that we have to pay is the doubling of
the number of equations. Namely for every second equation we have two first order equations.
The Hamilton equations of motion are invariant, up to a sign, under exchange of coordinates
and momenta. Similar to the Newton equations of motion, the Hamilton equations of motion
account for the time evolution of the phase space variables.

The relevance of a physical theory is established by confronting a mathematical model with
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experimental data. Typically the experimental setup and the variables of the mathematical
model may evolve with time. Therefore, an important set of variables in the mathematical
model are those that do not change as the physical system evolves. These are the constants of
the motions and are related to the symmetries of the physical systems.

2. The Hamilton–Jacobi Theory
A general method to solve a physical problem in classical mechanics is given by the Hamilton–
Jacobi formalism. In the classical Hamilton–Jacobi formalism the solution of the physical
problem is obtained by transforming the Hamiltonian from one set of phase–space variables to
a new set of phase–space variables, such that Hamiltonian is mapped to a trivial Hamiltonian.
We may refer to these transformations as trivialising transformations. Consequently, the new
phase–space variables are constants of the motion, i.e.,

H(q, p) −→ K(Q,P ) ≡ 0 =⇒ Q̇ = ∂K

∂P
≡ 0 , Ṗ = −∂K

∂Q
≡ 0. (1)

The solution to this problem is given by the Classical Hamilton–Jacobi Equation (CHJE), which
in the stationary case is given by

1
2m

(
∂S0
∂q

)2
+ V (q) − E ≡ 1

2m

(
∂S0
∂q

)2
+W (q) = 0. (2)

The phase space variables are taken to be independent and their functional dependence is only
extracted from the solution of the Hamilton–Jacobi equation via the relation

p = ∂S(q)
∂q

, (3)

where the generating function S(q) is Hamilton’s principal function. The key property of
quantum mechanics is that the phase space variables are not independent. Namely, represented
as quantum operator they do no commute. We may therefore envision posing a similar problem
to the Hamilton–Jacobi procedure, but one in which the phase–space variables are not treated
as independent variables, but are rather related by (3).

3. The cocycle condition
We first consider the stationary problem in the one dimensional case [12, 13, 15, 16, 17]. This
reveals the general properties of the formalism and paves the way for the general cases. We
therefore assume that there always exist coordinate transformations such that H → K ≡ 0,
i.e. such that in the new system both the potential energy and the kinetic energy vanish.
More generally, impose that there exist coordinate transformations such that in the transformed
system W (Q) = V (Q)− E ≡ 0. We consider the transformations on

( q , S0(q) , p = ∂S0
∂q

) −→ ( q̃ , S̃0(q̃) , p̃ = ∂S̃0
∂q̃

), (4)

such that W (q) −→ W̃ (q̃) = 0, exist for all W (q). We refer to this proposition as the
“equivalence postulate of quantum mechanics”. It implies that all physical systems, labelled by
a potential function W (q), can be connected by coordinate transformations. More narrowly, we
may regard it as adaptation of the classical Hamilton–Jacobi formalism to quantum mechanics.
Irrespective of the concrete interpretation, it reveals the Möbius symmetry that underlies
quantum mechanics. The equivalence postulate implies that the Hamilton–Jacobi (HJ) equation
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has to be covariant under coordinate transformations. However, from eq. (2) it is seen that the
first term transforms as a quadratic differential, whereas the potential function W (q), in general,
does not. Furthermore, the state W (q) ≡ 0 is fixed under the transformations q → q̃(q). We
therefore assume that the HJ equation is modified by adding a yet to be determined function
Q(q). The modified HJ equation then takes the form

1
2m

(
∂S0
∂q

)2
+ W (q) + Q(q) = 0, (5)

where under the transformations q → q̃(q) the two functions W (q) and Q(q) transform as

W̃ (q̃) =
(
∂q̃

∂q

)−2
W (q) + (q̃; q),

Q̃(q̃) =
(
∂q̃

∂q

)−2
Q(q)− (q̃; q),

with S̃0(q̃) = S0(q). It is seen that each of the functions W (q) and Q(q) transforms
as a quadratic differential up to an additive term and that the combination W (q) + Q(q)
transforms as a quadratic differential. Starting with the trivial state W 0(q0) ≡ 0, all other
physical states arise from the additive inhomogeneous term as W (q) ≡ (q; q0). Furthermore,
considering the transformations qa → qb → qc and qa → qc and the induced transformations
W a(qa) → W b(qb) → W c(qc) and W a(qa) → W c(qc) gives rise to a cocycle condition on the
inhomogeneous term given by

(qa; qc) =
(
∂qb

∂qc

)2 [
(qa; qb) − (qc; qb)

]
. (6)

It can then be shown that the cocycle condition is invariant under Möbius transformations γ(qa).
In the one dimensional case the Möbius symmetry uniquely fixes the functional form of the
inhomogeneous term to be given by the Schwarzian derivative, i.e. (qa; qc) ∼ {qa; qc} ,where
the Schwarzian derivative is defined by

{f(q), q} = f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
. (7)

4. The Quantum Hamilton–Jacobi Equation
Considering the Schwarzian identity(

∂S0
∂q

)2
= β2

2

(
{e

i2S0
β ; q} − {S0; q}

)
, (8)

we note that the quadratic differential on the left–hand side of the equation is written as the
difference of two Schwarzian derivatives. As we will see, the cocycle condition eq. (6) and
the Schwarzian identity eq. (8) lay down the key ingredients for the generalisations to higher
dimensions. Equally fundamental is the invariance of the cocycle condition and of the Schwarzian
derivative under Möbius transformations. It is proven rigoursely [18] that the corresponding
cocycle condition in D–dimensions is invariant under D–dimensional Möbius transformations,
with respect to the Euclidean or Minkowski metrics. Similarly, the generalisation of the
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Schwarzian identity eq. (8) entails writing the quadratic differential on the left–hand side as a
generalised identity on the right–hand side. Making the identifications

W (q) = − β
2

4m{e
i2S0
β ; q} = V (q)− E,

Q(q) = β2

4m{S0; q},

the modified Hamilton–Jacobi equation becomes,

1
2m

(
∂S0
∂q

)2
+ V (q)− E + β2

4m{S0; q} = 0. (9)

The key property of quantum mechanics is gleaned from eq (9). In the CSHJE admits the
solution S0 = constant for the state W 0(q0) ≡ 0. The Quantum Stationary Hamilton–Jacobi
Equation (QSHJE), eq. (9), admits the solutions,

S0 = ±β2 log q 6= Aq +B,

where A and B are constants. Thus, in quantum mechanics S0 is never a constant, and more
generally is never a linear function of q. This is a key property of quantum mechanics in this
formalism, and is intimately related to consistency of phase–space duality. Furthermore, from
the properties of the Schwarzian derivative we know that the function W (q) = V (q) − E is a
potential of a second order differential equation given by(

− β
2

2m
∂2

∂q2 + V (q)− E
)

Ψ(q) = 0, (10)

which we identify as the Schrödinger equation, and β = ~ as the covariantising parameter of
the Hamilton–Jacobi equation. The general solutions of (10) and (9) are given by

Ψ(q) = ψ1 + ψ2 = 1√
S′0

(
Ae+ i

~S0 +Be−
i
~S0
)

(11)

and
e+ i2S0

~ = eiα w + i¯̀
w − i`

(12)

where w = ψ1/ψ2, ` = `1 + i `2, and `1 6= 0, α ∈ R. The condition `1 6= 0 is synonymous
to the condition that S0 6= constant.

It is noted that the Schrödinger equation serves as a tool to solve the Quantum Hamilton–
Jacobi Equation (QHJE). Hence, the more fundamental equation is the QHJE, and captures
the symmetry properties that underly quantum mechanics. In that respect the solutions of the
Schrödinger equation, eq. (11), facilitate the solution of the QHJE via eq. (12).

It is further seen that consistency of the formalism necessitates that both solutions of the
Schrödinger equation are used. This is evident in eq. (12) from which we see that the ratio of
the two solutions of the Schrödinger equation is used to extract the solution for the the QHJE.
It is a reflection of the Möbius symmetry that underlies the formalism, and has implication
on the global geometry that underlies quantum mechanics and quantum gravity. The basic
point is that the Möbius symmetry includes a symmetry under inversions. In the case of D–
dimensional spacetime this can be implemented via inversions with respect to the unit sphere.
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More generally, the global geometry, whatever it may be, has to be invariant under the global
Möbius transformations. In the case of spatial space, i.e. with Euclidean signature of the
metric, the implication is that spatial space must be compact. Otherwise the invariance under
the Möbius symmetry cannot be applied consistently. Therefore, at the basic level what we
face in comparison to conventional quantum mechanics, is a question of boundary conditions.
Namely, in the case of bound physical systems in conventional quantum mechanics the solutions
of the Schrödinger equation include a square integrable solution and a solution that diverges at
infinity. Therefore, the physical solution is retained, whereas the solution that diverges at infinity
is non–physical and hence discarded. In essence, however, it is a question of boundary conditions.
Namely, if space is infinite then the diverging solution may be discarded. However, if space is
compact, as implied by the Möbius symmetry, then the diverging solution cannot be discarded
and must be retained. The wave function is necessarily a combination of the two solutions, albeit
the coefficient of the diverging solution may be unobservationally small. In a sense therefore
the equivalence postulate approach may be regarded as conventional quantum mechanics plus
the condition that spatial space is compact, as dictated by the Möbius symmetry that underlies
quantum mechanics. Consistency of the formalism therefore entails that the transformation
W (q) = V (q) − E −→ W̃ (q̃) = 0 always exists, and is given by q → q̃ = ψ1/ψ2. Applying the
transformation then entails that(

− β
2

2m
∂2

∂q2 + V (q) − E

)
ψ(q) = 0 → ∂2

∂q̃2 ψ̃(q̃) = 0 (13)

where

ψ̃(q̃) =
(
dq

dq̃

)− 1
2
ψ(q).

5. Energy quantisation
In conventional quantum mechanics the probability interpretation implies that the wave function
and its derivative are continuous and is square integrable. Consequently, for bound states the
the energy level are quantised. The question is therefore, how is it replicated in the equivalence
postulate approach? As the trivialising transformation is given by

q0 = w = ψ1
ψ2

= ψD

ψ
(14)

and is a solution of
{w, q} = − 4m

~2 (V (q)− E) (15)

we have that w 6= const; w ∈ C2(R) and w′′ differentiable on R. From the properties of
the Schwarzian derivative under inversions it follows that {w, q−1} = q4{w, q}. Hence, the
consistency conditions on the trivialising transformation must be imposed not merely on the
real line, but on the extended real line, i.e. on the real line plus the point at infinity. That is,

w 6= const ; w ∈ C2(R̂) and w′′ differentiable on R̂, where R̂ = R ∪ {∞}.

Consequently, the equivalence postulate implies the continuity of the two solutions of the
Schrödinger equation and their derivatives. Furthermore, a general theorem that states that
if the potential function W (q) is bounding in some interval, then the ratio w = ψ1/ψ2 is
continuous on the extended real line if and only if the Schrödinger equation admits a square
integrable solution, is proven rigoursely in [15, 17, 19]. Rather than go through the theorem it
is instructive to consider the simple problem of a particle in a potential well with

V (q) =
{

0, |q| ≤ L,
V0, |q| > L.

(16)
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Setting k =
√

2mE/~ and K =
√

2m(V0 − E)/~, the general solutions in and outside the
potential well are given by

|q| ≤ L Ψ1
1 = cos kq Ψ1

2 = sin kq
q > L Ψ2

1 = e−Kq Ψ2
2 = eKq

The solutions at q < −L are fixed by parity. For q > L we can choose the solution to be Ψ2
1 or Ψ2

2
or a linear combination. Continuity across the boundary at q = L implies that Ψ1

i (L) = Ψ2
j (L)

and ∂qΨ1
i (L) = ∂qΨ2

j (L). Denoting such solutions as (i, j), in the (1, 1) case imposing continuity
on the solution and its derivative yields the quantisation condition k tan kL = K. In this case

ψ =


cos(kL) exp[K(q + L)], q < −L,
cos(kq), |q| ≤ L,
cos(kL) exp[−K(q − L)], q > L,

(17)

and a linearly independent solution is given by

ψD = [2k sin(kL)]−1 ·


cos(2kL) exp[K(q + L)]− exp[−K(q + L)], q < −L,
2 sin(kL) sin(kq), |q| ≤ L,
exp[K(q − L)]− cos(2kL) exp[−K(q − L)], q > L.

(18)

The trivialising map w = ψD/ψ associated with the (1, 1) solution is therefore given by

ψD

ψ
= [k sin(2kL)]−1 ·


cos(2kL)− exp[−2K(q + L)], q < −L,
sin(2kL) tan(kq), |q| ≤ L,
exp[2K(q − L)]− cos(2kL), q > L.

(19)

In this case limq−→±∞ ψ
D/ψ = ±∞. Hence, in the (1, 1) case the trivialising map is continuous

on R̂ as required by consistency of the equivalence postulate. The solutions imposed by the
continuity conditions k tan kL = K are therefore physical energy levels. Next, considering
the case (1, 2) the constraint that Ψ, Ψ′ are continuous across at q = L imposes the condition
k tan(kL) = −K. Applying similar analysis to the (1, 1) case, the trivialising transformation
w is give by

ψD

ψ
= [k sin(2kL)]−1 ·


cos(2kL)− exp[2K(q + L)], q < −L,
sin(2kL) tan(kq), |q| ≤ L,
exp[−2K(q − L)]− cos(2kL), q > L,

(20)

whose asymptotic behaviour is

lim
q−→±∞

ψD

ψ
= ∓k−1 cot(2kL). (21)

The only possibility of having w(−∞) = w(+∞) is that k−1 cot(2kL) = 0. However, this is not
compatible with the condition k tan(kL) = −K. Hence, we have w(−∞) 6= w(+∞). It follows
that the energy eigenvalues associated with this solution are not consistent with the equivalence
postulate and are therefore not physical. Therefore, the same physical eigenstates that are
selected in convential quantum mechanics by the probability interpretation of the wave function,
are selected in the equivalence postulate approach by mathematical consistency. Essentially
respecting the Möbius symmetry that underlies quantum mechanics. We further note that
the requirement that the trivialising transformation is continuous on the extended real line,
amounts to the requirement that the real line is compact. Therefore, energy quantisation and
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square integrability arises from the consistency of the equivalence postulate and the compactness
of space, which is mandated by the Möbius symmetry underlying quantum mechanics. However,
the probabilistic nature of quantum mechanics, rather than a deterministic parameterisation of
a particle propagation is indicated by many experiments. A viable question is whether such
parameterisation is consistent with the quantum Hamilton–Jacobi formalism and the Möbius
symmetry that underlies it.

6. Time parameterisation
There are two primary approaches to define parameterisation of trajectories in quantum
mechanics. The first is Bohmian mechanics [20, 21] in which time parameterisation is defined
by identifying the conjugate momentum with the mechanical momentum, i.e. p = ∂qS = mq̇,
where S is the solution of the QHJE. The second is Floyd’s definition of time parameterisation
by using Jacobi’s theorem, t = ∂ES

QM
0 , where SQM0 is the solution of the QSHJE. In classical

mechanics the two definitions are compatible. Namely, setting p = ∂qScl
0 = mq̇ gives

t− t0 = m

∫ q

q0

dx

∂xScl
0

=
∫ q

q0
dx

∂

∂E
∂xScl

0 = ∂Scl
0

∂E
, (22)

and by inverting we can solve the equation of motion for q = q(t). However, in quantum
mechanics the two definitions are not compatible as

t− t0 = ∂Sqm
0

∂E
= ∂

∂E

∫ q

q0
dx∂xS

qm
0 =

(
m

2

)∫ q

q0
dx

1− ∂EQ
(E − V −Q)1/2 . (23)

and the mechanical momentum is given by

m
dq

dt
= m

(
dt

dq

)−1
= ∂qS

qm
0

(1− ∂EV) 6= ∂qS
qm
0 , (24)

where V denotes the combined potential V = V (q) + Q(q). Thus in quantum mechanics the
definition of time by using Jacobi’s theorem does not coincide with the Bohmian definition of
time by identifying the conjugate momentum with the mechanical momentum. Furthermore, the
Bohmian time definition is not compatible with the Möbius symmetry that underlies quantum
mechanics, and the compactness of space. In Bohmian mechanics the wave function is set as

ψ(~q, t) = R(q)eiS/~, (25)

where R(q) and S(q) are the two real functions of the QHJE, and ψ(q) is a solution of the
Schrödinger equation. The conjugate momentum is given by

p = ~Im∇ψ
ψ
,

which is used to define trajectories by setting p = mq̇. However, the Möbius and compactness
of space dictate that the wave function cannot be identified by (25) but must be a linear
combination of the two solutions of the Schrödinger equation,

ψ = R(q)
(
Ae

i
~S +Be−

i
~S
)
. (26)

Consequently, in this case
∇S 6= ~Im∇ψ

ψ
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and the Bohmian definition of trajectories is invalid [23].
Floyd proposed to define time by using Jacobi’s theorem [22], i.e.

t− t0 = ∂Sqm
0

∂E
, (27)

which provides a time parameterisation of the trajectories by inverting t(q)→ q(t). However, if
space is compact, as dictated by the Möbius symmetry that underlies the QHJE, then the energy
levels are always quantised. Therefore, differentiation with respect to energy is ill defined, and
the definition of time parameterisation of trajectories by using Jacobi’s theorem is inconsistent
in the Quantum Hamilton–Jacobi formalism. In quantum mechanics time can only be used as
a classical background parameter. The trajectory representation can only be used in a semi–
classical approximation and in that context provides a useful tool to study different physical
systems [21].

7. Generalisations
The discussion so far focussed on the one dimensional stationary case. This led to the cocycle
condition, eq. (6), and the Schwarzian identity, eq. (8), and their invariance under M”̈obius
transformations. These are the key ingredients that pave the way for the generalisations to higher
dimensions in Euclidean or Minkowski space, i.e. for the non-relativistic Schrödinger equation
or the relativistic Klein–Gordon equation [18]. Furthermore, these generalisations are invariant
under Möbius transformations in those spaces [18]. Thus, the Möbius symmetry captures the
global symmetry structure that underlies quantum mechanics and dictates that spatial space
is compact. Considering the transformations between two D–dimensional coordinate systems
given by

q → qv = v(q) (28)

and the induced transformations on the conjugate momenta

pk = ∂S0
∂qk

, (29)

with Sv0 (qv) = S0(q). Consequently,

pk → pvk =
D∑
i=1

Jkipi (30)

and the Jacobian matrix J is given by

Jki = ∂qi
∂qvj

. (31)

Adopting the notation

(pv|p) =
∑
k(pvk)2∑
k p

2
k

= ptJ tJp

ptp
. (32)

the cocycle condition takes the form

(qa; qc) = (pc|pb)
[
(qa; qb)− (qc; qb)

]
. (33)

The cocycle condition, eq. (33) is invariant under D–dimensional Möbius transformations, which
include translations, rotations, dilatations, and reflections with respect to the unit sphere [18].
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In the case of Minkowski spacetime the invariance is with respect to the D + 1–dimensional
conformal group, where q ≡ (ct, q1, · · · , qD). The second key ingredient of the one dimensional
formalism is the Schwarzian identity, equation (8). The generalisation of this identity provides
the key for the extension of the formalism to higher dimensions in Euclidean and Minkowski
spaces. In the non–relativistic case the identity is given by

α2(∇S0)2 = ∆(ReαS0)
ReαS0

− ∆R
R
− α

R2∇ · (R
2∇S0), (34)

which holds for any two real functions R and S0 and any constant α. Similarly, in the relativistic
case the generalisation is given by [18]

α2(∂S)2 = �(ReαS)
ReαS

− �R
R
− α

R2∂ · (R
2∂S), (35)

whereas if we include minimal coupling in the form of a vector potential the identity takes the
form

α2(∂S − eA) · (∂S − eA) = D2(ReαS)
ReαS

− ∂2R

R
− α

R2∂ ·
(
R2(∂S − eA)

)
, (36)

where Dµ = ∂µ − αeAµ. Similarly to the one dimensional case, the higher dimensional cases
are related to the conventional quantum mechanical equations. For example, in the case of eq.
(35), setting α = i/~, we note that

∂(R2 · ∂S) = 0, (37)

and
1

2m(∂S)2 = − ~2

2m
�(Re

i
~S)

Re
i
~S

+ ~2

2m
�R
R
. (38)

In analogy to the one dimensional identity we set

Wrel = ~2

2m
�(Re

i
~S)

Re
i
~S

, (39)

that by (38) implies

Qrel = − ~2

2m
�R
R
. (40)

Setting Wrel = 1/2mc2 reproduces the Klein–Gordon equation and Eq. (38) corresponds to the
Relativistic Quantum Hamilton–Jacobi Equation (RQHJE) [18]. We further remark that the
two particle case was considered in [24].

8. Phase space duality and Legendre transformations
We noted from eq. (5) that the modified Hamilton–Jacobi equation allows for non–trivial
solutions for the physical system with W (q) ≡ 0. The QHJE therefore enables all physical
states labelled by the potential function W (q) to be connected to the trivial state via coordinate
transformations, and facilitates the covariance of the QHJE. These properties are intimately
related to phase space duality [12], which is implemented by the involutive nature of Legendre
transformations. Manifest phase–space duality may therefore provide the fundamental physical
principle that is sought as the axiomatic principle for formulating quantum gravity. In this
respect we note that perturbative and nonperturbative dualities play an important role in
attempts to develop a fundamental understanding of string theory, with T–duality being an
important perturbative property of string theory [25]. T–duality in toroidal spaces exchanges
momentum modes with winding modes. We may therefore view T–duality as phase–space duality
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in compact space. Furthermore, we may question whether T–duality reflects a property of string
theory which is also valid in non–toroidal spaces. An additional important property of T duality
in string theory is the existence of self–dual states under T–duality.

Manifest phase–space duality is implemented by the involutive nature of Legendre
transformations. Recalling the relation between the momenta and coordinates via a generating
function p = ∂qS, we define a dual relation via a new generating function T (p) as p = ∂T , where
the generating functions are related by Legendre transformations as

S = p
∂T

∂p
− T , T = q

∂S

∂q
− S, (41)

which in the stationary case reduces to

S0 = p
∂T0
∂p
− T0 , T0 = q

∂S0
∂q
− S0. (42)

Remarkably, the left–hand side of eq. (42) is invariant under Möbius transformations

q −→ qv = Aq +B

Cq +D
,

with the induced transformations on p and T0

p −→ pv = ρ−1(Cq +D)2p , ρ = AD −BC
T0 −→ T v0 (pv) = T0(p) + ρ−1(ACq2 + 2BCq +BD)p.

We define a general coordinate transformation q → qv = v(q) by the property that S0 is a scalar
function under v, i.e. Sv0 (qv) = S0(q). With each Legendre transformation we associate a second
order differential equation [12, 17], which in the stationary case is given by(

∂2

∂S2
0

+ U(S0)
)(

q
√
p

√
p

)
= 0 (43)

where U(S0) is given by the Schwarzian derivative of q with respect to S0,

U(S0) = 1
2{q, S0} = 1

2

(
q′′′

q′
− 3

2

(
q′′

q′

)2)
.

We may associate a second order differential equation with the involutive Legendre
transformation. We therefore obtain manifest p↔ q – S0 ↔ T0 duality with

p = ∂S0
∂q

q = ∂T0
∂p

S0 = p
∂T0
∂p
− T0 T0 = q

∂S0
∂q
− S0

(
∂2

∂S2
0

+ U(S0)
)(

q
√
p

√
p

)
= 0

(
∂2

∂T 2
0

+ V(T0)
)(

p
√
q

√
q

)
= 0

However, the crucial point is the existence of self–dual states, with the property that pq =
γ = constant, which are simultaneous solutions of the two pictures. In these cases S0 =
−T0 + constant, and

S0(q) = γ ln γqq T0(p) = γ ln γp.p
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Hence, S0 + T0 = pq = γ, where γqγpγ = e and γq, γp are constants. The remarkable point is
that the self–dual states coincide with the W 0(q0) ≡ 0 states of the Quantum Hamilton–Jacobi
Equation (QHJE), which render the consistency of the equivalence postulate for all physical
states, and the compatibility of quantum mechanics with the underlying Möbius symmetry of
the QHJE. In the case of the Classical Hamilton–Jacobi Equation (CHJE), it was noted that
the solution in the case with W 0(q0) ≡ 0 correspond to S0 = constant, or more generally
S0 = Aq0 + B, with constants A and B. The Legendre transformation is not defined for
linear functions and therefore classically in these case the phase–space duality would not be
well defined. The existence of the self–dual quantum mechanical solutions, i.e. in the case with
W sd = W 0 = 0 and with γsd = ±~/(2i), facilitate the consistency of phase–space duality for
all physical states, as well as the consistency of the equivalence postulate, and compatibility
with the underlying Möbius symmetry. It is crucial to appreciate that these properties merely
accommodate the basic quantum mechanical properties, and in that sense they are not esoteric
at all. Namely, in this approach the emergence of ~ as the basic quantum mechanical parameter,
arises as the covariantising parameter in the QHJE, and enables the consistency of the formalism.
Furthermore, it is noted that distinction between the classical and quantum mechanical cases in
this approach is primarily reflected in the distinction of the W 0 ≡ 0 state. In this respect it will
not be surprising if the formalism offers an intrinsic regularisation scheme. Furthermore, this
intrinsic regularisation scheme is rooted in the global Möbius symmetry that underlies quantum
mechanics. This is again not a surprise because the Möbius symmetry implies that spatial space
is compact. In turn this implies the existence of a finite length scale in the formalism and
therefore an intrinsic regularisation scale. Therefore, a deeper understanding of the implications
of the Möbius symmetry that underlies quantum mechanics, brings forth the fertile soil on which
the seeds of quantum gravity may grow.

9. Intrinsic length scale
The Schrödinger equation in the physical state with W 0(q0) = 0 is given by

∂2Ψ
∂q2 = 0 ,

and has two solutions ψ1 = q0 and ψ2 = constant, which by the Möbius symmetry must
both be included in the formalism. The duality, manifested by the invariance under the
Möbius transformations, therefore imply the existence of a length scale in the formalism. The
corresponding solution of the QHJE is given by [12, 17, 16]

e
2i
~ S

0
0 = eiα q

0 + i¯̀0
q0 − i`0

, (44)

where the constant `0 has the dimension of length [17, 16], and the conjugate momentum takes
the form

p0 = ∂q0S0
0 = ± ~(`0 + ¯̀0)

2|q0 − i`0|2
. (45)

It is seen that p0 is null only when q0 → ±∞. As we noted in section 4 the condition that
Re`0 6= 0 is synonymous to the condition that S0 6= constant, which is the basic quantum
mechanics property in the equivalence postulate formalism. We can represent this nonvanishing
length parameter as a combination of some fundamental constants in nature. e.g. ~, c and G.
The requirement that lim~→0 p0 = 0 in the classical limit implies that we can identify Re `0 with
the Planck length, [16, 17]

Re `0 = λp =

√
~G
c3 , (46)
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The reason being that this identification has the correct scaling properties to reproduce the
correct classical limit. Furthermore, we note from eq. (45) that the condition Re`0 6= 0 serves
as an ultraviolet cutoff, i.e. p0 is maximal for q0 = −Im`0, with

Max|p0| = ~
Re`0

.

Therefore, the consistency of the equivalence postulate formalism with the underlying Möbius
symmetry, implies the existence of an intrinsic regularisation scale in quantum mechanics.
Additionally, we may identify the quantum potential as an intrinsic curvature term of elementary
particles. This provides further evidence that in this approach quantum mechanics regularises
itself and a possible connection with theories of extended objects. This is a mere reflection of
the Möbius symmetry and the compactness of spatial space.

10. Quantum potential as a curvature term
Using the property of the Schwarzian derivative

{S0; q} = −
(
∂S0
∂q

)2
{q;S0},

we can rewrite the Quantum Stationary Hamilton Jacobi Equation as,

1
2m

(
∂S0
∂q̂

)2
+ V (q̂)− E = 0,

where
q̂ =

∫ q dx√
1− ~2

2 {q;S0}
.

Flanders [26] have shown that the Schwarzian derivative can be interpreted as a curvature term of
an equivalence problem for curves in P1. Thus, the quantum potential, which is never vanishing,
can be regarded as an intrinsic curvature term of elementary particle, and a deformation of the
space geometry. Furthermore, we note from eq. (36) that the quantum potential as a universal
character, which distinguishes it from the gauge interactions that are dependent on the gauge
charges. In higher dimensions the quantum potential corresponds to the curvature of the function
R(q) as Q(q) ∼ ∆R(q)/R. We can estimate the scale of the quantum potential [27]. In the case
W 0(q0) ≡ 0 and using eq. (44) we obtain

Q0 = ~2

4m{S
0
0 , q

0} = − ~2(Re `0)2

2m
1

|q0 − i`0|4
. (47)

Taking m ∼ 100GeV ; Re`0 = λp ≈ 10−35m and q0 as the size of the observable universe
q0 ∼ 93Ly, gives |Q| ∼ 10−202eV . The expected contribution of the quantum potential to the
vacuum energy is very small. Nevertheless, we see from eq. (47) that the classical limit Q(q)→ 0
in fact correspond to the decompactification limit q0 →∞.

11. Conclusions
The observation of a scalar resonance at the the LHC reinforces the picture that the Standard
Model provides a viable effective description of all subatomic data up to the Planck scale. The
synthesis of gravity with quantum mechanics remains an open problem. An alternative approach
to quantising general relativity is to formulate a geometric approach to quantum mechanics.
This is precisely the aim in the equivalence postulate approach to quantum mechanics. What
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is revealed is the key role of the Möbius symmetry that underlies quantum mechanics in this
formalism. In turn the Möbius symmetry provides the key to a proper understanding of the
geometry of the quantum spacetime. In this respect the formalism is intimately related to phase
space duality manifested by the involutive nature of Legendre transformations. Recalling their
role in thermodynamics we may envision that the Legendre transformations merely transfer from
one set of variables to another, and neither set should be thought of as more fundamental. In this
context the ubiquity of the variable themselves allows us to consider transformations between the
space coordinates and the wave function itself [28], without considering one as being primary and
the other secondary. Their only merit is their usefulness for a particular physical measurement.
In this respect possible observational signatures of the Möbius symmetry underlying quantum
mechanics may exist in the microwave background radiation [29]. Additionally, the quantum
potential may lead to modified dispersion relations [30] with possible observational consequences
[31].
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