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ABSTRACT: The covariantization procedure is usually referred to the translation operator,
that is the derivative. Here we introduce a general method to covariantize arbitrary differ-
ential operators, such as the ones defining the fundamental group of a given manifold. We
focus on the differential operators representing the sly(R) generators, which in turn, gen-
erate, by exponentiation, the two-dimensional conformal transformations. A key point of
our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorft
formula. In particular, our covariantization receipt is quite general. This has a deep con-
sequence since it means that the covariantization of the conformal group is always definite.
Our covariantization receipt is quite general and apply in general situations, including
AdS/CFT. Here we focus on the projective unitary representations of the fundamental
group of a Riemann surface, which may include elliptic points and punctures, introduced
in the framework of noncommutative Riemann surfaces. It turns out that the covariantized
conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying
a deep relationship between gauge theories on Riemann surfaces and Liouville theory.
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1 Introduction

It is well-known that in 2D space-time a pure gauge theory is locally trivial. In particular,
by 0,F" = 0, it follows that the unique nontrivial component E; = Fp; is a constant and
the finite energy condition fixes E; = 0. This is a consequence of the fact that the number
of degrees of freedom of a pure gauge theory in D-dimensions is D — 2. Essentially, in
topologically trivial 2D space-time any gauge configuration can be absorbed by a gauge
transformation.

The situation is completely different in the case one considers non-trivial topologies. In
particular, there are well-known models corresponding to a topological field theory with a



strict relationship with string theory. Consider the case of a SU(N) (or U(N)) Yang-Mills
theory on a genus g Riemann surface X

1
ZE:/DA“eXp[—“/de\/detgtrFWF“” ,
9= Jx

where the trace is on the fundamental representation. Cutting > along a basis of its
fundamental group (%), one gets the relation

arbra;tort ... agbga;lbg_1 =1.
It turns out that the partition function can be expressed in terms of path integral of the
traces of matrices of the gauge group associated to each generator of m(X) and (see [1]

and references therein)

Acg(R)
Zy = ZdRe*g 3 /HDU,DVZtrR[UllefVﬁ...Ugng;vg*],
R

where the summation is over the irreducible representations of the group, A is the area of
Y, dg the dimension of the representation R and ca2(R) the second Casimir operator of R.

The relation between connections and the fundamental group of ¥ appears also in the
context of noncommutative Riemann surfaces. This corresponds to consider unitary pro-
jective representations of the uniformizing Fuchsian groups. Such representations are ob-
tained by covariantizing the differential operators of the sly(R) algebra. Roughly speaking,
whereas the projective unitary representation of the (abelian) group uniformizing the torus

Uy = ™ Ul (1.1)

is simply obtained by setting Uy = exp(Ax(Ox + iAg)), with A a connection 1-form, in the
case of uniformizing groups one needs to covariantize the generators of slo(R). In other
words, first one has to find the receipe to covariantize 0., 20, and 2?0, and then finding
the unitary operators U such that

g
[ tor—r thor s, U3} = €71 (1.2)
k=1

This case corresponds to the one of hyperbolic Riemann surfaces. However, we will consider
the general case that includes Riemann surfaces with elliptic point and punctures.

We will see that finding the unitary projective representation connects several ques-
tions, such as the one of the simultaneous covariantization, originally considered in our
previous work [2, 3], that now are investigated in a systematic way and solved step by step.
In our investigation, we will express the M&bius transformations in terms of the differential
representation of sla(R). This is done by first expressing and element of PSLy(R) as the
composition of a translation, dilatation and a special conformal transformation. However,
this has a drawback for our purposes. The reason is that the order of the above composition
may change according to the kind of Mobius transformation one is considering. This is



related to the important question of expressing Uy, as the exponential of a unique operator,
conjugated by a functional F} of the connection A, associated to the geodesic defining the
corresponding generators of the uniformizing group, namely

Uy, = Fi(2,2) exp(Dy) Fy (2, 2) . (1.3)

The problem then is to find D and the functional F}, which is the key object to covariantize
Dy.. As we will see, such questions are in turn related to the problem of finding the explicit
relation between the normal form of 71(32) and the uniformizing group I' of 3. We will
find such a relation, that selects the corresponding form of the generators g of I'. As such,
these generators satisfy the relation

B4gﬂ4gfl cee Bl = I, (1.4)

which is the case of compact Riemann surfaces of genus g (our investigation extends to the
case with elliptic points and punctures). As we will see, all the above questions, unanswered
in [2, 3], have a solution which is essentially unique.

The operator exp(Dy) performs the Mébius transformation 3, L of the arguments of a
function, so that

Uy = Fi(z, 2)F (B, 12, B, 1 2) exp(Dy) (1.5)
where b
agz k

= 1.6

Bi cpz + dg (1.6)

The Fj’s are directly related to the Wilson loop associated to the geodesic connecting z
and 3, 12 on the upper half plane H, namely

Btz
Fi(z,2)F 7N (B 12, By 12) = exp (zb/ A) , (1.7)

where b is a real parameter. Therefore,

Uy, = exp (z’b / i A> exp(Dy,) . (1.8)

B, 'z
Wpg, = exp <zb/ A> , (1.9)

projects to a Wilson loop on Y. We call the Uy’s, Wilson-Fuchs operators. The modulus of

Note that

da(z,w) = /wA, (1.10)

related to the Wilson loop by W3, = exp(ibda(z, 5, 1), is a pseudo distance that called
“gauge-length” in [2, 3]. It corresponds to the Poincaré area of the hyperbolic triangle
whose sides are the geodesic joining z and w, together with the two geodesics connecting
z and w to the point at imaginary infinity on the upper half-plane. An outcome of [2, 3] is
that M6bius transformations correspond to gauge transformations.



As we said, the above construction is possible once one finds Dy such that any Mobius
transformation can expressed in the form exp(Dy). Such a question is equivalent to the
problem of finding the closed form of W such that

exp(X)exp(Y)exp(Z) = exp(W) . (1.11)

The recent solution of such a problem is a key point of our construction. In particular, it
turns out that our covariantization receipt is quite general. This has a deep consequence
since it means that the covariantization of the conformal group is always definite. In [4], it
has been introduced an algorithm to derive the closed form of W in (1.11) for a wide class
of commutator algebras, classified in [5] and applied to all semisimple complex Lie algebras
in [6]. The algorithm in [4], that extends the remarkable result by Van-Brunt and Visser [7]
(see also [8] for related results), exploits the associative property of the Baker-Campbell-
Hausdorff formula and implementing in it the Jacobi identity. In particular, it turns out
that when X, Y and Z are elements of slo(R), the corresponding commutator algebras
is, according to the classification in [5], a subtype of the type 4. As a result, we will see
that the Mobius transformation (1.6) is represented by the unitary operator Uy = exp(Dy),
where Dy, is the sly(R) covariantized operator

3\

Dk:;x
(k) (k)
A

A%

« B0, +0:) + 2 — e — e 20, + 20 + 1)

+ AP (20, + 20, + 2+ 2 F, (112)
where the parameters )\(f ) and )\g-k), j = —1,01, are defined in terms of the components of
the matrix F.

Usually, the covariantization procedure is considered only for the translation operator,
that is for the ordinary derivative. The above covariantization is the one for the conformal
transformations. To derive (1.12) it has been introduced a general method to covariantize
much more general operators than 0,. Actually, our analysis starts with the torus, whose
fundamental domain are straight lines, and these are generated by derivatives. The non-
commutative torus leads to a covariantization of the derivatives that apparently cannot be
extended to the higher genus case. However, we reformulate the noncommutative torus in
a more geometrical way. It turns out that such a geometrical formulation is the natural
framework to derive, in analogy with the case of the torus, the corresponding quantities
for negatively curved Riemann surfaces. Such a strategy provides the correct prescription
to define the covariantized operators and leads to (1.12).

The above covariantization prescription can be extended to more general cases, includ-
ing AdS/CFT. In particular whenever a manifold is naturally associated to a differential
representation of its fundamental group. Here we focus on the projective unitary represen-
tations of the fundamental group of a Riemann surface, which may include elliptic points
and punctures, introduced in the framework of noncommutative Riemann surfaces.



The organization of the paper is as follows. In section 2, after shortly reviewing the
uniformization theorem, we express the Mobius transformations in terms of the exponenti-
ation of differential operators representing sly(R). In section 3 we express the action of such
operators in the form of the exponential of a linear combination of the sla(R) generators.
This is a basic step to formulate the covariantization of the conformal group. In section 4
we first reformulate the noncommutative torus in a more geometrical form, and find a hid-
den symmetry. Next, in section 5, such a geometrical analysis will be used to formulate the
unitary projective representation of the group uniformizing arbitrary Riemann surfaces. In
particular, we will focus on the problem of simultaneous covariantization of the differential
operators representing the slo(R) generatoras and of their complex conjugate. This will
lead to the covariantization of the conformal operators as given in (1.12). We will also
solve the problem of finding the explicit relation between the normal form of 7;(X) and
the uniformizing group I' of 3. The extension to the nonabelian case is introduced in sub-
section 5.7. Section 6 is devoted to the properties of the gauge length as pseudo-distance
and will show that it corresponds to a Poincaré area.

2 Differential representation of the conformal group

In this section, after shortly reviewing the uniformization theorem for Riemann surfaces,
we express the PSLo(R) transformations, acting on the upper half-plane, in terms of the
composition of three exponentiations of the generators of slo(R), represented by the differ-
ential operators ¢, = 2¥t19,, k = —1,0,1. This will lead to consider two questions. The
first is that such a prescription is not general, since the order of the composition depends
on the specific Mobius transformation. The other question is related to the problem of
expressing the unitary operators U, in the form of a unique exponential

Uy, = exp(Dy) . (2.1)

As we will see, this is the natural way to define the covariantization of the conformal group.
Such preliminary questions are solved in the next section, where we will derive the form of
a Mobius transformation in the form of a unique exponential, whose argument is a linear

combination of the £}’s.

2.1 Uniformization and Liouville equation

In the following, given a 2 x 2 matrix

we adopt the notation
az+b

cz+d’

pz =

Let D be either the Riemann sphere C=cCu {o0}, the complex plane C, or the upper
half-plane
H={ze€C|3(z) >0} .



According to the uniformization theorem, every Riemann surface ¥ is conformally equiv-
alent to D/I", where I is a freely acting discontinuous group of fractional transformations
preserving D. Let Jyg be the uniformizing map Jy : HH — 3. It has the invariance property

Ju(vz) = Ju(z),

v € I', where I' C PSLy(R) = SLy(R)/{£I} is a finitely generated Fuchsian group. It acts
on H by the linear fractional transformations

b
fyzzaz%— cH ”yz(ab)ef,

cz+d ’

z € H. By the fixed point equation vz = z, that is

a—d=+/(a+d)?—4
2¢c ’

zZy =
it follows that there are three kinds of PSL2(R) matrices.

1. Elliptic: |try| < 2. Then ~ has one fixed point on H (2 = z4 ¢ R) and ¥ has
a branched point w_ = Jyg(z_). The finite order of its stabilizer defines its index
n € N\{0,1}. If " contains elliptic elements, then H/T is an orbifold.

2. Parabolic: |try| = 2. Then z_ = z; € R and the point Jg(z_) corresponds to a
missing point of ¥, i.e. a puncture. The order of the stabilizer is now infinite.

3. Hyperbolic: |tr~y| > 2. The fixed points are distinct and lie on R = 9H. Such +’s
correspond to handles of ¥ and can be expressed in the form'

VE A+ AZ T At
=€

Yz — Z_ z— 2z

e € R\{0,1}.

The Poincaré metric on H is the metric with scalar curvature —1

2 |dz|?
ds® = B (2.2)
This implies that the Liouville equation on X
©
Dadut = 5 (2.3)
has the unique solution
_ /
Ol (2.4)
(S (w))?

1Given z and vz, A(7) corresponds to the minimal distance between them. This minimum is reached for
z lying on the geodesic intersecting the real axis at z_ and z.



The basic property of the Poincaré metric is that its isometry group PSLy(R) coincides with
the automorphism group of H. The group I is isomorphic to the fundamental group 7 (3).
If I' uniformizes a surface of genus g with n punctures and m elliptic points with indices

2<n; <ng <...<ny, <oo,then I'is generated by 2g hyperbolic elements 71, ..., v24, m
elliptic elements E1,..., F,,, and n parabolic elements Py, ..., P, satisfying the relations
m n g
n; -1 -1
Ejj =1, <HEZ> (H Pk) H (’723'—1’72]"723‘_1’72]‘ ) =1. (2.5)
=1 k=1 j=1

The uniformizing group carries information both on the topological and the complex struc-
tures of the Riemann surface. It is easy to see that the number of parameters fixing the
generators of a Fuchsian group coincides with the dimension of moduli space of complex
structures of Riemann surfaces. For example, in the case of compact Riemann surfaces of
genus g, the full set of generators depends on 6g real parameters which reduce to 6g — 3
upon using (2.5). On the other hand, (2.5) remains invariant under conjugation by an
element of SLy(R) leading to 3g — 3 complex parameters.

2.2 Differential representation of slz(R)

Let ¢,, n = —1,0, 1, be the generators of sly(R). Fix their normalization by
U, Cn] = (n = m)lmin

n = —1,0,1. Consider the representation ¢, — 2”719, € End(Cl[z, 2~ !]). Thus, we set

0, = 2"11o, .

Note that [£,, f] = 2""10,f. Each element of PSLy(R) can be expressed as the composi-
tion of a translation, dilatation and a special conformal transformation. These PSLa(R)
transformations are

exp(A_1l_1)z=2z+ A_1, exp(Aolo)z = €Mz, exp(Aif1)z = %}\Z . (2.6)
— A1

If f(z) admits a convergent series expansion, then

exp(A\jl;) f(2) = flexp(Nj€;)z) -

We note that this action can be defined by considering the formal Taylor theorem. This
corresponds to equating the application of a formal exponential of a formal multiple of 0,
with a formal substitution operation. For example,

exp(A-10-1)f(z) = f(z +A-1) .

In this case f(z) is an arbitrary series, including the formal ones. In particular, this series
may have the form ) a,2", with n which may also take complex values. Note that the
formal expansion of exp(A_1f_1), should not be confused with the standard meaning of
formal series expansion, referring to non-convergent expansions. In particular, note that



given an element X of a Lie algebra g, equipped with a norm || - ||, exp(X) is well defined
on all C whenever || X|| is finite.
Recall that

pi(pwz) = () (2)

and set hj(z) = exp(\;¢;)z. Since

exp(Arlr) exp(Xjly) f(2) = exp(Mli) f(hj(2)) = f(hj(hi(2))) (2.7)

it follows that exp(Axlx)exp(A;¢;) acts in reverse order with respect to the matrix rep-
resentation. This implies that the representation V constructed in terms of the above
differential operators acts as have

V() f(z) = f(n"2), (2.8)

so that, since

V)V W)f(z) = flvunt2) = f((w)"2) = V(w) f(2),

the homomorphism property is preserved. This fixes the representative of u € PSLa(R)
to be

V(p) = exp(A_1f_1) exp(Aolo) exp(A1f1), (2.9)

where the \’s are the ones corresponding to the group element 1.

2.3 Parameters of the representation

In order to derive the relation between the \;’s and !, we note that by (2.6)

Z+ A1 _ Az+B

exp(A_1f_1) exp(Aofp) exp(A1ly)z = iy wenpe vens v Wil ey B

Since AD — BC' =1, we have
D = +eh/? (e_)‘o - )\_1)\1) , (2.10)

so that

_B A0 A2 —
)\71—A, e —A, )\1——A, (2.11)

and

Az + B B C
C.+ D =P <A€_1) exp(21n(A)ly) exp <—A€1>z .

Since a global sign is irrelevant for PSLa(R) matrices, we can choose the + sign on the
right hand side of (2.10), so that

ABY\ ero/2 A_qero/2 519
CD ) \=MeN? e 22\ \eh/2 )T (2:12)



The above decomposition holds when A # 0. Group elements not attainable by the de-
composition (2.9) can be reached by alternative decompositions. A decomposition which
holds when D # 0 is the reversed one

(€>‘0 — )\_1>\1)Z + )\_1 Az + B

exp(A1f1) exp(Aolo) exp(A_1l_1)z = y wo—— = 23D (2.13)
Actually,
A= +e /2 (&0 - A_l/\1> , (2.14)
so that

B _ C
)\,1:5, BAO:D2> )\1:_57

and
Az+ B

C B
C.1D =P < - D£1> exp(—21In(D)ly) exp <D€1>z .

Choosing the + sign on the right hand side of (2.14), we have

A B eM/2 N hje /2 )\ e Ro/2
cD)| \_jeRo/2 e~ Mo/2 '

Finally, if both A and D vanish, we can choose

A\
exp(A_1f_1) exp()\jﬁl) exp(A_1l_1)z = —71 , (2.15)

so that
B=-C1l1=+),

where the sign ambiguity reflects the fact that this operator coincides with the one associ-
ated to the inverse matrix.
In the following we will need the operator version of eq. (2.8), that is

Vi fV () = fu'z) .

Note that the relation (2.5) is represented by?

g9 g
VI TI (72j—172j75jl_17§j1) =11 (VQj—l‘/éjV2;i1‘/é;1) =1, (2.16)
j=1 j=1

where we restricted to the hyperbolic case and

Vi =V(n) - (2.17)

*We will use u and v to denote generic elements of PSLa(R), while 8 and v will denote elements of the
uniformizing group I' C PSLa(R).



3 Parameterization of SLy(R) by the closed forms of the BCH formula

We have seen that in order to express an element of SLy(R) in the form
exp(Aili) exp(N;4;) exp(Aily) » (3.1)
one has to distinguish three different cases, namely
A#0, D#0, A=D=0. (3.2)

On the other hand, to find the covariant form of the conformal group, we must express (3.1)
in the form

exp(Ail;) exp(A;l;) exp(Aily) = exp(p1ly + pole + psls) , (3.3)
for any choice of ¢, j and k. Very recently, have been derived new closed forms for the Baker-
Campbell-Hausdorff (BCH) formula that include, as a particular case, the problem (3.3).
Such a solution also solves the previous question, namely the one of writing down a unique
expression, in the form on the right hand side of (3.3), holding simultaneously for the three
distinguished cases (3.2). The reason is that any group element can be always expressed in
the form on the right hand side of (3.3). Note that the unique exception would be if the trace
of the corresponding matrix is —2 in the case when such a matrix is non-diagonalizable.
On the other hand, we are interested in the linear fractional transformations where there
is no any problem. The expression on the right of (3.3) is quite general. This has a
deep consequence since it means that the covariantization of the conformal group is always
definite. Let us further illustrate such a point, by considering X, Y and Z, elements of an
arbitrary Lie algebra g. Suppose that it has been found a finite linear combination W of
the generators of g such that

exp(X) exp(Y)exp(Z) = exp(W) . (3.4)

For any suitable norm, the power expansion of exp(X)exp(Y')exp(Z) converges on all C,
except in the points where one or more of the norms || X]||, ||Y|| and ||Z|| are singular. It
follows that if (3.4) holds in a neighborhood of the identity, then it should hold in a wider
region with respect to the one related to the expansion of In(exp(X)exp(Y)exp(Z)). Of
course, this is related to the possible singularities of the norm of W. Remarkably, this
never happens for PSLy(C) matrices [4].

The problem of finding the closed form of W in (3.4), has been recently considered in [4]
where it has been introduced an algorithm that solves the BCH problem for a wide class of
cases. In [5] it has been shown that there are 13 types of commutator algebras admitting
such closed forms of the BCH formula. Furthermore, it turns out that the algorithm
includes all the semisimple complex Lie algebras [6], as they correspond to particular cases
of commutator algebras of type 1c-i, type 4 and type 5. It turns out that sla(R) corresponds
to a particular subtype of the type 4 commutator algebras.

Let us shortly show the main steps of the algorithm. In [7] Van-Brunt and Visser
obtained a remarkable relation providing the closed form of the BCH formula in important
cases. If XY € g satisfy the commutation relations

(X, Y] =uX+vY +cl, (3.5)

~10 -



with I a central element and u, v, ¢, complex parameters, then [7]

exp(X) exp(Y) = exp(X + Y + f(u,0)[X, Y]),

(3.6)
where f(u,v) is the symmetric function

Fuv) = (u—v)e"t? — (ue" — vev)

uv(et — ev)

(3.7)

Such a result generalizes to a wider class of cases by exploiting the associativity of the
BCH formula and implementing the Jacobi identity [4]. Consider the identity

exp(X) exp(Y) exp(2) = ((exp(X) exp(al) ) (exp(8Y) exp(2)) .

(3.8)
where
at+p=1.
If
(X, Y] =uX +vY +cl, Y, Z] =wY + 22 +dI, (3.9)
then, by (3.6),
exp(X)exp(aY) = exp(X),  exp(BY)exp(Z) = exp(Y), (3.10)
with
X := ga(u, 0) X + ho(u,0)Y + lo(u,v)el
Y = h(z,w)Y + gs(z,w)Z + l5(z,w)dI , (3.11)
where
ga(u,v) := 14 auf(au,v),
ha(u,v) = a(l +vf(au,v)),
lo(u,v) == af(au,v) . (3.12)
This solves the BCH problem since, by (3.5), (3.6), (3.8) and (3.10), it follows that imposing
(X,Y]=aX +9Y +¢él, (3.13)
that fixes «a, 4, ¥ and ¢, gives

exp(X) exp(Y) exp(Z) = exp(X) exp(Y) = exp(X + Y + f(@,9)[X,Y])

(3.14)
Note that, consistently with the Jacobi identity
(X, IV 2N+ [V [Z, X0+ [2, [ X, Y]] = 0, (3.15)
[X, Z] may contain also YV’
(X, Z]=mX +nY +pZ +el . (3.16)

- 11 -



The Jacobi identity constrains e,m,n and p by a linear system. Furthermore, note that
setting Y = MA@ and A_ := Mg, A\t := A\of3, eq. (3.8) implies, as a particular case,

exp(X)exp(Z) = lim exp(X) exp(A-Q) exp(AQ) exp(Z), (3.17)

explicitly showing that the algorithm solves also the BCH problem for exp(X)exp(Z), in
some of the cases when [[X, Z], X| and [[X, Z], Z] do not vanish.

In [4], as a particular case of the Virasoro algebra, it has been shown that the closed
form of the BCH formula in the case of sla(C) is

eXp()\_1f_1) exp()\ofo) exp()qﬁl)

Ay — A
= exp {M[A_lg_l + (2 — 6_)\+ — 6_)\_ )60 + )\161]} s (318)

where

T+e 0 A i+ /(1T+e o — A 10)2 —de o
5 )

Note that, as explained above, since the ¢’s are the differential representation of sla(R),

e M =

(3.19)

it follows that the corresponding Mobius transformations are the ones associated to the
inverse matrix. In fact, one may check that the correspondence between the Ag’s and the
matrix elements given in eqgs. (2.10)(2.11), is the same of the one in [4] after the change

(gg) — <_DC _AB> . (3.20)

4 Setting the problem

In the next sections we will construct the projective unitary representation of the fun-
damental group m1(X) by means of differential operators U}, acting on the Hilbert space
L?(H). This will lead to a relation for such operators which has the form of (2.5) except
that the identity on the right hand side is multiplied by a phase. In the hyperbolic case
we will have .
[ tor—r thor s, Uy} = €71 (4.1)
k=1

As a first step, here we consider the unitarity problem. In higher genus we will see the
appearance of several new structures. For example, a distinguished feature concerns the
combination of differential operators that one may use to construct the unitary operators.
While on the torus the exponentials e?»1 and ez both appear separately, for ¢ > 1 the
possible operators are restricted to a specific combination of 0; = 0., and 02 = 0y, .

In this section we will also reconsider the formulation of the noncommutative torus
and, in particular, the way the phase 2™ in (1.1) is obtained. The aim is to learn from the
torus as much as possible, in order to reformulate the derivation in a way which extracts
the features of the construction without referring to the specifics of the torus.

- 12 —



The fact that the fundamental group in ¢ > 1 is nonabelian implies that, in order to
determine the phase in (4.1), we cannot use the reduced BCH formula

edel = A BleBeA (4.2)

which holds when A and B commute with [A, B]. For g = 1 the associated differential
generators commute, i.e. [01,02] = 0, so that it makes sense to use (4.2) to evaluate the
phase coming from the (constant) commutator of the covariant derivatives. For g > 1, a
computation of the phase by means of the complete BCH formula would involve quantities
which are a covariantization of the already noncommuting operators such as the generators
of slo(R). However, this is not only a technical difficulty, rather we actually still do not know
which structures the covariantization of the generators of slo(R) may have. As we said,
reformulating the case of the torus in a different language will suggest its natural higher
genus generalization, without using the complete BCH formula. In particular, it will shed
lights on the covariantization procedure. As we will see, the result is deeply related to the
geometry of Riemann surfaces. In particular, constructing the unitary operators that will
projectively represent 71 (%), will bring us to a problem that can be seen as the one of
simultaneous covariantization. Essentially, this is the problem of finding in higher genus
the covariant version

Oy =FOF™, (4.3)

of a given operator O in such a way that its adjoint has the form (’)TA = FOF~!, with O
independent of the connection A and F' a functional of A.

4.1 A first screening

Mimicking the case of g = 1, where each one of the two operators U and Uy are expressed
in terms of real coordinates x = x1 and y = x5 respectively, one expects that the building
blocks for the solution to the quotient conditions in g > 1 have two possible forms, either

eXp(‘Cn - ‘C;rl) )

or

exp(i(Ln + L1)),

where the L,’s are some covariantized sla(R) operators to be determined. Such oper-
ators should be the generalization to the case of the three generators of sla(R) of the
covariant derivative. Since in the case of the torus the relevant phase is expressed by
means of the commutator between covariant derivatives, and considering that £, contains
0. = 0y — 10y, one may expect that, in the case of higher genus Riemann surfaces, both
exp(Ln — L) and exp(i(Ln, + £1)) appear. However, while the exponentials exp(d;) and
exp(dy) generate translations, that map C, the universal covering of the torus, to itself, the
operators exp(Ln — £4) and exp(i(L, + £})) should generate PSLy(R) transformations.
On the other hand, exp(i(L,, + EL)) cannot generate real Mobius transformations, so that
we should discard exp(i(L,, + Ejz)) and restrict to exp(L,, — EIL) only. This fact is strictly
related to the nonabelian nature of the group 7;(3) which, in turn, is related to the con-
dition (z) > 0 defining H. The latter reflects the fact that the translation operator along
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the imaginary axis exp(9,) alone does not belong to the automorphisms group of H. Since
among the translation operators exp(d,) and exp(d,) only the former is allowed, we see
that comparing exp(L, — £},) with exp(d;) = exp((d; + 95)/2) one should expect that £},
corresponds to —L,,. We will see that a slightly modified version of this holds.

Finding the £,,’s is a problem closely related to the one of deriving the central extension
for the Fuchsian group without using the BCH formula. Since the £,,’s are covariant
versions of the three generators of slo(R), in general the nested commutators

[ﬁjﬂ [[’jm [ o [ﬁjn—lvﬁjn“ o H ) (4'4)

should be difficult to treat, so that, apparently, one should use the complete version of
the BCH formula. Nevertheless, since we will succeed in finding the central extension of
the uniformizing group, this implies that the same result should be obtained by using the
complete BCH formula. Therefore, in spite of (4.4), the structure of the sly(R) implies a
simplification. In particular, determining the ¢;, . ;, in

1
Z Cj1..jn (L1, L] = [‘le’ [‘C]é’ [ [‘Cjn—l"cjn]] -1, (4.5)

l,m=-—1
should reveal a considerable simplification of the complete BCH formula for the case
at hand.

4.2 An alternative to the BCH formula on the torus

Here we revisit the covariantization of the translation operators. These are naturally as-
sociated to the tessellation of the plane, so that their covariantization leads to consider
the algebra of the noncommutative torus. For sake of simplicity, we consider the covari-
antization of translations operators along the Cartesian coordinates of R?, denoted by z;
and x9. These operators are naturally associated to orthogonal tori. The investigation will
lead to the computation of the phase in eq. (1.1) without using the BCH formula. This
alternative will indicate the way to covariantize the PSLy(R) operators, therefore provid-
ing the extension of our analysis to g > 1, where the direct use of the BCH formula is,
apparently, inextricable.
Let us consider the connection

A= Aldl'l + AQd.’L‘Q s

and the operators
Ui = exp( A (0 +1A%)), (4.6)

k = 1,2, where Ay € R. Given two operators A and B, and a function f(B) satisfying
suitable properties, we have

Af(B)A™' = f(ABA™1) .
We define the functions Fy(x1,x32), k = 1,2, by

Uk = Fk eXp(/\kak)Fk,_l s
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that compared with (4.6) yields
(Ok +iAK)F, =0 .

The solution of this equation is

(w1,w2)
Fi(z1,29) = exp ( — z/ da:Al(x,xg)> ,
(

a9,22)

where the contour integral is with x5 fixed. Similarly

(z1,22)
Fy(x1,m9) = exp < — z/ dCL'AQ(.’El,ZE)) ,
(:Dlvxg)

where the contour integral is with z; fixed. In the following we will use the notation
Tk
Fk = exp (—Z/ dak.Ak) y
0

where in the integrand one has Aj(ay,z2) if &k = 1 and Az(x1,a9) if K = 2. There is an
observation that simplifies considerably the construction. The key point is that since in
the two contour integrals either x1 or xo are fixed, so that either dxq1 = 0 or dzy = 0, it
follows that both the integrands, da; A1 and dasAs, can be replaced by the full connection
A = Aidx1 4+ Asdxo. Therefore,

Tk
Fr, =exp <—z/ A) .
1.0

k

Since exp(Ar0k) is the translation operator, we have

Tk Tk
Uy, = exp (—z/ A> exp(ArJk) exp <1/ A)
IEO II!O

k k

— exp (z /x e A) exp(AsO) - (4.7)

k

This allows for a very geometric derivation of the phase in (1.1).

Since we are investigating the covariantization of 0,, and 0,,, we consider tori whose
fundamental domain F is a rectangle. Denote by A1 and Ay its base and height respectively.
By (4.7) and Stokes’ theorem

(z14A1,22) (z14A1,22+A2)
Ul Uy = exp {z / A+i / A
( (

xl,xg) x1+/\17332)

(z1,224+XN2) (z1,22)
+1 / A+1 / A]
(z14+A1,224+X2) (z1,x24+A2)

= exp (z 7({# A) = exp <z/fF> : (4.8)

where F' is the curvature of A

F=dA= (81A2 — 82A1)dl‘1 Adxo = Fiodxy A dxs . (49)
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The above shows that the phase does not equal the curvature F'. The fact that our
derivation and the one made with the reduced BCH formula (4.2) coincide, is due to the
fact that a possible solution is given by a constant Fi5. A possible choice to get a constant
phase is to set Fio = 2m0/A1 A2 that corresponds to

—T 0 T Ao =1 0 T
g 2, 2 = g 1-

A =
that by (4.2) and (4.6) gives
exp(A1(01 +iA1)) exp(A2(02 + iA2))
= eXp(/\l)\Q[al +1Aq,09 + ZAQ]) eXp(/\Q(ag + ZAQ)) exp()\l (81 + ZAl)) , (4.10)

that is (1.1). However, only in the case in which Fis is constant does one have

/ F = )\1)\2F12 .
F

Let us now show why apparently the constant curvature connection is the unique solution.
Let us add the suffix 122 to F in order to indicate its dependence on the base-point. Also,
note that F is univocally determined by x; and x2. We need to show that the integral of
F on F;,,, is independent of the point (z1,x2). That is

/f F:/fm F, (4.11)

1T fzh
for any (z,2%) € R?. Any point in R? can be obtained by a translation
(z1,22) = (2, 2%) = (21, 22) = (21 4 b1, 22 + b) .

Let us apply the translation p to the entire fundamental domain and denote it by puFz, 2,

[
F, F.

so that eq. (4.11) is satisfied only if

Since Fy 4y = pFz 2y, we have
175

/f (WF—F)=0.

r1T2

This fixes F' to be a constant two-form, up to a non-constant contribution with vanishing
surface integral. This implies a hidden invariance that we consider below.

4.3 The hidden invariance

Let us still consider tori with rectangular fundamental domain. We now show that the
above investigation also allows to find an additional invariance of the operators

U, = eXp(Ak(ak + iAk)) ,

~16 —



under a suitable transformation of the connection Aj. Such an invariance, which is not
evident by analyzing the U’s expressed in the form exp(Ai (0 + ¢Ak)), is a consequence
of the fact that exp(A;0k) is a translation operator. By (4.7) we see that also Uy is a
translation operator

Uy f(x1,22) = fo1 + Ap, 22)Un Us f (1, 22) = f(m1, 72 + A2)Ua

Therefore, the U’s have the invariance property

Tk T
hkblkhlzl = hy, exp <—z/ A> exp(ArOk) exp (z/ A) h;l
X CL'O

0
k k
Tr+Ag
= exp (z/ A) exp(A,Ok) = Uy, (4.12)
Ty,
whenever the hy’s satisfy
hl(:cl,xg)hl_l(xl —i—)\l,xz) =1, hg(xl,xg)hgl(:lil,wg —I—)\g) =1. (4.13)
To preserve unitarity of Uy, we require |hg| = 1. Thus, the transformation of the connection
Ak — Ak + Zak In hk s (4.14)

leaves Uy, invariant.
In general (4.14) is not a gauge transformation, as each component transforms accord-
ing to a different hj. Consequently, under (4.14) the curvature F' transforms to

~ h
F=F—1i01021n h—ldml ANdxo,
2

while the phase (4.8) remains invariant. This transformation can be restricted to one
component of the connection only, that is we can choose either h; or ho to be a constant.
Also, the operators Uj, are not gauge invariant unless the gauge function is periodic up
to a multiple of 2w. That is, by (4.13) it follows that U is invariant under the gauge

transformation
A— A+dy,
if and only if
X(x1 + A1, 22) = x (21, 22) + 2mm, X (71,72 + A2) = x(71, T2) + 2m7,

m,n € Z. Of course, this is consistent with the fact that the transformation (4.14) is not
a gauge transformation unless hy = cnst hs.

Above we saw how to remove the gauge connection A from the covariant derivative in
Uy.. The result is that the gauge connection appears integrated along straight lines, that
is geodesics with respect to the flat metric, the right language to extend the construction
to higher genus. Upon factorization, the connection is acted on by the inverse of the
differential operator (integration). This shows a close relation between integrals of the
connection along geodesics, i.e. ff:JW\k A, and covariantized operators. More precisely,
inverting (4.7) yields

T+ Ak
exp <z/ A> = exp( A\, (O + 1 Ak)) exp(—Ar0k) -

k
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5 Unitary projective representations of the Fuchsian group

5.1 The problem of simultaneous covariantization

In the following we will see that, as expected, in higher genus it is convenient to use complex
coordinates z and Z rather than real ones z and y. Some of the operators we will work
with have the structure

exp(V; — Vi) )

which is unitary by construction. The operators V, and Vl will be some appropriate
covariantization of 9, and 0z. Since we will also consider the covariantization of the sly(R)
differential operators, the noncommutativity of the latter will naturally lead to the method
described in the previous subsections, rather than to the reduced BCH formula (4.2).
The alternative derivation of the phase considered above may be applied to other cases
if one can set?
exp(V, — V1) = Fexp(d, + 8:)F 1, (5.1)

for some suitable function F'(z, z). The fact that we need such simultaneous covariantiza-
tion, i.e., that we need to express both the covariant derivative and its adjoint as standard
derivatives conjugate by the same function, has already been used in the case of the torus.
In that case we considered the action of unitary operators on the Fj rather than the reduced
BCH formula. It is clear that if we had, for example, V, o< FO,F~! and Vi F~19:F,
then it would not be possible to extend the above method to g > 1. In that case eq. (5.1)
would not hold, and it would not be possible to get the phase on the right hand side of (4.1)
by using the action of differential operators

exp(0, + 0:)F1(2,2) = F Y (2 4+ 1,2+ 1) exp(d. + 9:) .

As an example, one can consider differential operators acting on automorphic functions on
the upper half-plane, or, what is equivalent, covariant operators acting on sections of line
bundles on a Riemann surface ¥.* These operators can be seen as a sort of covariantization
of 0, and 0s. More precisely, consider the metric tensor g.z, so that ds®> = 2g,zdzdz. The
covariant derivative acting on K*, where K is the canonical line bundle on ¥, is

V) KN — KM
where
VM = 20,92 = (9, — ND. Ing.2)0 . (5.2)

Formally, one can consider this as a suitable covariantization of 0,. The scalar product on
K*is
— A —
0l) = [ dvva (57 o0,
b

3The above cannot correspond to F(z,z)exp(0. — 0z)F (2, Z), as exp(d> — 0z) would correspond to
translations of $(z) by an imaginary constant and cannot be unitary. On the torus we can also use
exp(i(V> + V1)). However, as seen in subsection 4.1, the nonabelian nature of 7 (3) forbids the use of i.
4To simplify notation, we will use the same symbol z to denote a coordinate both on H and X.
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where )
dv(z) = %dz NdZz .

It follows that the adjoint of V2
(V)T KM — K

is
(VD)1 = —g*0:¢) . (5.3)

In the literature there are also other examples of covariant differential operators on higher
genus Riemann surfaces. For example one can consider covariant operators acting on
sections of K* ® KV, and then take the dual space to be sections of K? ® K for some
p and o. In particular, for a suitable choice of the weights u,v, p and o, one can obtain
covariant operators of the form ¢).8.¢.7, with adjoints —g,7dz¢). which, in a certain
sense, exhibit more symmetry than (5.2) and (5.3). Nevertheless, also in this case we have
0. conjugate by g2, and g;;‘, whereas 0z is conjugate in the reverse order, that is by g;;‘
and ¢).. Thus, an apparently unavoidable feature of covariant operators is that they never
admit the simultaneous covariantization

V.-Vl =F(2,2)(0, 4+ 8:)F (2, %), (5.4)

for some F'. On the other hand, we have just seen that we need precisely the property
that, given a covariant differential operator (in particular, an sly(R) differential operator)
and its adjoint, both of them should be expressed as a non covariant operator conjugate
by F and F~! in the same order.

Let us further illustrate this point. In evaluating the adjoint operator, one performs an
integration by parts and simultaneously takes the complex conjugate. Complex conjugation
is the crucial point. In fact, if we now construct covariantized operators by conjugating
them by F and F~!, with F a phase, then complex conjugation corresponds to the inversion
of F'. Thus, the unique solution is to choose

F=F1,

and define
V,=F9,F . (5.5)

Note that the condition |F| = 1 essentially follows also by requiring the unitarity of the
operator in (5.1). Let us consider the scalar product

(6 = /H dvdy,

integrating by parts, by (5.5) we have

G|V = /H dGFO. P — /H W FFF18)) = (Vigly),
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showing that the adjoint Vi is constructed by conjugating 0z in the same way as —3, is
conjugate to get V.
Vi=—-Fo.F1.

Therefore, we found the way of covariantizing the derivatives as in (5.4). Later on we will
apply the above method to the case of the sly(R) differential operators.

The above integration domain is H rather than the Riemann surface itself, as was
the case previously. Our equations will be defined on the upper half-plane, as we are
interested in constructing a projective unitary representation of the group (%) by means
of operators acting on L?(H). In particular, the action of our operators will not be restricted
to automorphic forms, which is the case when the equations are to be projected onto the
Riemann surface. In this respect we now show that trying to perform a similar trick in the
case of scalar products defined on a Riemann surface would lead to imaginary powers of
the metric. Denoting by ¥(#9) a section of K* @ K, we see that

/E PPir) i g, g irap iRl =r) = /Z 950 (g2" plein) ) lin1=r) (5.6)

where p, k are real numbers.” The integrand in (5.6) is a (1, 1)-form, and the action of the
derivatives is covariant, that is, they act on O-differentials (e.g. 0.g,2%(*-1=)). Also, the
complex conjugate of a (u,v) differential is a (7, i) differential.® Eq. (5.6) implies that the
adjoint of
V. = g:20.922" (5.7)
is
Vi=—gltozgin . (5-8)

zz

As a consequence of the fact that both V, and V1 are obtained by conjugating 0, and —03
by g% and g;;”, we have that a function of any linear combination of V, and of its adjoint
has the property

f(aV: + V) = g2 f(ad. + b0:)g2" .

The appearance of the phase ties together several mathematical aspects which have a
physical meaning. In particular, considers the operators (5.7) and (5.8) on the upper
half-plane endowed with the Poincaré metric

ds® = y_2|dz]2 = 2925]d2|2 = e"9|dz|27

then one would obtain V., = y~2*9,y** and vl = —y 7289y In this respect, it is
interesting to observe that the Poincaré Laplacian

A = —4y2828Z y

5The construction can be generalized to the case in which the weight p is a complex number. The only
difference consists in replacing %1~ by (#*1=7) One may also consider replacing i\ by a complex
number p, however in such a case g~; would not be a phase and simultaneous covariantization would not

be possible.
®Differentials have been studied in the literature with real [9, 10] and complex weights [11].
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satisfies the equation
Aya+in = \gbtiv,

where the eigenvalues are

1
Aw =+ K2 (5.9)

The problem of simultaneous covariantization led us to introduce imaginary powers of
the metric. In turn, the associated Laplacian has eigenfuctions corresponding to complex
powers of such a metric. On the other hand, the appearance of this complex power lies
at the heart of the mass gap 1/4 in (5.9) which never appears in flat spaces such as in
the case of the torus. Thus, there is a strict relationship between the noncommutativity
of the fundamental group (%), the structures derived from imposing the simultaneous
covariantization, and the structure of the Laplacian eigenvalues themselves. The mass gap
1/4 is in fact a sort of regularization induced by the negative curvature (which in turn is
related to the nonabelian nature of m1(X)). In this context, it is worth mentioning that
in [12] curvature brings the infrared and ultraviolet behavior of QCD under analytic control
without any conflict with gauge invariance.

5.2 The unitary covariantized operators

Set

n = —1,0,1, and define the operators
Ln = el/20.el/? = e;120,el/? = €,(0. + 0. Inel/?),

that is

1 1
L1:z282+z:£1+z, LO:Z@Z+§:€O+§7 L_1=0,=/0_1.

This deformation of the ¢, has no effect on the algebra, that is
[Liny L] = (n—m) Lyt -

Furthermore

[Lna f] = Zn—Hazf .

Let us define the covariantized operators
LI = FL,F~' = Fel/?0,e}?F~! = ¢,]0, + 8. In(el/?F~Y)],
where F'(z,z) is an arbitrary function of unitary modulo

IF|=1.

Since the L’SLF) and L, differ by a conjugation, it follows that the £,(1F) satisfy the same
algebra of the L,

128, 0] = (n —m)c'h)

m+n °
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Introducing the scalar product on L?(H)

(6 = /H dvdy,

we see that an integration by parts leads to

leg) = - [ avreilo. (e%—w)w (Pl

H

that is the adjoint of E%F)
L = _Felg.etP -t = L0 (5.10)

Comparing -
E%F)T = (Fel/?0.el/2FP~1t = Fe}/zale?ll/QF*l ,

with (5.10) one obtains
0 =—e1e, .
In the case n = —1 we have ai = —05, so that, since 0, = (0, — 10y)/2, we see that the
construction reproduces the usual adjoint operation in the case of 0, and 0,,.
The basic property of the adjoint E%F)T is that it is obtained by conjugating —L,, with
F and F~'. This means that L, and —L,, are covariantized in the same way. This solves
the aforementioned conjugation problem. Actually, the operator

A = £ — £ = £ + £,
is the sum of L,, and L,, covariantized by means of the same conjugation

AF) = F(L, + L,)F",

n

so that
exp(AF)) = Fexp(Ly, + L,)F~'.
Since A%F)T = —A%F), we formally have

exp(A7) exp(ALT) = I = exp(AT) exp(Al)) . (5.11)
A rigorous proof of unitarity goes as follows. Set

lea(w))
P en(z)]

where” w = efrze ™ = (apz + by)/(cnz + dy), and note that

exp(AU)) = F(z,2)|en(2)| "  exp(ln + 0)|en(2)|[F1(z, 2)
= F(2,2)gnF Y (w, ) exp(y, + y,) . (5.12)

"The coefficients a,, b, ¢, and d,, are given by (2.12) with A, = 1 and Apozn = 0.
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By
[0, exp(n)]z =0,

it follows that

n+1

1
0, (exp(lp)z) exp(—£y) = o) exp(£n) 2" exp(—£y) ,

that is 0,w = en(w)/en(2), so that
gn/’azw|2 = ]-/gn .

A

We then see that the operators e are unitary

@t gy = [ ) 5 R, D)9 w, 0w, @)
H |0 w|
- /H do(w)F(w, @)gn F1(z, 2)(z ) (w, w)
= (e )y,

where in the first equality we used the fact that PSLy(R) is the automorphism group of H.

5.3 Selecting the Fuchsian generators

We now digress on the possible realizations of the fundamental relation (2.5) for a Fuchsian
group in the hyperbolic case. Being differential operators, the Vi in (2.17), have the
property of acting in the reverse order with respect to the matrix product. This aspect
raises a subtlety in considering the relationship between 71 (X) and the uniformizing group
I'. Namely, let us consider the normal form for Y. This is a polygon whose symbol is

atbray byt agbgay byt =1, (5.13)
where {ag, br} is a basis for 71 (X). Cutting the surface along these cycles one obtains a
simply connected domain whose vertices are connected by elements of the covering group.
If one considers this domain as sitting on the upper half-plane, then one can consider it as
a fundamental domain with the transformations connecting the vertices given by elements
of I'. Let us order the vertices of the polygon in the counterclockwise direction and denote
them by z = 2o, 21, ... 249-1, 249 = z. We denote this fundamental domain for I' by

FAUl ={2 = 20,21, 22, .., 2ag—1, 249 = 2}, (5.14)

with the vertices joined by geodesics. Note that since the geodesics are univocally deter-
mined it follows that the 4¢g-gon fundamental domain itself is univocally determined by the
action of the Fuchsian generators on the base-point z.

A consequence of (5.13) is that the elements of I satisfy a similar fundamental relation.
Among these, the one we wrote for the 7y in (2.5), is the canonical one, that is the one in
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which the generators appear in the sequence 'ygj_lfygj’y;jl_lfygjl. This version is obtained
using the identification

g

-1 -1 -1
21 =M%, 22 =172, B E=7172701 2, e, R4g = H (72]'—1’Y2j72j_172j ) 2=z
j=1

Other representations can be found e.g. by Dehn twisting.® Note that these transforma-
tions leave I' invariant and should not be confused with the ones obtained by conjugating
I' in? PSL2(R). Anyway, the usual representation for the fundamental relation satisfied by
the generators of I' given in (2.5) does not fit with the aim of our construction. Actually,
what we essentially need is to provide a central extension of the Fuchsian group. In par-
ticular, we are looking for operators provinding a projective representation of I', such that
the fundamental relation is modified by a phase. To discuss this aspect we first need to
introduce the Fuchsian matrices 5 defined by

— Bkuzk‘—l + ﬁklg

2k = Brap—1 = . 5.15
! Bk‘m Zk—1 + /814:22 ( )

Since z44 = 2, we have that the g), satisfy the fundamental relation
BagBag—1-..B1=1. (5.16)

The associated operators providing a differential representation of I" are
Tp = T(Br) = exp(A ) (L_y + L_1)) expO\P (Lo + Lo)) expO\P (L1 + Ly)),  (5.17)

where AY?, )\[()k) and )\gk) are defined in such a way that

Tof (2, 2) Tt = f(By 'z, B ' 2) - (5.18)

The characterizing property of the generators f, for I, is that (5.15) allows us to associate
T}, to the geodesic connecting zx_1 and z;. This is an essential point because it will allow
to obtain the phase of the central extension of I' in terms of an integral whose contour
coincides with the fundamental domain. In particular, the covariantization of the T} will
be performed by multiplying the T} on the left by the abelian Wilson line associated to the
geodesic connecting zx_1 and z,. For this reason we will call these covariantized versions
of the T}, abelian Wilson-Fuchs operators. Let us note that these Wilson lines on the upper
half-plane correspond to Wilson loops on the Riemann surface.
In order to derive the relationships between the v and 8 we compare

-1 -1, 1
21 =M%, 22 = M72%7, 23 =M7271 %, R4 ="M17271 Vo Ry

8These correspond to in general non simultaneous conjugation of I'’s generators by suitable strings of
the generators themselves (see for example [13, 14]).

While the conjugation in PSL2(R) can be used to fix three real parameters, so that the number of
real independent moduli reduces to 3 X # generators —3 (due to the fundamental relation) —3 (due to
conjugation)=6g — 6, the Dehn twists correspond to a discrete set of transformations whose existence
implies the nontrivial orbifold structure of the moduli space of Riemann surfaces.
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with
2 = Bz, 29 = Bafhz, 23 = 338212, 24 = BafB3B2frz, ...,

to obtain
Bi=m, Br=mrn's Bs=m720 v s Ba=mvn v s s -
One can check that the above relationships extend to
Br = pvston (5.19)

k € [1,4g], where

k—1

=111
j=1

P1 EI, and

= (LD g g [2’“ ri 2“‘7/2]} +olk/2) — k.

with [-] denoting the integer part. Note that

€4k = €4k—1 = —1, €4k—2 = €453 = 1,
and
o4 = O4—2 = 2k, O4j—1 = O4p—3 =2k — 1,

ke [1,g]. Eq. (5.19) implies
54k—j = ﬁ4k—j—164_k17j725;€17j71 ) (5'20)

where j = 0,1, and k € [1,g]. We can use these relationships between the 5 to select 2g
elements, say B4x_3, Bak—2, k € [1, g] which can be seen as a complete set of generators for
I'. In particular, by (5.20) we can express Bar—1, Bak, k € [1,g] in the form

—1 —1
641@—1 = 54k—264k,354k,2 ’

and

—1 —1 -1
5419 = 64’9*2B4k—3/34k—254k—354k*2 .

5.4 The Wilson-Fuchs operators

In (2.17) we introduced the operators Vj which are defined in terms of the ¢,,. However,
in order to construct unitary operators, we should use the L,’s rather than the £,’s. Nev-
ertheless, since the algebras of the ¢,’s and L;,’s coincide, we have that the commutation
properties between the Vi, and therefore fundamental relation (2.16), would remain invari-
ant if the £, in Vj are replaced by the L,’s. Similarly the T} = T'(f;) would satisfy the
same fundamental relation under the replacement L, — €, L, — ly.
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Let us now consider the operators Tr. Since their action is in the reverse order with
respect to the one of the matrix product, by (5.16) and (5.18) we have

Tag...Tof(z,2)T7 T = F(BTY . By 2, Br .. BagZ) = f(2,2)

that is?
TygTyg—r ... T =1. (5.21)

Let A be a U(1) connection. We set

da(z,w) = /wA, (5.22)

where the contour of integration is the Poincaré geodesic connecting z and w. Recall
that Poincaré geodesics are semi-circles centered on the real axis. Semi-circles through oo
correspond to straight lines parallel to the imaginary axis. In the following we will mainly
be interested in the case in which w is dependent on z, in particular we will consider the

function
nz
da(z,pz) = / A,
4
where
az+b
Z=—
a cz+d’

@ € I'. Let b be an arbitrary real number. Consider the Wilson loop

Bl
Wp, = exp (zb/ ' A) ) (5.23)

and define the Wilson-Fuchs operators
U, = Wg, T}, (5.24)

where the T have been defined in (5.17). Each U, defines the function F(z, Z) solution of
the equation
BT =Uy, (5.25)

Since by (5.18) we have
T F  (2,2) = F N (B 2, 8, 12) T
it follows that eq. (5.25) is equivalent to
Fro(By 2, By ' 2) = exp(—ibda(z, B}, '2)) Fi(2, 2) . (5.26)
We also note that since

Fyexp(Ly + L) Fi ! = exp(EFy(Ln + L) F 1)

10We observe that a possible phase on the right hand side of (5.21) is excluded by construction.
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it follows by (5.25) that
U, = FTeF = expO\YA k) exp(O\F Mg ) exp(AP AL 1) (5.27)

where
A = AYY) = B (L, + L) F L

n,k

In particular,
exp(An ) = Frexp(Ln + L) F b

Egs. (5.11) and (5.27) show that the U};’s are unitary operators
U = I = Uity .

Note that by (5.18) we have

.I. Bk_lz z
Ul =U ' =T exp (—ib/ A) = exp <—ib/ﬂ A)T,;l :
z k2

5.5 Covariantizing the generators of the uniformizing group

We now have all the ingredients to define the covariantization of the generators of the
uniformizing group. We have seen how to covariantize a given operator of sla(R). The
problem now is the following. Let us write T} in the form

Ty, = exp(Dyg) . (5.28)
Knowing Dy, allows one to define the covariant operator in the natural way, that is
Dy := FyDyF; ', (5.29)
so that, by (5.27),
Uy, = exp(Dy) . (5.30)
On the other hand, by (5.17) we have
exp(Dy) = exp(A\M (L_1 + L_1)) exp(A\F (Lo + Lo)) exp(\P (L1 + Ly)) . (5.31)

It follows that in order to find Dy, and therefore Dy, one needs to solve the BCH prob-
lem (5.31). On the other hand, as reviewed in section 3, the problem (5.31) belongs
to the class of the new closed forms for the BCH formula derived in [4]. In particular,
by (3.18), (5.27), (5.30), and the fact that, for any, the k A;;’s satisfy the slp(R) commu-
tation relations, with the same normalization of the ones satisfied by the ¢,,’s (and L,’s),
it follows that

(k) (k)
)\+ — A [)\gcl)A,l,k + (2 — 67/\%) — 67)‘(—16))1&0’]? + )\gk)ALk] , (532)

EXCEENG
A Al

Dy, =

where

ENORENGONC OGRS
o Lte Ao —A(_M)i\/(ue o) = ABIAFNZ _ ge=r
2

e (5.33)
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Let us explicitly rewrite Dy, in terms of differentials operators. We have

(k)
Dy = )\% GRS
NI

A%
(k) (k)

x F M50, +0:) + (2 — e —e )20, + 20: + 1)

+ AP (20, 4 20, 42+ 2)F7E . (5.34)
This is a basic result. Starting with the analogy with the case of the torus, we consid-
ered several issues, such as the problem of the simultaneous covariantization, that led to
consider various differential representations of slo(R), and then the problem of unitarity.
This culminated with the use of the recent results on the BCH formula, that, finally,
implied (5.34).
5.6 Computing the phase

Let us consider the following string of operators

B1z B2z Bagz
Ul_l .. .Z/I4_gl = exp (zb/ A) Tl_1 exp (21)/ A> T2_1 ...exp <2b/ A) T4;1 .

Moving the operators T} L on the right we obtain

B1z B2p12 Bag---B1z
u;l...ug:exp(z‘b/ A—H’b/ A+...+z’b/ A)Tfl...T@]l,
z B1z Bag—1...012
that by (5.21) reads
Usg .. .Uy = exp <—ib A) , (5.35)
OF. [T

where F,[I'] is the fundamental domain (5.14).

Until now the construction concerned an arbitrary U(1) connection A. We now con-
sider the condition on A in order to provide a unitary projective representation of the
central extension of I', the integral fafz[l“] A should be z-independent. Let us first apply

11
7{ A= | aa. (5.36)
OF (I F=|T]

An arbitrary transformation of a point z in H can be expressed as z — 2z’ = uz for some

Stokes’ theorem

p € PSLa(R). The fundamental domain with base-point pz reads

]:uz[r] = {pz, Bipz, Pafipz, B3Pz, . ..} .

Therefore, z-independence implies

/ A= [ aa. (5.37)
Fuull] F.1r)

" Recall that our choice of generators of the Fuchsian group corresponds to the boundary OF, being

counterclockwise oriented.
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We now consider the fundamental domain obtained from F,[I'] under the p map. Since
by definition the sides of F,[I'] are geodesics and these transform to geodesics under the
action of PSLa(R), it follows that the image of a Mobius transformation acting on the
entire domain F,[I'], is uniquely fixed by the Mobius transformed vertices, that is

pFo (U] = {pz, ubrz, pBa2frz, pBsBefrz, . . .} .
The domains F,.[I'] and uF,[I'] coincide up to a conjugation of I' by u, namely
Fuzll] = pFolp Tyl . (5.38)

Since the representation cannot depend on the concrete choice of the fundamental domain,
we should check that the connection A satisfies

/ A = / dA | (5.39)
pFz[p= 1T pF =[]

Thus, from egs. (5.37)(5.38) and (5.39) we have
/ dA = / dA = wdA,
F-[T] wF= [T F=[I]

that is
/ (dA — pu*dA)=0.
F=[T]

This imply that dA must be PSLy(R)-invariant. It is well known that, up to an overall
constant factor, the Poincaré form

1
wp = 2g,zdv = ewidz NdZ, ef =y 2,

is the unique PSLy(R)-invariant (1,1)—form. We choose the proportionality factor to be 1,
that is
F =dA = 2i(0:A, — 0,As)dv = wp (5.40)

that, up to gauge transformations, has solution

A=A =,
2y
so that
_dx
A=A, dz+ Asdz = — . (5.41)
Yy

We will call A the Poincaré connection. It is worth recalling that the Poincaré metric
ds* =y~ 2|dz|? = 2g.2|dz|?,
has constant negative curvature

R = —gzzazag In gzz — —1,
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that is, ¢ satisfies the Liouville equation

]
850, = % .

This implies the following properties for A

1 7 7 1
Az:AEZ*w/QZ_*z = 70z = 20z 1/2
5¢ 50:p = 50z 2(00s0) :

and
F=dA=4A,A:dv .

From \/gR = —%e‘p and the Gauss-Bonnet theorem we have

/ wp = —2mx(2), (5.42)
F-[T]

where x(X) = 2 — 2¢ is the Euler characteristic of ¥. By (5.36), (5.40) and (5.42), we have
f A= _QWX(E) )
OF:[T']

Usg ... U = exp(2mibx (X)) . (5.43)

and (5.35) finally becomes

5.7 Nonabelian extension

Up to now we considered the case in which the connection is Abelian. However, it is easy to
extend our construction to the nonabelian case in which the gauge group U(1) is replaced
by U(N). The operators Uy now become the path-ordered exponentials

By 'z
U, = Pexp <zb/ A)Tk,

where the T} are the same as before, times the U(NN) identity matrix. Eq. (5.35) is re-
placed by

Usg ... Uy = Pexp (—ib A> . (5.44)
OF. [T

Given an integral along a closed contour o, with base-point z, the path-ordered exponentials
for a connection A and its gauge transform AV = U7'AU + U~'dU are related by [15]

Pexp (z fi A> =U(z)Pexp (z 7{ AU> U™ 1(2) (5.45)
=U(2)P [exp (z 7{_ z do* /0 1 dssa”U_l(SU)FW(SJ)U(SU)>} U~(z) .

This implies that the only possibility to get a coordinate-independent phase is for the
curvature (1,1)~form F' = dA + [A, A]/2 to be the identity matrix in the gauge indices
times a (1,1)—form 7, that is

F=nl.
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It follows that

Pexp (_ib?{ A) = exp (—ib/ F> . (5.46)
OF.[T =[I]

This is only a necessary condition for coordinate-independence. Reasoning as in the Abelian
case, one concludes that 7 should be proportional to the Poincaré (1,1)—form, that is

n = kwp . (5.47)

In order to fix the constant k, we first consider the vector bundle £ on which the connec-
tion A is defined. Taking the gauge group U(N) in the fundamental representation, the
dimension N of the vector fiber is called the rank of £. The degree is the integral of the
first Chern class'?

M =deg (€ —tr / F,
where, to simplify notation we used F instead of F,[I']. Since in our case the trace gives a
factor NV, we have
/ F =2mu(&)I, (5.48)
f
where deg(€) u
eg
E)=—"=—.
He) rank(£) N

Thus, by (5.44) and (5.46) we have
Usg .. .U = exp (—27rib,u(€))[ . (5.49)

Finally, we observe that by (5.42) and (5.48) it follows that the constant in (5.47) is

= —u(€)/x(X), that is

= —MWPI .

X(%)
6 The gauge length

By (5.41) it follows that eq. (5.22) becomes
Y dx
da(z,w) = / —,
(z,w) 3

where, we recall, the contour integral is along the Poincaré geodesic connecting z and w.
Let us denote by zg the center of this geodesic and p its radius. In polar coordinates we
have z — xg = pe'®, w — xg = pe'® and dx/y = pdcos a/psina = —da, so that

——/wda:az—aw. (6.1)

Since

10y —1Qy

]

mzw_e — e _Z—

e

)

Il

elw _ p—ioz  qy —

20ur convention for A differs from the one in the mathematical literature by a factor i.
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where o, = o, — ay,, we have

. Z—w
da(z,w) = azyy = —iln (w — z) . (6.2)
Note that in terms of z and w, we have
1|w]? — |2
T = = —
" T2 Rw—2)

which shows the dependence of a, (and au,) on z and w. Also note that both a, and oy,

range between 0 and m, with the extremes corresponding to points on the extended real
axis RU {oo} = OH.

6.1 The gauge length as pseudo-distance

We now show that
la(z,w) = |da(z,w)|, (6.3)

is in fact a pseudo-distance that we call gauge length. The symmetry property follows from
the antisymmetry of d4(z,w) while the triangle inequality

EA(21722)+€A(22,Z3) ZEA(Zl,Zg), (64)

follows from the fact that £4(z,w) = |a.w| or, equivalently, from the observation that
Ca(z1,22) +0A(22,23) —a(21, 23) is the Poincaré area of the geodesic triangle with vertices
z1, 29 and z3. Since

la(z,w) =0 iff R(z) =R(w),

it follows that £4(z,w) cannot be a distance.

Note that eq. (6.4), seen as an inequality involving angles, is similar to the one satisfied
by the angles of triangles in Euclidean geometry. While in Euclidean geometry the Schwarz
inequality is satisfied both by the angles and by the lengths of the sides of triangles, in the
case of hyperbolic geometry, the gauge length coincides with the angles themselves.

Another property of this pseudo-distance is that, as we said, it has 7 as upper bound
corresponding to the case in which the two points are on the real axis, so that

la(z,w) <m, Y(z,w)ecH?.

6.2 The gauge length as Poincaré area

The gauge length has some interesting properties which are worth mentioning. For example,
while the geodesic distance between a point in H and one on the real axis measured with
respect to the Poincaré metric is divergent, the corresponding gauge distance is finite. As
a consequence, measuring the gauge distance between one point on a Riemann surface and
a puncture on it gives a finite result. In particular, the greatest gauge length between two
points is 7, which is the gauge distance between two punctures. Also, the lower bound for
da(z,w) is 0, which corresponds to the case in which two points have the same real part.
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We saw that since dA = ePdv is the infinitesimal Poincaré area, Stokes’ theorem
and Gauss-Bonnet formula give §,- A = —27x(X). The Stokes formula is also useful to
describe the gauge length of a single geodesic as Poincaré area. In this respect recall that
the Poincaré area of a hyperbolic triangle of angles «, 8 and ~, is 1 — a — 8 — «. Then
consider the geodesic triangle D corresponding to the geodesic joining z and w, together
with the two geodesics connecting z and w to the point at imaginary infinity, which is a
cusp so that v = 0. The latter two geodesics correspond to straight lines parallel to the
imaginary axis, thus they have vanishing gauge length. Then, by Stokes’ theorem

EA(z,w)z‘/zwA‘z/aDA:/DdA:w—a_@,

giving the relation
Qpp =T —— 3,
that can be directly verified. Therefore, the gauge length has in fact properties which are
related to those of an area function.
An interesting property of the gauge length concerns its transformation properties
under PSLy(R) Mobius transformations. We have

oz

)
da(pz, pw) =da(z,w) + = In —— 6.5
(12, 0) = daz,w) + 5 In e (65)
where
axr +b
r=——
H cx+d’
and
= Oy ur = 1
Ha = Gzl (cx + d)?

On the other hand o
i

L Bl da(0,cz+d) + da(cw +d,0),
2 Mz w

showing that the Mobius transformation of the integration limits corresponds to adding

the gauge lengths between 0 and cz + d and between cw + d and 0

paw w ps'? 0
/ A:/ A+/ A+/ A
pz z 0 pw'?

In this respect it is worth noticing that if ¢ > 0 then the points ,uz_l/Q = (cz+d) e H

and u@l/ L (cw + d) € H are hyperbolic transformations of z and w respectively, that is
uz_l/z =vz, u;1/2 = vw where
B C1/2 bCl/2
v= 0 12 )
Denote by 2, k = 1,...,n, n > 3, the vertices of an n-gon with angles a,...,q,. Its

gauge length is given by

Wad) =Y Jananl =1 -2) = ar,
k=1 k=1
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where 2,11 = z1. Eq. (6.5) implies that the gauge length of an n-gon is PSLy(C)-invariant,
that is

G () = €7 ({z) - (6.6)
This invariance can be also seen by observing that Eff) can be expressed in terms of cross
ratios. In particular, for the geodesic triangle we have

ffj’) = ]ln(zl, z9, 22, 23)(227 23,22, 21)’ )

where
Tl — T3 T2 — T4

(w1, 22,23, 14) = :
Tr] — T4 X9 — I3

The invariance (6.6) is then a consequence of the PSLy(C)-invariance
(:U"Ih HT2, 4T3, ,u’x4) = (371, x2,T3, .’134) )
which together with the fact that any cyclic permutation corresponds to an involution

(21,22, 23, 24)
.7}‘171'2,1'3,374) —1 ’

(74,21, T2,73) = (
constitute the main properties of the cross ratio.

6.3 Mobius transformations as gauge transformations

While on one hand eq. (5.36) implies the equality

f4= e
oF F

on the other hand the Poincaré metric is PSLa(R)-invariant while A is not. As a conse-
quence the variation of A under a PSLs(R) transformation can only be a total derivative.
This is in fact the case, as

A(pz,uz) = A(z,z) —i0, In(cz + d)dz + i0z In(cz + d)dz . (6.7)

Since ¢z + d has no zeroes on H, it follows that In(cz + d) is well defined, so that the
inhomogeneous term in (6.7) can be expressed as an external derivative on H, that is

Alpz, pz) = Az, 2) + dIn(p. /iz)?

and

b . b I 2 e .
A(pzx, uz) = Az, z) + 3 In i Az, T) .
z z zHw wz

Therefore, the isometry group of the Poincaré metric, which in turn coincides with the au-
tomorphism group of the upper half-plane, induces, when acting on the Poincaré connection
A itself, the gauge transformation A — A + dy, with x(z) = In(u./fi-)Z.
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