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Abstract
Complex systems have attracted considerable interest because of their wide range of appli-

cations, and are often studied via a “classic” approach: study a specific system, find a com-

plex network behind it, and analyze the corresponding properties. This simple methodology

has produced a great deal of interesting results, but relies on an often implicit underlying as-

sumption: the level of detail on which the system is observed. However, in many situations,

physical or abstract, the level of detail can be one out of many, and might also depend on in-

trinsic limitations in viewing the data with a different level of abstraction or precision. So, a

fundamental question arises: do properties of a network depend on its level of observability,

or are they invariant? If there is a dependence, then an apparently correct network modeling

could in fact just be a bad approximation of the true behavior of a complex system. In order

to answer this question, we propose a novel micro-macro analysis of complex systems that

quantitatively describes how the structure of complex networks varies as a function of the

detail level. To this extent, we have developed a new telescopic algorithm that abstracts

from the local properties of a system and reconstructs the original structure according to a

fuzziness level. This way we can study what happens when passing from a fine level of de-

tail (“micro”) to a different scale level (“macro”), and analyze the corresponding behavior in

this transition, obtaining a deeper spectrum analysis. The obtained results show that many

important properties are not universally invariant with respect to the level of detail, but in-

stead strongly depend on the specific level on which a network is observed. Therefore, cau-

tion should be taken in every situation where a complex network is considered, if its context

allows for different levels of observability.

Introduction
Real world dynamical complex networks are non linear systems. This means that the full set of
elements that interact pairwise (even in a trivial way) will result in a behavior that is often un-
predictable. For a wide variety of such complex systems, the spatial informative component is
crucial: for example, protein-to-protein networks, brain networks [1], transportation networks
[2] [3], social networks [4], power grids [5], the Internet, companies networks [6], etc are all
embedded in Euclidean space, and most interestingly, the space variable itself constraints their
natural evolution. Being a structure embedded in space makes such network a physical object,
that is the subject of observation. But as a physical object, every such network can be observed
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at various levels of precision. This means that our perception of a complex system also depends
on the level of detail that we use in describing such system. This dependence is usually under-
stood and given for granted, as the “classic” approach to study a complex system usually just
focuses on extracting a network from a system, and then proceeding on the main part, that is
the study of its properties. In this paper we instead focus on the neglected part, the starting
point of all such analyses: the level of observability of a system. The main issue here is the fol-
lowing fundamental question: do properties of complex systems depend on the level of detail?
And if so, to what extent? The complete answer to this question is of utmost importance in
order to complete our knowledge of complex system, closing the circle of the properties and
limitations of the “classic” approach. And conversely, when added as an evaluation parameter
the observability level could help to characterize how it triggers environment changes.

On a more technical level, by varying the scale level of observability we focus our attention
to the spatial characterization of networks, shedding light on how this can alter statistical mea-
sures of the graphs under study. We introduce a general framework of action, calledmicro-
macro analysis as it concerns the study of the scale observable, in the large and in the small.
This analysis is performed via amicro-macro scaler, that accomplish for the capability of distin-
guishing elements of the graph within a certain level of detail (represented by a fuzziness pa-
rameter), which represents the precision of observability, and therefore the scale level. The
more a graph is close to the “micro” point of view (low fuzziness), the more precise the connec-
tivity and nodes will be. Conversely, the more we go towards the “macro” level the more inac-
curate and unclear the structure will become (high fuzziness). This accounts for the fact that
many real systems are, for various reasons, just too difficult to determine in a totally precise
way, and so the important question arises: do properties of a network depend on its level of
observability, or are they invariant? If this is not the case, then an apparently correct network
modeling could in fact just be a bad approximation of the true behavior of a complex system.
By answering this fundamental question, we are able to state what are the properties that are
safe to consider when abstracting networks, and conversely, which structures better preserves
system attributes (for instance, are there differences in this regard between exponential and
small world or scale-free networks?).

In particular, we investigate the variations of the statistical properties not only when the net-
work detail is high (micro view) or low (macro view), but also in between these two extremes.
The family of graphs calculated at these different intermediate resolution granularities forms a
so-calledmicro-macro spectrum. We can therefore study what kind of transitions, if any, the
properties of a complex system experience with respect to a scale variation. Relatedly, this anal-
ysis therefore allows to study the stability of a property, that is to say the variation of the prop-
erty values in the micro-macro spectrum. Finding that many properties are unstable for a
network during the abstraction process is therefore clear evidence that a single detail level anal-
ysis could suffer from incompleteness, and its results will be consequently dependent on the
selected granularity.

In order to concretely perform such analysis, we introduce a particular micro-macro scaler,
that we call telescopic: the telescopic scaler defines scale abstraction levels with a spatial charac-
terization modeled thru Euclidean zooming, in parallelism with the vision process typical of
the human eyes. Every ocular observation is limited by the resolution power, i.e., the ability of
the human eye to distinguish two points when placed at some distance from an observer. In the
micro-macro scaling metaphor, the observation object is a graph and the points are nodes. The
networks reconstruction is accomplished by tuning the distance parameter f (called equivalent-
ly fuzziness, representing the detail or granularity level) in order to virtually place a graph far
or close to a fixed point of view. Small fuzziness values f (f! 0) yield clear networks with finer
detail level, while big fuzziness values (f! 1) result in obfuscated networks, reassembling the
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abstraction process (see Fig. 1). Our telescopic scaler algorithm is able to handle both weighted
and undirected graphs. Although more general in scope, we will employ the telescopic scaler
with complex networks whose objects are endowed with classic Euclidean-spatial information,
for example in the form of latitude and longitude nodes coordinates.

We applied our framework to a number of networks, both real world networks (such as
rapid transportation systems like subways and airlines), and social-based networks). Indeed,
we show how micro-macro analysis can provide great insights on what changes a network
modeling (at a chosen level of detail) can introduce with respect to the real system, and
correspondingly on what part of network analysis is potentially unsafe under certain
modelings.

Related work
Micro-macro analysis is based on the notion of scaling, and on the concept of being able to se-
lectively give more importance to the macro world by washing out the micro details. This
micro-macro dualism is at the basis of important works in physics: for instance, the pioneering
work of Kadanoff [7], studying the statistical mechanics of critical scaling, introduced the
“block spin” renormalization group, a transformation that renormalizes a magnetic system
(the Ising model) by possibly aggregating 2×2 adjacent blocks of atoms in a square-lattice ge-
ometry. This concept of renormalization became extremely useful in physics, being applied
also to other contexts and geometries like lattices (cf. [8] and [9]), and later on started to find
applications directly in network theory, for instance when Newmann andWatts [10] used it in
the lattice geometry that provided the first small-world model, and then Kim [11] applied the
Kadanoff normalization group to a brain network formed by cubic cells (voxels, cf. [12]) em-
bedded in a two-dimensional lattice geometry, assessing how network properties like degree
exponent, clustering, assortativity and hierarchical structure vary by repeatedly applying renor-
malization. Another more recent application has been developed in [13], where renormaliza-
tion is used to show that networks obtained from periodic and chaotic attractor bifurcation
cascades have scale-invariant limiting forms.

Along with these achievements, Song et al. [14], employing the ideas of fractals and self-sim-
ilarity under renormalization [15] [16], developed the concept of coarse graining, that reduces
the size of a network by preserving the most representative properties at the cost of throwing
away some finer details of the system. Coarse graining, inspired by the fact the structure of a

Fig 1. Example of micro-macro analysis. Example of micro-macro analysis obtained by increasing
(abstraction process to the macro world) fuzziness f. When f = 0, no abstraction is applied whereas at
increasing values of f, the network will be more obfuscated and the structure will be simpler. In the extreme
situation when f is maximum, f = 1 (not displayed in the figure), the original network will be collapsed into a
one node graph.

doi:10.1371/journal.pone.0116670.g001
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fractal is similar no matter what length scale is chosen, tries to group together system units into
specific box tilings (“box counting”) whose dimension determines the length scale at which the
system is observed. The number of boxes NB and the length scale l are shown to be related for
various topological networks by the relationship NB / l−d, with d the fractal dimension of the
system. The concept of dimension of a network has then been object of further studies (see for
instance [17]). Later, Radicchi et al. [18] [19] studied coarse graining in detail by considering
multiple iterations of the renormalization process (what they call renormalization flows).

Our analysis further extends on the renormalization idea in two ways. First, we gather all
these previous works under a unique micro-macro framework: the general concepts of micro-
macro scaler and spectrum. Second, we introduce a novel specific scaler, the telescopic one,
that enables to perform micro-macro analysis in a rather different way. The most important as-
pect is that the telescopic scaler allows to reason on completely general metric networks, and
can therefore be used to study all those system that have a real-world spatial geometry of inter-
action, without artificially altering their dimensionality. Another important aspect is the physi-
cal grounding that lies behind the telescopic scaler: it is based on the notion of level of detail,
and as such it has a very specific and well justified meaning related to observability.

Additionally, our analysis differs from the box-counting coarse graining of Song et al. [14]
in the following points:

• The telescopic scaler considers Euclidean positions of the nodes, whereas the box-counting
technique uses only the topological structure of the networks, throwing away useful informa-
tion that comes with the spatial dimension of the vertices. Moreover the telescopic scaler can
be more generally defined onto a metric space induced by a distance, and therefore also be
applied to weighted networks, that describe system interactions in a much more precise level
rather than a topological representation.

• In box counting, the number of boxes varies according to the length and fractal dimension.
Vice versa, in the telescopic approach, the number of nodes belonging to boxes is not bound-
ed: it depends on the spatial distribution of the nodes on the plane and on the fuzziness
value. The maximum number of boxes is upper bounded and is inversely proportional to the
fuzziness value (this concept will be extensively described in the following section).

• Box covering and telescopic analysis differ in the way they consider input and output graphs.
In the former, output and input graphs are the same, in the sense that the input graph corre-
sponds to the output of the previous step. Conversely, in the latter, the same graph is provid-
ed as input but different abstraction parameters will be applied at every step.

• The telescopic scaler is way more efficient, not requiring expensive resources to find specific
box tilings: the tiling directly comes from the metric properties of the space, and can be very
efficiently computed by using techniques drawn from spatial databases (see e.g. [20]).

Regarding Kim’s work [11], it is also different from ours in the following points, which
make the telescopic scaler more general:

• In the telescopic scaler, the box dimension in the Euclidean space is not fixed and it is corre-
lated to the spatial parameter f. This means that the number of nodes in a single box is vari-
able and depends on the spatial distribution of the vertices across the plane.

• Our approach considers weights as, generally, distances between vertexes, whereas in Kim’s
work weights represent the number of crossing edges between voxels.

• We do not remove edges to avoid the creation of complete networks as Kim did.
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• The overall functional behavior of the (brain) network that Kim consider in his paper is fun-
damentally different from ours. In fact, he does not consider the actual path of voxels
through which the biochemical signal transfers.

• With a micro-macro scaler (like the telescopic one) we can directly obtain a specific scale
level of detail by starting from the original graph and using a fuzziness value indicating the
level of abstraction applied. Conversely, Kim’s approach is similar to the original work of
Song et al. [14] in which the output’s graph at step t is used as input at the t + 1 iteration.

Materials and Methods
The aim of this section is (i) to describe our new micro-macro analysis, using the telescopic al-
gorithm, that is capable of abstracting networks at various granularities and (ii) to assess
whether the statistical properties usually employed in complex networks analysis are affected
by the multidimensional network analysis itself. We start by giving the necessary background
definitions, go on by introducing the notion of micro-macro scaler and the specific telescopic
one, and then proceed by performing micro-macro analysis on several real-world
complex systems.

Graph Theory
A (simple) graph G is a pair (V, E) where V = {u1, u2, . . ., un}, jVj = n is a finite set of vertices
and E� V × V, E = {(ui, uj), i 6¼ j}, jEj =m is the set of edges that links couples of nodes. These
graphs are called topological. A graph G can be represented by a n × n adjacency matrix A with
entries aij = 1 when (ui, uj) 2 E, aij = 0 otherwise. aii = 1 denotes self loops. A weighted graph is
defined as G = (V, E, w) where w is a function that assigns real values to edges. In undirected
graphs, (u, v) 2 E, (v, u) 2 E and the adjacency matrix A will be symmetric (with respect to
its diagonal, that consists of all zeros if self loops are not allowed). Conversely, in directed
graphs, or digraphs, each edge (sometimes referred as arc or link) has an orientation, so
(ui, uj) 6¼ (uj, ui).

Metrical (also known as spatial) graphs extend weighted graphs as they are spatially embed-
ded, that is, every node exists in a Euclidean coordinates’ space. Specifically, G = (V, E, C, w)
where C = {(x1, y1), (x2, y2)� � �, (xn, yn)} is the set of node coordinates (e.g., a spatial position in
terms of latitude and longitude) and the function wmight assigns, for instance, Euclidean dis-
tances between nodes.

Multigraphs are generalized graphs in which the same couple of nodes might be connected
by more than one edge. Even though many real world complex systems could be represented
by multigraphs, in many occasions these networks are transformed into weighted graphs in
such a way that the number of edges connecting two nodes is reflected in the edge weight of the
new graph (see Fig. 2 for a summary of of graph classes).

Fig 2. Graph types. Examples of different graph types.

doi:10.1371/journal.pone.0116670.g002
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Given two graphs G1 = (V1, E1) and G = (V1, E1), a graph homomorphism is a function
ϕ:V1 ! V2 preserving edges, i.e., such that 8(i, j) 2 E1.(ϕ(i), ϕ(j)) 2 E2. A graph epimorphism is
a surjective graph homomorphism.

Given a graph G, we denote with jGjV the cardinality of its vertexes, and with jGjV the cardi-
nality of its edges.

A path is a non empty graph P = (V, E) in the form of

V ¼ fu0; u1; . . . ; ukg E ¼ fðu0; u1Þ; ðu1; u2Þ; . . . ; ðuk�1; ukÞg;

simple paths are those in which all vertices ui are distinct. The number of edges in a path deter-
mines its length and a path of length k is defined as Pk. A path from a to b of length k is a path
Pk in which u0 = a and uk = b. A graph G is connected if for each ui, uj 2 V, i 6¼ j, there exists a
simple path from ui to uj (denoted as ui⇝uj). In order to simplify notations, in this paper we

equivalently specify nodes as i or ui.
An important graph property is the shortest path between two vertices, dij (also known as

geodesic). The definition of shortest path depends on the class of graphs we are dealing with. In
simple graphs, the shortest path between nodes i and j represents the minimum number of tra-
versed nodes (hops) to reach j from i. If the graph is connected, it is natural to observe that 8i, j
dij � 1, and dij = 1 if node i is directly connected to node j. If there are no paths between i and j
then dij =1. Indeed, in weighted graphs, the shortest path is calculated taking into account the
weights on edges such that dij = min{wpjp is a path between i and j} where

wp ¼
X

e2EðpÞ
wðeÞ

is the sum of edge weights along path p.
The diameter D of graphs is usually defined as the maximum dij between every couple of

nodes. However, since dij depends on the graph type, D could also have the following mean-
ings: the number of hops that separates two vertices, the maximum shortest weighted path or
the maximum Euclidean distance between the farthest nodes, without considering the underly-
ing topological structure (in this case we refer to physical diameter).

The degree of a node u in a graph corresponds to the cardinality of the set N(u) = {v 2 V j
(u, v) 2 E} = deg(u) = ku and ∑u 2 V deg(u) = 2jEj. When deg(u) = 0, then u is said to be isolated.
In directed graphs, it is customary to split node degree into inbound kin and outbound kout de-
gree. Indeed, the degree distribution P(k) that corresponds to the probability of having a node
with degree k, has to be split into two parts, inbound Pin(k) and outbound Pout(k)
degree distribution.

The average degree of a graph hki (or kmean) is 1=n
Pn

i¼1 ki and the strength [21] si of node
i is the sum of the weights of the edges incident on i, si = ∑j wij. In directed graphs, the strength
can be split relative to the edges directions, reflecting the total inbound and outbound weight,
as for the node degree and the degree distribution.

A graph G is complete if for each i, j 2 V (i 6¼ j)) (i, j) 2 E. In the literature, complete
graphs are usually denoted as Kn, with n representing the total number of nodes and

j E j¼ nðn�1Þ
2

if the graph is undirected, n(n − 1) otherwise. Recent experiments showed that

those graphs are rare to find in nature mainly because of the inherent high cost of creation and
maintaining such a redundant structure. Think, for instance, of having a telephone network in
which there exist direct connections between every user. This class of networks are usually
used in ideal contexts or as normalizing factor in formulas (see the next subsection Statistical
Properties).
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A graph T is a subgraph of a graph G, denoted by T� G, when VT� VG and ET� EG holds.
VT and VG are the set of nodes of G and V respectively. A graph T� G is said to be induced
when ET = {(ui, uj) 2 EGjui 2 VT, uj 2 VT}.

The previous definitions are only a subset of all concepts and ideas that have been developed
in the graph theory literature. For interested readers, we refer to Diestel’s [22] book.

Network Properties
Here, we present an overview of the most important network properties that will be later ana-
lyzed in a micro-macro perspective.

Watts and Strogatz [5] proposed two effective and intuitive metrics, namely the characteris-
tic path length L and the clustering coefficient C. The first measures the typical separation be-
tween two vertices in a graph (a global quantitative measure of graphs), whereas the second
measures the cliquishness of a typical neighborhood (a local property) [23]. More formally, the
former is calculated as

LðGÞ ¼ 1

nðn� 1Þ
X

i6¼j2V
dij:

Since real world networks might have disconnected subgraphs (for example Escherichia
coli [24] or some protein to protein networks [25]), network scientists usually restrict their
study to the largest connected component (LCC), in which dij <1 for each (ui, uj) 2 E.
The results, in order to be significant have to be calculated on a big LCC, i.e., the fraction of
nodes that belongs to it must be very high so to be a good representative of the original
network.

Vice versa, the clustering coefficient C is formally described as the mean of all Ci’s,
namely:

CðGÞ ¼ 1

n

X

i2V
Ci Ci ¼

E½Gi�
kiðki � 1Þ=2

where Ci is the fraction between the numbers of edges of the subgraph Gi over the total number
of edges of Ki. Subgraph Gi is the graph of the neighbors of node i (i excluded).

Latora and Marchiori [26] developed a set of metrics, based on the concept of efficiency ε,
that allow considering both connected and disconnected graphs. They define global efficiency
of a graph G as:

EglobðGÞ ¼
P

i 6¼j2Veij
nðn� 1Þ ¼

1

nðn� 1Þ
X

i 6¼j2G

1

dij

as the average of efficiency εij of the graph. Here, they assumed that efficiency εij and distance
dij are inversely proportional. However, other relationships might be used (instead of dij), espe-
cially when justified by a more specific knowledge about the system. Nevertheless, dij will have
different meanings in weighted and unweighted networks. In the first case, it corresponds to
the number of hops between two nodes in the shortest path (topological efficiency) whereas in
the second one is the sum of all edge weights in the shortest path (metrical efficiency). Global ef-
ficiency, as defined above, ranges from 0 to +1. In practical applications, it is convenient to
normalize it by the ideal network Kn, namely Eglob(G)/Eglob(Kn) such as 0� Eglob(G)� 1, there-
fore it can be used to compare efficiency of different graphs.
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On the other side of the same measure, the efficiency can be used to evaluate any subgraph
of G, and therefore to characterize the local properties of a network as the following:

ElocðGÞ ¼
1

N

X

i2V

EglobðGiÞ
EglobðGideal

i Þ

that is merely the average of the global efficiency applied to each subgraph Gi, normalized by
the referring ideal graph Gideal

i .
Moreover, the same authors proposed a statistical property that accounts for the cost of a

network, defined as:

CostðGÞ ¼ 2m
n � ðn� 1Þ ; CostðGÞ ¼

P
i 6¼j2G aij gðdijÞP
i 6¼j2G gðdijÞ

The leftmost formula is used in unweighted networks and is usually known as density whereas
the rightmost accounts for weighted networks where aij is an element of the graph adjacency
matrix A and γ is the cost evaluator function which calculates the cost needed to build up a
connection with a given distance (length) dij.

In many real world networks the degree distribution does not follow a bell curve (that for in-
stance characterizes the frequency of humans heights), but instead does follow a power law, i.e.
P(k)* c�k−γ where c is a constant and γ is a positive exponent that empirically varies between
two and three. Having a P(k) that has a decaying tail in the power law means that the vast ma-
jority of nodes have low degree and that there exist few nodes, the so-called hubs, that have an
extremely high connectivity. Such networks have been named scale-free [27], because power-
laws have the property of having the same functional form at all scales. Nevertheless, when
working with real networks it may happen that the data have a rather strong intrinsic noise due
to the finiteness of the sampling. Therefore, when the system size is small and the degree distri-
bution P(k) is heavy-tailed, it is sometimes advisable [28] to measure the cumulative degree dis-
tribution PcumðkÞ ¼

P1
k0¼k Pðk0Þ. Indeed, when summing up the original distribution P(k), the

statistical fluctuations generally present in the tails of the distribution will be smoothed. Conse-
quently the exponent γ of P(k)* k−γ can be obtained from Pcum(k) as one plus the slope of
Pcum(k) in a log-log plot, i.e., γ = 1 + γcum.

Another fundamental property of networks is the degree-degree correlation (also known as
network assortativity). This feature is extremely important in the resilience of networks [29]
[30] but it also has a strong impact on the network dynamical properties, such as spreading
processes. In assortative networks, most edges connect nodes that exhibit similar degrees
(nodes aristocracy). On the other hand, disassortative networks are such that high-degree
nodes are connected to low-degree nodes.

More analytically, the network correlation knn between vertices is calculated as knn(k) = ∑k0

k0 P(k0jk) where P(k0jk) is the conditional probability that a node with degree k is connected to
a node with degree k0. If there is no degree correlation, the formula simplifies to knn(k) = hk2i/
hki, i.e. is independent of k. Positively correlated graphs are classified as assortative if knn is an
increasing function of k, whereas they are referred to disassortative when knn(k) is a decreasing
function of k [31]. Degree correlations are usually quantified by reporting the numerical value
of the slope of knn(k) as a function of k or by calculating the Pearson correlation coefficient of
the degrees at either ends of a link [32]. ER graphs are, by definition, uncorrelated graphs, since
the edges are connected to nodes regardless of their degree. Consequently, the assortative-mix-
ing value is neutral (zero). This holds also for the preferential attachment model proposed by
Barabási-Albert [33].
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For a survey of all the previous network statistical properties and more we refer the reader
to [34].

Micro-Macro Analysis
We have already described the intuition behind micro-macro analysis. We can now be more
formal and define the main tool by which such analysis can be performed.

Amicro-macro scaler is a function μ that takes as inputs a graph G and a fuzziness level f (a
real in the range [0, 1]), and gives back another graph G0

f together with a graph epimorphism
ϕf : G! G0, such that:

• μ(G, 0) = (G, 1G) (where 1G is the identity map on G)

• μ(G, 1) = (G0, ϕ1) with jG0jV = 1

• if f< f0 then jG0
fjV � jG0

f0jV
• if f< f0 then jG0

fjE � jG0
f0jE

That is to say, a micro-macro scaler allows, for any complex network G, and a set level of de-
tail f, to obtain its corresponding abstraction G0

f, together with a precise correspondence given
by the epimorphism ϕf. The normalized range [0, 1] of f represents the values from 0 (micro
level, finer level of details) to 1 (macro level, worst level of detail), formalized by the two condi-
tions about the result for μ(G, 0) and μ(G, 1). The last two conditions state that a micro-macro
scaler is anti-monotonic w.r.t. the number of edges and vertexes, meaning that the more we go
from the micro to the macro level, the more detail we lose.

Given a micro-macro scaler μ, and a resolution level r (an integer� 1), we can define for
any starting graph G its so-calledmicro-macro spectrum, that is to say the whole family of net-
works SG ¼ fG0;G1;G2; . . . ;Grg where Gi = μ(G, i/r). Given a resolution level, the spectrum
therefore describes the whole behavior of a network when passing from the micro to the macro
world (and as such, a spectrum can be then subsetted so to select different transition views).

The Telescopic Scaler
Having introduced the general tools that make micro-macro analysis possible, we now go on
by producing a suitable instance of a micro-macro scaler: the telescopic scaler. The telescopic
scaler uses an algorithm that resembles the resolution power of human eyes, i.e., the ability to
distinguish two points when placed at some distance from an observer. This way, the distance
(proximity) corresponds to the level of fuzziness perceived by an observer: the more an object
is far away from the viewer the more obfuscated it will be. The observed objects in our context
are networks, and nodes are points in the metaphor of the human eyes resolution power. For
instance, parts of a network that are close to a virtual observer are clearly distinguishable and
therefore are characterized by a finer level of detail (“micro” level). Conversely, in networks far
away from the point of view, the nodes will be obfuscated and the overall structure will be sim-
pler than the original one (mimicking an abstraction process and the corresponding level of ob-
servability, going towards a “macro” level). In the rest of this paper, we interchangeably use
fuzziness, distance, details or resolution level as synonyms of granularity with which a network
has been described.

The networks we consider are defined as weighted and undirected graphs G = (V, E, C). For
simplicity, we assume that the latitude and longitude coordinates of the nodes (xi, yi)i = 1,� � �n
(see the subsection Graph Theory), are normalized in [0, 1]. Edge weights are real normalized
distances between nodes.
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More precisely, we define the telescopic function as t:(G × f)! G0 that takes a graph G and
a value of fuzziness f as parameters and return the abstracted graph G0. In this way, by applying
repeatedly the function t with different values of f we obtain a micro-macro spectrum that is
formed by a family of networks SG ¼ fG1;G2; . . . ;Gkg where Gi = t(G, fi), k sets the spectrum
resolution and fi is the fuzziness value of the i

th step. A small value of fi leads to clear view of
networks and thus the resulting graphs Gi will have the finer detail level. Conversely, when fi is
big (f! 1) the view will be obfuscated and in the limit when fi = 1 only one node will belong to
the outcome network.

Network abstraction is accomplished by two distinct phases. The first one deals with creat-
ing nodes in Gi while the second defines the topological structure. Intuitively, nodes in Gi are
the result of collapsing nodes in G that are close each other, hence not clearly distinguishable
from an observer. The number of nodes that has to be collapsed obviously depends on f and on
their spatial distribution on the plane.

More technically, the process by which nodes in Gi are created is based on placing a virtual
grid on top of G (see Fig. 3). This grid is formed by a set of square boxes whose spatial dimen-
sions corresponds to the fuzziness f (see Fig. 3 and 4). Since we assumed that 0� f� 1 and co-
ordinates 0� xi, yi � 1, the total number of square boxes will be NB = f−2.

All nodes of G that belong to the same square cell are collapsed into a new node in Gi and
new coordinates will be the barycenter of the collapsed nodes. The maximum number of nodes

Fig 3. One-step abstraction process.One-step application of the abstraction process to a small graph. (a)
Original graphG. Red (dashed) circles identify the group of nodes that will be merged together. (b) Output
graphGi in which nodes c, f, e, h, l and n,m are collapsed into new nodes e, c, h 2 Vi respectively.
Coordinates are the barycenter of collapsed nodes. Three edges are then removed because they connect the
collapsed nodes: (n,m), (c, e), and (f, e).

doi:10.1371/journal.pone.0116670.g003

Fig 4. Sequence of box covering iteration for telescopic analysis. Example of grids applied on top of networks as a function of fuzziness. Leftmost grid
has low fuzziness f = 0.125 whereas the rightmost has f = 1. The granularity of the spectrum in this example is equal to 7. In this paper, we only consider
linear increase of f.

doi:10.1371/journal.pone.0116670.g004
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in Gi with fuzziness f is bounded to jVijf � f−2 (maximum one node per box). This procedure

aims at grouping nodes that are far by almost f units (eventually f
ffiffiffi
2

p
if the two points are at

the extremes of the diagonal). However, the limitation of this algorithm is that not all nodes
that are close each other by almost f units will be collapsed. This circumstance occurs when the
grid fall in between neighbors’ nodes as Fig. 5(a) shows, whereas another grid placement like in
Fig. 5(b) would have produced an equally sensible abstraction. For taking into account this
issue, we applied a random grid shift that attenuates the bias introduced by grid displacement
(see results in the Discussion section) and take averaged results of the statistical
properties considered.

In the second phase, once vertices of Gi are defined, we re-establish the network connectivi-
ty. Here we adopt the most straightforward rule that preserves network structure: if two clus-
ters of collapsed nodes of G are connected by at least one path, then in Gi the two
representative nodes will be connected. Let’s define this concept in more detail using the nota-
tion presented above. Let Gi a set of nodes that belongs to box i and

gij ¼ fðk;mÞ 2 E jk 2 Gi; m 2 Gj with i 6¼ jg

a set of edges whose source and target nodes belong to i and j box respectively. An edge
(u, v) 2 Ei, jguvj> 0.

Fig. 6 shows an example of application of telescopic analysis to the Boston and New York
subway networks.

Results
In this section, we report our experimental analysis. The telescopic algorithm was implemented
as a C module and used in a Python script. All the experiments were conducted on three Linux
machines equipped with i5 Intel processors at 3.2 Ghz and 8Gb of RAM.

Datasets
We conducted experiments on several datasets, composed by rapid transportation networks,
and by online social networks. We decided to consider subway networks because they are a fun-
damental element of mass transportation in urban areas and important means of cost reduc-
tion in transportation. Indeed, in the literature there exist some important network studies [35]
[36] [37] that characterized the most important subway networks. The networks we used in
our experiments are the Paris Métro, the Milan Metropolitana, and the New York and Boston
Subways. The Paris Métro, one of the densest and busiest networks in the world, has sixteen
lines and the first line opened in 1900. It has 295 stations connected by 346 rail connections.

Fig 5. Box covering issue.Grid displacement issue when the distance between two nodes is less than
fuzziness value. Wrong (a) and correct (b) grid displacement.

doi:10.1371/journal.pone.0116670.g005
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The Milan Metropolitana, the smallest subway network we will consider, is the biggest rapid
transit system in Italy, opened in 1964. It has 81 stations and 80 rail connections. The New
York subway is the most extensive rapid transportation system in the world by number of sta-
tions. It has 487 stations and 439 connections and opened in 1904. Finally, the Boston subway
consisting of 124 stations and 125 connections had the first subway line opened in the United
States in 1897.

Each node stands for a station, edges for direct railway connection between stations. Net-
works are created collecting latitude and longitude coordinates about station locations and
converting them into x, y coordinates using Miller cylindrical projection [38] (Mercator projec-
tion might be another technique to use). We finally normalize them in such a way that every
couple (xi, yi) 2 [0, 1]. We also consider the US airline transportation system in which nodes

Fig 6. Example of box covering on real networks. How Boston (leftmost panels) and New York (rightmost
panels) subway networks vary in the micro-macro spectrum according to increasing values of fuzziness.
From the panel, it is clear that the spatial structure of the systems remain relatively unchanged in the first
steps of the abstraction process.

doi:10.1371/journal.pone.0116670.g006
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represent airports and edges are non-stop flights. The US airline network (taken from [39]) has
235 airports and 1296 non-stop flights.

To investigate the effect of this novel analysis to other than transportation networks, we also
consider online social networks. In particular, we analyze the VirtualTourist [40] social system.
VirtualTourist (in the following abbreviated as VT) is an on-line tourist guide in which users
share their travel experiences, suggest and review hotels, write comments and opinions on VT
forums, find a place to visit, share photos and videos: it is a community of people that love trav-
eling around the world. Users can meet new people and create a network of virtual friendships,
making the VirtualTourist system a hybrid between Tripadvisor and Facebook.

The VirtualTourist social network is explored by web harvesting [41] all the publicly avail-
able profiles, and for each anonymized user collecting the following attributes: gender, birth
date, subscription date and living location. We filter out users with empty location or unreliable
fields (for example those whose format is not compliant).

Since VT locations span more than 150 countries, we decided to select only those countries
with the highest number of users such as Australia, India, Italy, the Netherlands and the United
Kingdom, and analyze them individually.

In order to obtain a spatial complex network, we decided to select the cities as the observable
level (which is in fact the most precise level of detail available by using these public data about
the users).

Applying the telescopic algorithm to these networks may induce an unexpected increase in
the number of collapsed nodes starting immediately at small values of f. This is caused by the
presence of many users at the same location (for example when they live in big cities). In order
to overcome this issue, we decided to transform these online social networks into city-based
online social networks, where nodes stands for cities (in which lives at least one VT user) and
links express friendship relations between users of those cities. These networks now describe
friendship relations at the level of cities instead of the users. The GPS coordinates of the cities
were gathered from the Geonames open source web service [42] and the edge weights are the
Euclidean normalized distance between cities (see Figs. 7, 8, 9, 10 and 11). The network of Aus-
tralia has 76 cities and 183 links (social ties), the Netherlands has 106 cities and 340 links, India
has 46 cities and 81 links, Italy has 85 cities and 270 links, and finally the United Kingdom has
446 cities and 1322 links. Both transportation and city-based online social networks are undi-
rected because people can move either in both directions of the transportation line and friend-
ships relations in VT are bidirectional. Table 1 reports statistics of the datasets we used in this
section of the paper. We calculated the most important statistical properties such as the num-
ber of nodes n, edgesm, maximum degree kmax, average degree hki, standard deviation of the
degree σk, degree correlation ρ, diameters, local and global efficiencies and costs (see the sub-
section Statistical Properties for the definitions).

Among these datasets, subway networks are neither scale-free nor small-world because the
diameter Dt does not scale as log(n), the average shortest path L is high, the clustering coeffi-
cient is low (like in random networks) and efficiency is also low (see Table 1 and classification
[43]). On average, these networks have low degree nodes, i.e. the majority of stations are not in-
terchange points where users can switch to other lines. The maximum degree is 4, or 8 for the
biggest subways (they can not be considered hubs as in scale-free networks though) and they
are assortative or eventually uncorrelated. However, by considering the weighted version of the
networks, we found that subways are very efficient both locally and globally (Em

glob > 0:65). This

observation is also confirmed by previous studies [35] [36] in which the authors tested the
small world property on the Boston and worldwide subways.
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Fig 7. Australia’s city-based online social network. The online social networks of Australia created from its VirtualTourist online community. Lines (yellow)
represent edges of the network connecting cities that share at least one friend. Background satellite image TIROS-3 courtesy of NASA (the U.S. National
Aeronautics and Space Administration) and NOAA (the U.S. National Oceanic and Atmospheric Administration).

doi:10.1371/journal.pone.0116670.g007

Fig 8. India’s city-based online social network. The online social networks of India created from its
VirtualTourist online community. Lines (yellow) represent edges of the network connecting cities that share at
least one friend. Background satellite image TIROS-3 courtesy of NASA (the U.S. National Aeronautics and
Space Administration) and NOAA (the U.S. National Oceanic and Atmospheric Administration).

doi:10.1371/journal.pone.0116670.g008
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Fig 9. Italy’s city-based online social network. The online social networks of Italy created from its
VirtualTourist online community. Lines (yellow) represent edges of the network connecting cities that share at
least one friend. Background satellite image TIROS-3 courtesy of NASA (the U.S. National Aeronautics and
Space Administration) and NOAA (the U.S. National Oceanic and Atmospheric Administration).

doi:10.1371/journal.pone.0116670.g009

Fig 10. The Netherlands’s city-based online social network. The online social networks of the
Netherlands created from its VirtualTourist online community. Lines (yellow) represent edges of the network
connecting cities that share at least one friend. Background satellite image TIROS-3 courtesy of NASA (the
U.S. National Aeronautics and Space Administration) and NOAA (the U.S. National Oceanic and
Atmospheric Administration).

doi:10.1371/journal.pone.0116670.g010
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Fig 11. United Kingdom’s city-based online social network. The online social networks of the United
Kingdom created from its VirtualTourist online community. Lines (yellow) represent edges of the network
connecting cities that share at least one friend. Background satellite image TIROS-3 courtesy of NASA (the
U.S. National Aeronautics and Space Administration) and NOAA (the U.S. National Oceanic and
Atmospheric Administration).

doi:10.1371/journal.pone.0116670.g011

Table 1. Statistical features of transportation and city-based online social networks.

Boston Milan New York Paris US airline Social IT Social AU Social NL Social IN Social UK

n 124 80 439 295 235 85 76 106 46 446

m 125 81 487 346 1296 270 183 340 81 1322

kmax 4 4 8 8 130 40 31 28 22 188

hki 2.02 2.03 2.22 2.35 11.03 6.35 4.82 6.42 3.52 5.93

σk 0.54 0.57 0.81 1.06 17.98 7.82 6.81 7.68 4.71 12.66

ρ 0.32 -0.08 0.14 -0.07 -0.36 -0.26 -0.43 -0.07 -0.44 -0.19

Dt 43 34 68 38 4 5 5 6 6 7

Dp 1.08 1.12 1.15 1.17 1.26 1.08 1.01 1.07 1.00 1.07

Dm 1.54 1.47 1.93 1.36 1.86 2.00 2.47 2.29 2.16 2.11

Et
glob 0.11 0.14 0.07 0.11 0.46 0.41 0.41 0.36 0.44 0.34

Em
glob 0.65 0.76 0.62 0.75 0.65 0.49 0.52 0.44 0.65 0.45

Et
loc 5.38×−03 0.00e+00 3.17e-02 2.00e-02 6.97e-01 4.19e-01 4.50e-01 3.66e-01 2.64e-01 2.80e-01

Em
loc 9.60e-05 0.00e+00 1.90e-03 8.83e-04 1.36e-01 7.62e-02 6.03e-02 8.09e-02 5.61e-02 4.81e-02

Ct 1.64e-02 2.56e-02 5.07e-03 7.98e-03 4.71e-02 7.56e-02 6.42e-02 6.11e-02 7.83e-02 1.33e-02

Cm 1.89e-03 3.19e-03 3.63e-04 7.96e-04 3.46e-02 5.53e-02 5.58e-02 5.43e-02 6.27e-02 1.15e-02

Ct/Et 1.50e-01 1.80e-01 6.00e-02 7.00e-02 1.00e-01 1.80e-01 1.50e-01 1.60e-01 1.70e-01 3.00e-02

Cm/Em 0.00e+00 0.00e+00 0.00e+00 0.00e+00 5.00e-02 1.10e-01 1.00e-01 1.20e-01 9.00e-02 2.00e-02

Datasets statistics of subways, the US airline and city-based online social networks: number of nodes n and edges m of the graphs, maximum degree

kmax and average node degree hki, standard deviation of the degree σk, assortativity mixing by degree ρ, physical, topological and metrical diameter D,
global and local efficiency Eglob, Eloc, costs and C/E property (defined as the ratio between cost and global efficiency). Both topological and metrical

versions are calculated of the latter three indicators.

doi:10.1371/journal.pone.0116670.t001
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On the other hand, the city-based online social networks and the US airline transportation
networks have a different connection pattern. We found that two randomly nodes are con-
nected by means of less than ten edges and the clustering coefficient is rather high. kmax and σk
are high compared to subway networks and the degree distributions all displays long right tails
(see Fig. 12 letter e to j) that is evidence for the presence of hubs. Indeed, high efficiency and
low diameter are detected. On average, high degree nodes tend to be connected to low degree
nodes (ρ is always negative) like in technological, neural and protein-to-protein interactions
networks [31].

Discussion
In this section, we report on the results obtained by applying the micro-macro analysis to real
world and artificial networks and we show how this novel approach based on modifications of
the spatial axis on complex systems is effectively a robust tool that precisely describes networks
at different detail levels.

In all the experiments presented in this paper, we randomly shift 104 times the position of
the square boxes to limit the bias in the grid displacement (the entire set of boxes will be
shifted, not the single boxes individually, see the previous section), and we eventually take
averaged results.

Fig 12. Pcum distribution of subways, transportation and social networks. The log-log plots of the cumulative degree distributions Pcum(k) of subways
(Boston, Milan, New York, Paris, a to d), the US airline (e) and city-based online social networks (letter f to j) of Italy, Australia, The Netherlands, India and the
United Kingdom. The distributions are characterized by exponents γ of P(k)* k−γ that is one plus the slope of Pcum(k) (in a log-log plot), i.e. γ = 1 + γcum. The
coefficient is γ = 3.5 for subways networks, 2.6 for the US airline, 1.85 for Indian city-based online social network, 1.68 for the United Kingdom, 2.61 for Italy,
1.94 for Australia and 1.61 for the Netherlands. The coefficients for subways might not be precise due to the small dimension of the networks.

doi:10.1371/journal.pone.0116670.g012
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The telescopic process creates a micro-macro spectrum SG ¼ fG1;G2; . . . ;Gkg where Gi = t
(G, fi), i = 1, . . . k. We selected k = 100 as the granularity of the telescopic spectrum, therefore
the fuzziness will be (linearly) increased by 0.01 units at each step.

In the plots that follow, for the sake of clarity, we decided not to consider the most abstract-
ed network (at f = 1) since it contains only one node and consequently the metrics will get trivi-
al results. Furthermore, some plots contain relative quantities. This means that the value
obtained with fuzziness f, say vf, will be divided by vf = 0, that is, the value obtained with no ab-
straction at all. This helps to depict the increase or decrease relative to the baseline.

Fig. 13 shows how nodes and edges are merged together as a function of fuzziness f. It is in-
teresting to note that the overall behavior of collapsing nodes and edges is similar over the
same type of network (transportation and city-based online social networks). However, the
rate with which vertices and links are merged depends on several factors such as the size of the
system (instead of the history), the physical position and the structure of the network itself.
Bigger networks, for instance New York or Paris have a faster merging rate.

Fig. 14 shows how diameters metrics vary as a function of fuzziness f. The three versions of
these statistical quantities accounts for three different characteristic of the networks: (i) the
maximum physical extension of nodes in a 1 × 1 unit square box, (ii) the maximum topological
extension on the shortest path and (iii) the maximum metrical extension on the shortest

Fig 13. Number of collapsed nodes and edges as a function of f in log-log axes.Number of collapsed
nodes n and edgesm as a function of f in log-log axes. The values are normalized by the baseline values n(0)
andm(0) respectively, obtained at f = 0 (i.e., no abstraction applied). The leftmost panels refer to subway
networks whereas the rightmost refer to city-based online social networks and the US airline network. The
decrease of n andm is clearly exponential, even though the rate is influenced by many factors like network
size and node positions.

doi:10.1371/journal.pone.0116670.g013
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weighted path. The first one, as expected, decreases linearly, mainly because of the linear in-
crease of the fuzziness. The second one decreases exponentially and this is evidence that the
telescopic process creates the right shortcuts links that decrease faster the diameter.

Fig. 15 shows the effect of the telescopic abstraction on kmax, hki and standard deviation of
the degree σk. The explanation of the observed behavior is not so trivial even though a couple
of observations can be made. First, we note a clear distinction on results between the two types
of networks (first and second row). For instance, in subway networks, kmax decrease almost lin-
early and a joint observation that takes into account both hki and σk suggests that telescopic
analysis triggers an increase of the average degree (even though this is not necessarily evidence
that in some part of the telescopic spectrum, the analysis produces networks with hubs). Con-
versely, in city-based online social networks and the US airline network (bottom panels), the ef-
fect of abstraction on the degree is more prominent. Where in subways the decrease on relative
kmax was almost linear, in these networks the rate with which the maximum degree decreases is
exponential. This is mostly caused by the presence of hubs that will be collapsed almost imme-
diately as fuzziness f increases.

Degree correlations knn on (unweighted) networks measure the level of interdependence be-
tween nodes. From Table 1 we identified two different connection pattern as we consider sub-
ways or city-based online social network and the US airline network. The first class of
networks is neutral whereas the second one is negatively correlated (that is, nodes with high de-
gree link to small degree nodes). Fig. 16 summarize the degree correlations in the telescopic

Fig 14. Effect of the telescopic abstraction on the diameter as a function of f. Effect of the telescopic abstraction for the physicalDp, topological Dt and
metrical Dm diameter as a function of fuzziness f. All the values were normalized by the baseline values at f = 0 (i.e., no abstraction is applied). The top panels
contain results of subways, the bottom ones of city-based online social networks and the US airline network.

doi:10.1371/journal.pone.0116670.g014
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Fig 15. Effect of the telescopic analysis on the degree. Effect of the telescopic analysis on the degree: maximum degree kmax (leftmost column), mean
degree hki (center column) and standard deviation σk (rightmost column) for subways (top panels), the US airline and city-based online social networks
(bottom panels). All values were normalized relatively to the baseline value at f = 0 (where no abstraction is applied). The explanation of the results obtained
is not so trivial. In general, the degree properties of the networks will be drastically modified as fuzziness increases. The degree tend to decrease linearly in
subways whereas in airline and social-based networks the telescopic effect results in an exponential decrease.

doi:10.1371/journal.pone.0116670.g015

Fig 16. Impact of the telescopic analysis on the degree correlations ρ. Impact of the telescopic analysis
on degree correlations ρ as a function of f for subway networks (left panel), the US airline and city-based
online social networks (right panel). It is worth noting that the telescopic process yields disassortative
networks regardless of the network. This means that in subways, the topological structure will be drastically
changed whereas in the other networks the degree correlation tends to remain stable (at least will have the
same sign).

doi:10.1371/journal.pone.0116670.g016
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spectrum. We note that the abstraction process yields disassortative networks at high values of
fuzziness regardless of the system considered. As a consequence, the initial topological struc-
ture of subway networks will be significantly changed toward a completely different configura-
tion whereas in city-based online social networks and the airline network remain relatively
stable in the entire spectrum (at least they remain disassortative).

Fig. 17 shows how global efficiency Eglob is influenced by the granularity level with which a
network is described. In particular, metrical and topological versions are considered. One of
the aims of this study is to verify whether the detail scale with which networks are described af-
fects network efficiency. Different observations can be made for topological and metrical quan-
tities. Firstly, we clearly note (top panels) that the efficiency is strongly influenced by the
current fuzziness value, regardless of the networks considered. In particular, at micro level
(that is, when the network structure is highly detailed) the efficiency is smaller compared to the
macro level. This is an interesting element suggesting that every shift in the abstraction process
is effectively a useful methodology to simplify a system (in fact the number of nodes and edges
decrease, see Fig. 13) by eventually selecting the substructure of the network that works best
and that is most efficient. One element that distinguishes the two different types of networks is
the connection pattern, reflected at micro level. We clearly note that as the fuzziness increases
the two classes of networks tend to gradually be similar, smoothing away the initial differences.

Secondly, we notice how metrical Eglob of subways networks (bottom left panel) is reason-
ably stable over the telescopic spectrum, meaning that their metrical features will be preserved
during the abstraction process. However, this finding holds only in exponential networks like
subways where the metrical element plays an important role during network creation and evo-
lution. Conversely, in networks embedded in Euclidean space but where physical constraints

Fig 17. Effect of the telescopic process on Eglob. Effect of the telescopic process on subways (leftmost
column), the US airline and city-based online social networks (rightmost column) as a function of f. The
statistical properties considered in these panels are topological and metrical Eglob. The abstraction process
does not preserves the topological Eglob (top panels) while varying f. In particular, regardless of the network
considered, the networks viewed at macro level are simpler and more efficient compared to micro view.
Conversely, the situation is slightly different for metrical Eglob (bottom panels). In this case, the connection
pattern of the system considered alters significantly the outcome of the abstraction process. In fact, we
detected that the structure of subway networks allow a good preservation of the metrical efficiency in the
spectrum whereas in city-based online social networks this feature is absent.

doi:10.1371/journal.pone.0116670.g017
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on edges are relaxed (like in the US airline and city-based online social networks, right panels)
the Eglob (both topological and metrical) is not universal in the spectrum and again strongly de-
pends on fuzziness.

Generally speaking, this finding is evidence that unraveled by micro-macro analysis, all the
results of analysis on scale-free small-world networks to date refer only to a specific resolution
level (fuzziness) and therefore depend on the level of detail: so, some of those results could be
just an effect observable at a certain scale, whereas the behavior of the complex system at a
lower micro level (or at a higher macro level of abstraction) could be completely different.

Eglob is a quantity that accounts for the global system flow of information along the paths of
the networks. Conversely, with the formalization of the local efficiency Eloc (see the subsection
Statistical Properties), it is possible to detect how efficiently a system exchange information in
the node neighborhoods.

Fig. 18 shows how the telescopic analysis affects local efficiency as a f increases. At micro
scale, we distinguish a completely different local connection pattern between the two types of
networks (when no abstraction is applied). In fact, we note that subways are locally poorly con-
nected because of the intrinsic physical and economic constraints that govern the growth. The
US airline and city-based online social networks, that are almost free from constraints (at least
in the way nodes are linked), will have more redundant edges that increase local efficiency.

We observe again that the overall behavior of the considered metric is strongly influenced
by the type of dataset involved. The main difference between the two types is not in the order
of magnitude with which Eloc increases (in fact in both cases the quantity will raise) but instead
in the detected behavior over the spectrum. We noted that Eloc is much more stable in subway
networks compared to airline and city-based online social networks. This is probably caused by

Fig 18. Effect of the telescopic analysis on Eloc. Effect of the telescopic analysis on topological and
metrical Eloc as a function of f in subways (leftmost panels), the US airline and city-based online social
networks (rightmost panels). The left most panels show that Eloc is almost stable in the spectrummeaning
that the local properties of the subway networks are preserved by the analysis. However, in networks with
heterogeneous topological structure, the telescopic process will further increase Eloc resulting in the creation
of systems that are densely connected at local level.

doi:10.1371/journal.pone.0116670.g018
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the characteristic of redundancy in the topological structure that makes Eloc more variable in
the telescopic spectrum.

Even though local and global quantities are essential to characterize a network, the cost is
another factor that has to be considered in order to get a better understanding of the entire sys-
tem. Fig. 19 reveals how metrical and topological costs behave along the telescopic spectrum.
Regardless of the networks, we clearly see that as fuzziness f increases, the overall network cost
will raise.

Although it seems counterintuitive because abstracted, i.e., simple networks should be
cheap, it is an expected effect because (as Figs. 17 and 18 show) these are also very efficient and
as such, very expensive. All the curves are monotonically increasing functions, but subways re-
sult in smaller increase compared to city-based online social networks. This represents evi-
dence that these networks have an economic inborn principle that is maintained also during
the abstraction process.

Networks are defined as economic [26] when they have low cost and high efficiency, i.e.
whenever the ratio C/E tends to zero. Fig. 20 shows how this variable changes in the telescopic
spectrum. We clearly see that detailed networks have a better cost/benefit ratio than coarse-
grained ones.

Fig. 21 shows how the degree distribution P(k) changes by increasing the fuzziness by 0.1
units at each step. We find that when decreasing the detail level, networks tend to lose their
original topological structure and every node is likely to have the same degree. Therefore, hubs
disappear and they became like low degree nodes. This is an expected result because it follows
from the definition of network abstraction.

Fig 19. Effect of the telescopic analysis on ct and cm. Effect of the telescopic analysis on topological and
metrical cost (ct and cm) as a function of f for subways (leftmost column), the US airline and city-based online
social networks (rightmost column). We note that our coarse graining process produces networks more
expensive than detailed ones. This effect might be caused by the creation of redundant structures in macro
level systems so that the whole cost will be higher. Even though both curves are positively correlated to f, the
slope in subways networks is smaller compared to city-based online social networks. To verify whether this
effect is not trivially caused by a low efficiency value, we will considerC/Eglob index (see Fig. 20).

doi:10.1371/journal.pone.0116670.g019
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Conclusions
In this paper, we have introduced a novel network analysis that we called micro-macro. This
new framework consists of (meta-)studying the important informational axis along with a
complex network can be seen: the level of detail.

Fig 20. Effect of the telescopic analysis onC/Eglob. Effect of the telescopic analysis on topological and
metrical normalized cost over efficiency for subways (leftmost column), the US airline and city-based online
social networks (rightmost column). By dividing the cost of the networks by the global efficiency (that ranges
between 0 and 1), we verified that subway networks are cheaper as well as very efficient, more than city
based online social networks. This is evidence that subway network have an economic inborn principle that is
maintained during the telescopic abstraction process.

doi:10.1371/journal.pone.0116670.g020

Fig 21. Effect of the abstraction process on the degree distribution P(k). Effect of the abstraction process on the degree distribution P(k) for increasing
values of fuzziness f for the Netherlands city-based online social network. We detected that the behavior starts from a small world scale-free configuration
and is ideally maintained for f< 0.11. When f increases, it changes to uniform and finally to random (when f is maximum).

doi:10.1371/journal.pone.0116670.g021
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The so-called telescopic scaler, inspired from the human eyes capability to distinguish two
points when placed at some distance from a point of view, was devoted to propose a new meth-
od that arbitrarily models networks under different levels of abstraction. Its importance stems
from the ability of changing the spatial coordinates and connectivity of the nodes according to
some predefined rules. Doing so, we were able to understand what happens to the most impor-
tant statistical network properties not only when the network detail is high (at micro level) or
low (at macro level), but also in between these two extremes. At this point, we were concerned
to answer a set of questions such as: which properties are safe to consider after abstracting a
network? Which topological structures better preserve system attributes? Are the results of
static analysis possibly incomplete because they strongly rely on the detail level with which a
network is constructed?

Our experiments were focused on networks that are embedded in the space, whose evolu-
tion is constantly shaped by the surrounding environment. We considered rapid transportation
networks (such as subways and airlines) and city-based online social networks. An important
finding suggests that complex networks, when observed at finer or coarse-grained level of de-
tail, exhibit statistical features that in many cases are different, meaning that networks charac-
teristics are not stable under the telescopic (or abstraction) process. Because of that, many
networks researches are confined to describe only one of all the possible configurations a net-
work could take, showing results that might not be valid for the entire grained spectrum.

The analysis of the full micro-macro spectrum also helps to shed light on how much all the
properties of a complex system depend on the level of detail, showing their transition patterns
and their relative stability, and on how much previous results on coarse-graining and the fractal
dimension of networks do apply to real metric networks as well.

Last, but not least, we note how micro-macro analysis, and the specific telescopic approach
used here, have anyway a more general scope rather than being just limited to euclidean-space
2d environments. Micro-macro analysis is a general concept, and relies on a distance space
that can generally define relations of proximity between objects of a system (see for instance
[44]). From this geometry of interactions we can then define the appropriate notions of fuzzy
abstractions, for instance via a suitable generalization of the telescopic algorithm or some other
variants. One possible variant is for instance the 3d telescopic scaler, obtained by the obvious
generalization of the 2d telescopic scaler to three dimensions, which allows to tackle micro-
macro analysis on crucially important systems like brain networks without artificially lowering
their dimensionality. Therefore, micro-macro analysis accounts for all contexts where an ob-
servability scale matters, and the case studies analyzed in this paper (transportation and online
social systems) are an interesting, but not at all comprehensive, starting sample to better under-
stand the phenomena that occur when the level of detail varies.
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