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Abstract A simulation-based derivative-free global optimization of the hull-
form of a military vessel is presented, aimed at the reduction of the resistance
in calm water. The objective function is of the black-box type, computation-
ally expensive and characterized by noise and non-smoothness. The presence
of local minima cannot be excluded a priori. For these reasons, the use of
derivative-free, global, DIRECT-type algorithms is proposed. Specifically, a re-
cent hybridization of the DIRECT algorithm by local minimization is applied,
and compared with a novel strategy for the management of the local searches.
Comparative results are reported on a set of well-known and well-established
test problems and on the simulation-based hull-form optimization problem.
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1 Introduction

Simulation-based design (SBD) optimization is an essential part of the design
of complex engineering systems, since the conceptual and early design stages.
SBD optimization has been widely applied to diverse engineering fields, such as
aerospace [30,22,8], automotive [10,37,16] and naval [29,9,20] design. SBD op-
timization methodologies are constantly developed, with large computational
simulations managed to assess the performance of a design and evaluate the
relative merit of design alternatives. The constant search for improvements
in SBD optimization focuses on its three essential elements: (i) the simula-
tion capabilities and the associated accuracy of the analysis, (ii) the definition
and management of the design variables through the design and optimization
process, and (iii) the efficiency and robustness of the optimization algorithm.

Within SBD optimization, a non-convex nonlinear programming problem
of the form

min
x∈D

f(x) (1)

is solved, where D = {x ∈ Rn : li ≤ x ≤ ui, i = 1, . . . , n} is the design variables
domain, and the objective function f(x) represents the performance of the
engineering system and is usually of the black-box type, with values provided
by computationally-expensive computer simulations. In order to achieve an
optimal design decision, a global minimum of f(x) on the feasible domain D
is sought, which is motivated by the following considerations:

- typical objective functions are almost ever non-convex and characterized
by the presence of noise and non-smoothness, so that local minimization
packages could likely be trapped in local minimum points;

- the ever advancing work of design engineers have lead to the production of
near optimal configurations so that the margin for improvements is rapidly
narrowing, and the possibility that further improvements could come from
local optimization methods is likely getting small.

Problem (1) is very general and, as such, encompasses many real-world
applications arising in many different fields, like computational mathematics,
physics and engineering. Herein, the optimal design of a military ship hull
is used as an engineering test case, based on computational fluid dynamics
(CFD) simulations. The focus is on the optimization algorithm, as an essential
element for the success of the overall SBD optimization process.

The objective of the present study is the efficient solution of problem
(1) by hybridization of DIRECT-type algorithms [19,11,38,1,15,5,12,23,18,13,
14,6], which are well-behaved deterministic algorithms for global optimiza-
tion and have been successfully applied to solve diverse real-world problems.
Specifically, the focus is on the DIRMIN algorithm (proposed in [23] and, in
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a derivative-free context, in [24]) which is an enriched version of the DIRECT

algorithm by local minimization. A modification of DIRMIN (which is hereafter
referred to as DIRMIN-2) is proposed for further investigations, consisting in
an enhanced strategy for the management of the local searches.

In order to investigate the performance of DIRMIN and DIRMIN-2, forty six
test functions with a level of complexity and dimensionality similar to typical
optimization problems in ship design are used. The sensitivity of the algo-
rithms’ performance to the local minimization activation trigger and the local
minimization tolerance is studied. Data and performance profiles [28], along
with three absolute metrics [32], are assessed and used to identify the most sig-
nificant algorithms’ setting parameters. The most promising implementations
are applied to the ship SBD optimization problem.

The SBD application pertains to the hull-form optimization of a USS Ar-
leigh Burke-class destroyer, namely the DDG-51. The DTMB 5415 model, an
open-to-public early concept of the DDG-51, is used in the current study. The
DTMB 5415 model has been widely investigated through towing tank experi-
ments [33,26,17] and SBD studies, including hull-form optimization [3,34,21].
Lately, the DTMB 5415 has been selected as the test case for the SBD activ-
ities within the NATO STO AVT-2014 “Assess the Ability to Optimize Hull
Forms of Sea Vehicles for Best Performance in a Sea Environment”, aimed
at multi-objective design optimization for multi-speed reduced resistance and
improved seakeeping performance. Herein, a single-speed single-objective SBD
example is presented, aimed at the reduction of the total resistance in calm
water at 18 kn, corresponding to a Froude number (Fr) equal to 0.25. An
orthogonal representation of the shape modification is used for efficient SBD
optimization [7]. Specifically, two sets of orthogonal functions are used for the
modification of the hull and the sonar dome shapes, and controlled by a total
of six design variables. The constraints include fixed displacement and length,
along with a ±5% maximum variation of beam and draft. The solver used is a
linear potential flow code [2], allowing for the evaluation of the wave resistance
by transversal wave cut [35]. The resistance due to friction is estimated by a
local approximation based on flat-plate theory [31].

2 Global/local hybridizations of the DIRECT algorithm

In this section, the DIRMIN algorithm is first recalled, as proposed in [25], and
then a new DIRECT-type algorithm, namely DIRMIN-2, is described which is
better suited for the ship hull design application of concern.

The DIRMIN Algorithm proposed in [25] is described below.
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Algorithm DIRMIN

H1 = {D}, c = center of D, fmin = f(c), Xmin = {c}, tol, kmax, k = 1

Repeat

(S.1) identify the potentially-optimal hyperrectangles Pk in Hk

(S.2) for all centroids ci of hyperrectangles in Pk perform a local minimization
and record the best function value fml

(S.3) subdivide the potentially-optimal hyperrectangles to build Hk+1

(S.4) evaluate f in the centers of the new hyperrectangles

(S.5) fmin = min{f(c) : c ∈ Ck, fml}, Xmin = {x ∈ D : f(x) = fmin}, k = k + 1

Ck is the set of centroids c of the hyperrectangles in Hk

Until (stopping criterion satisfied)

Return fmin, Xmin

Note that the local minimizations at Step (S.2) are performed by using the
derivative-free local optimization algorithm for bound constrained problems
proposed in [27]. As showed in [25], the DIRMIN algorithm can be quite efficient.
However, when the evaluation of the objective function is computationally
expensive and therefore the budget of function evaluations is limited, DIRMIN
might miss the global solution or a point sufficiently close to it. For this reason,
a more efficient variant of DIRMIN is proposed. Rather than performing the
local minimizations starting from the centroids of all the potentially-optimal
hyperrectangles, a single local minimization is performed starting from the
best point produced by dividing the potentially-optimal hyperrectangles. This
strategy should result in a more efficient algorithm, which is less demanding
in terms of number of function evaluations and preserves a good capability to
find global solutions.

In details, the new algorithm DIRMIN-2 is defined as follows.
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Algorithm DIRMIN-2

H1 = {D}, c = center of D, fmin = f(c), Xmin = {c}, tol, kmax, k = 1

Repeat

(S.1) identify the potentially-optimal hyperrectangles Pk in Hk

(S.2) subdivide the potentially-optimal hyperrectangles and to build Hk+1.

(S.3) let c̃ = arg min{f(c) : c ∈ C(Sk)},
where Sk is the set of newly produced hyperrectangles and
C(Sk) the set of the centroids in Sk.

(S.3) perform a local minimization starting from c̃ and
let fml be the final function value.

(S.4) evaluate f in the centers of the new hyperrectangles

(S.5) fmin = min{f(c) : c ∈ C(Hk), fml}, Xmin = {x ∈ D : f(x) = fmin}, k = k + 1

Until (stopping criterion satisfied)

Return fmin, Xmin

It may be stressed that, differently from DIRMIN (that performs as many
local searches as the number of identified potentially-optimal hyperrectan-
gles), DIRMIN-2 performs a single local minimization per iteration. More in
particular, the single local minimization starts from the best point found af-
ter subdividing the potentially-optimal hyperrectangles at the current itera-
tion. The rationale behind this choice hinges on considering the subdivision of
potentially-optimal hyperrectangles as a crude kind of local search, which can
be improved by the use of a more sophisticated and efficient local minimization
algorithm.

3 Evaluation metrics

The metrics used to assess the performance of DIRMIN and DIRMIN-2 are re-
called in the following.

3.1 Performance and data profiles

In order to evaluate the relative performance of the proposed algorithms, the
procedure in [28] is used. The following convergence condition is applied:

f(x0)− f(xk) ≥ (1− τ)(f(x0)− fL) (2)

where 0 ≤ τ ≤ 1 is a suitably chosen tolerance and fL is the smallest function
value obtained by any solver within the same maximum computational budget.
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The main concepts needed to formally define data and performance profiles
are recalled in the following. Let A be a set of na algorithms, and P a set of
|P| problems and a performance measure mp,a (e.g. in our case, the number
of function evaluations). The performance on problem p by algorithm a is
compared with the best performance by any algorithm on this problem, using
the following performance ratio

rp,a =
mp,a

min{mp,a : a ∈ A}
.

Thus, a first measure of the performance of algorithm a is defined by the
performance profile:

ρa(α) =
1

|P|
size{p ∈ P : rp,a ≤ α},

which approximates the probability for algorithm a ∈ A that the performance
ratio rp,a is within a factor α ∈ R of the best possible ratio. The convention
rp,a =∞ is used when algorithm a fails to satisfy the convergence test (2) for
problem p ∈ P.

A further measure of the algorithms’ performance is given by the percent-
age of problems that can be solved (for a given tolerance τ) within a certain
number of function evaluations. To this aim, let us define tp,a the number of
function evaluations needed for algorithm a to satisfy (2) for a given tolerance
τ , then the percentage of problems solved with ν function evaluations is the
so called data profile:

da(ν) =
1

|P|
size{p ∈ P :

tp,a
np + 1

≤ ν},

where np is the number of variables in p ∈ P . If the convergence test (2) cannot
be satisfied within the assigned computational budget, we set tp,a =∞.

3.2 Absolute metrics

Three absolute performance criteria are used to further assess the algorithms
and defined as follows [32]:

∆x =

√√√√ 1

n

n∑
i=1

(
xi − x?i
Ri

)2

, ∆f =
fmin − f?min

f?max − f?min

, ∆t =

√
∆2

x +∆2
f

2
(3)

∆x is a normalized Euclidean distance between the minimum position found by
the algorithm (xmin) and the analytical minimum position (x?min). ∆f is the
associated normalized distance in the image space, fmin is the minimum found
by the algorithm, f?min is the analytical minimum, and f?max is the analytical
maximum of the function f in the research space. ∆t is a combination of ∆x

and ∆f and used for an overall assessment.



7

4 Optimization problems

The problems used to evaluate the performance of DIRMIN and DIRMIN-2 are
presented in the following.

4.1 Analytical test problems

Forty six analytical test problems are used, as summarized in Tab. 1. They
include simple unimodal, highly-complex multimodal and not differentiable
problems, with dimensionality ranging from two to six. The dimensions of the
problems considered are consistent with typical applications in shape opti-
mization for ship hull-form design, which typically have less than ten variables
(see, e.g., [3,34,32,21,4,7]).

Table 1 Analytical test problems

fk(x) Name
Dimension Bounds Optimum

n
[
xmin, xmax

]i,...,n min f(x)

f1(x) Sphere 2 [−5, 4]n 0.000
f2(x) Freudenstein-Roth 2 [−5, 5]n 0.000
f3(x) Ackley 2 [−5, 4]n 0.000
f4(x) Three-Hump Camel Back 2 [−5, 4]n 0.000

f5(x) Six-Hump Camel Back 2 [−2.5, 2.5]i, [−1.5, 1.5]j -1.032
f6(x) Quartic 2 [−10, 10]n -0.352
f7(x) Beale 2 [−4.5, 4.5]n 0.000
f8(x) Schubert penalty 1 2 [−10, 10]n -186.731
f9(x) Schubert penalty 2 2 [−10, 10]n -186.731
f10(x) Booth 2 [−10, 10]n 0.000
f11(x) Matyas 2 [−9, 7]n 0.000
f12(x) Goldstein-Price 2 [−2, 2]n 3.000

f13(x) Bukin n.6 2 [−15,−5]i, [−3, 3]j 0.000
f14(x) Rosenbrock 2 [−100, 100]n 0.000
f15(x) Schaffer n.2 2 [−100, 90]n 0.000
f16(x) Schaffer n.6 2 [−100, 90]n 0.000
f17(x) Easom 2 [−100, 100]n -1.000
f18(x) Test Tube Holder 2 [−10, 10]n -10.872
f19(x) Treccani 2 [−5, 4]n 0.000
f20(x) Tripod 2 [−100, 100]n 0.000

f21,22(x) Exponential 2, 4 [−9, 7]n -1.000

f23,24(x) Styblinski-Tang 2, 4 [−5, 5]n −39.166 · n

f25,26(x) Cosine Mixture 2, 4 [−1, 0.5]n −0.100 · n

f27,28(x) Hartman n.3, n.6 3, 6 [0, 1]n -3.860, -3.320

f29,30(x) 5n loc. minima (Levy) 2, 5 [−10, 10]n 0.000

f31,32(x) 10n loc. minima (Levy) 2, 5 [−10, 10]n 0.000

f33,34(x) 15n loc. minima (Levy) 2, 5 [−5, 5]n 0.000

f35,36(x) Griewank 2, 5 [−9, 7]n 0.000

f37,38(x) Alpine 2, 5 [−9, 7]n 0.000

f39,40(x) Multi Modal 2, 5 [−1, 0.5]n 0.000

f41,42(x) Dixon-Price 2, 5 [−1, 1]n 0.000

f43(x) Colville 4 [−10, 10]n 0.000
f44(x) Shekel n.5 4 [0, 10]n -10.153
f45(x) Shekel n.7 4 [0, 10]n -10.403
f46(x) Shekel n.10 4 [0, 10]n -10.536

4.2 SBD optimization of the DTMB 5415

Figure 1 shows the geometry of a 5.720 m length DTMB 5415 model used for
towing tank experiments, as seen at CNR-INSEAN [33]. The main particulars
of the full scale model and test conditions are summarized in Tab. 2 and
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Table 2 DTMB 5415 main particulars (full scale)

Description Symbol Unit Value

Displacement D tons 8,636
Lenght between perpendiculars LBP m 142.0
Beam B m 18.90
Draft T m 6.160
Longitudinal center of gravity LCG m 71.60
Vertical center of gravity VCG m 1.390

Table 3 Test conditions

Description Symbol Unit Value

Speed U kn 18.00
Water density ρ kg/m3 998.5
Kinematic viscosity ν m2/s 1.09 · 10−6

Gravity acceleration g m/s2 9.803

3, respectively. The objective function is the total resistance, RT , in calm
water at Fr equal to 0.25. A six dimensional design space is considered. Design
modifications are defined in terms of orthogonal functions, ψj (j = 1, ..., 6),
defined over surface-body patches as

ψj(ξ, η) := αj sin

(
pjπξ

Aj
+ φj

)
sin

(
qjπη

Bj
+ χj

)
ek(j)

(ξ, η) ∈ [0;A]× [0;B]

(4)

where the coefficient αj is the corresponding (dimensional) design variable;
pj and qj define the order of the function in ξ and η direction respectively;
φj and χj are the corresponding spatial phases; Aj and Bj define the patch
dimension; ek(j) is a unit vector. Modifications may be applied in x, y or z
direction (k(j) = 1, 2, or 3 respectively).

Fig. 1 A 5.720 m length model of the DTMB 5415 (CNR-INSEAN model 2340)

Specifically, four orthogonal functions and design variables are used for the
hull, whereas two functions/variables are used for the sonar dome, as summa-
rized in Tab. 4. The corresponding functions used for shape modification are
shown in Figs. 2 and 3. Upper and lower bounds used for dimensional (αj) and
non-dimensional (xj = 2(αj − αj,min)/(αj,max − αj,min) − 1) design variables
are included in Tab. 4. Geometric constraints include fixed length between
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Fig. 2 Orthogonal functions ψj(ξ, η), j = 1, ..., 4, for the hull modification
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Fig. 3 Orthogonal functions ψj(ξ, η), j = 5, 6, for the sonar dome modification

perpendiculars (LBP) and fixed displacement (D), with beam (B) and draft
(T) varying between ±5% of the original value.

Simulations are conducted using the code WARP (WAve Resistance Pro-
gram), developed at CNR-INSEAN. Wave resistance computations are based
on linear potential flow theory; details of equations, numerical implementation
and validation of the numerical solver are given in [2]. The wave resistance is
evaluated with the transverse wave cut method [35], whereas the frictional
resistance is estimated using a flat-plate approximation, based on the local
Reynolds number [31]. Simulations are performed for the right demi-hull, tak-
ing advantage of symmetry about the xz plane. The computational domain
for the free surface is defined within 1 hull length upstream, 3 lengths down-
stream and 1.5 lengths aside, as shown in Fig. 5. The associated panel grid
used (Fig. 5) is summarized in Tab. 5 and guarantee solution convergence. The
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Table 4 Orthogonal functions parameters, for shape modification

Description j pj φj qj χj k(j) αj,min αj,max xj,min xj,max

1 2.0 0 1.0 0 2 -2.0 2.0 -1.0 1.0
Hull 2 3.0 0 1.0 0 2 -2.0 2.0 -1.0 1.0

modification 3 1.0 0 2.0 0 2 -1.0 1.0 -1.0 1.0
4 1.0 0 3.0 0 2 -1.0 1.0 -1.0 1.0

Sonar dome 5 1.0 0 1.0 0 2 -0.6 0.6 -1.0 1.0
modification 6 0.5 π/2 0.5 0 3 -1.0 1.0 -1.0 1.0
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Fig. 4 Total resistance coefficient (CT = 0.5RT /ρU
2S) in calm water versus Fr: comparison

of WARP results with experiments

Table 5 Panel grid used for WARP

Hull
Free surface

Total
Upstream Hull side Downstream

150 × 30 30 × 44 30 × 44 90 × 44 11k

validation of CFD analyses performed by WARP for the original hull versus
experimental data collected at CNR-INSEAN is shown in Fig. 4, showing a
reasonable trend.

5 Numerical results

This section shows the propaedeutic studies, conducted on the analytical test
problems, followed by the simulation-based design optimization of the DTMB
5415 hull-form.

A limit on the maximum number of function evaluations is imposed, equal
to b(n) = 256n. DIRMIN and DIRMIN-2’s local minimization is used when the
number of function evaluations reaches the activation trigger γb(n), with γ ∈
(0, 1). The local minimization proceeds until either the number of function
evaluations exceeds b(n) or the stepsize ∆ falls below a given tolerance β.
The latter parameters γ and β are considered herein as γ = c · 10−1, with
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Fig. 5 Computational panel-grid

c ∈ {1, 3, 5} and β = 10−d, with d ∈ {2, 3, 4}. In the following, a specific
algorithm’s setting is referred to as per Tab. 6.

Table 6 Algorithms’ setup ID

HHHHγ
β

10e-2 10e-3 10e-4

0.1 1 2 3
0.3 4 5 6
0.5 7 8 9

5.1 Propaedeutic studies on analytical test problems

Test-problems results are presented in the following and used to define the
most promising setups for DIRMIN and DIRMIN-2.

In Fig. 6, data and performance profiles are reported to compare the nine
setups of DIRMIN. As it can be easily seen, the setup 3 (i.e. γ = 0.1, β = 10−4)
is the most efficient. Indeed, the corresponding data profile raises more steeply
than the other ones, and the performance profile is the one starting with the
highest value. However, another performance that has to be carefully taken
into consideration when evaluating the behavior of an optimization algorithm
is the robustness, that is the reliability exhibited by the method in locating the
solution with a sufficiently good precision. This information can be extracted
from data and performance profiles. In particular, the most robust codes are
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Fig. 6 Data and performance profiles for the nine versions of algorithm DIRMIN

the one associated with the curves that reach the highest level. With respect
to robustness, from Fig. 6 emerges that the best setup is number 9 (i.e. γ =
0.5, β = 10−4).

In Fig. 7, data and performance profiles for the nine setups of DIRMIN-2

are shown. Following a similar analysis as that for DIRMIN, the most efficient
version of DIRMIN-2 is the setup 3 (i.e. γ = 0.1, β = 10−4), whereas the most
robust versions are those corresponding to setups 6 (i.e. γ = 0.3, β = 10−4)
and 9 (i.e. γ = 0.5, β = 10−4).

Figures 8a and 8b, show the performance of DIRMIN and DIRMIN-2 in terms
of the absolute metrics ∆x, ∆f and ∆t. Average values are presented, condi-
tional to γ and β and respectively. Figure 8c show the relative variance σ2

r [32]
of ∆x, ∆f and ∆t respectively, for γ and β. β is found the most significant
parameter for DIRMIN, while γ is the most important for DIRMIN-2. Neverthe-
less, γ and β are important and should be considered carefully. Figure 8d show
the performance of the whole set of DIRMIN and DIRMIN-2’s setups, in terms
of ∆x, ∆f and ∆t respectively. The best performing setup is 9 for DIRMIN and
6 for DIRMIN-2. This is consistent with the nature of the algorithms. Indeed,
when the local searches are executed, the cost per iteration in terms of number
of function evaluations is higher in DIRMIN than DIRMIN-2. Accordingly, it is
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Fig. 7 Data and performance profiles for the nine versions of algorithm DIRMIN-2

reasonable that the best setting of DIRMIN corresponds to a value of γ = 0.5,
which means that the local minimizations are used when the number of func-
tion evaluations reaches the 50% of the available budget b(n). On the contrary,
for DIRMIN-2 it is more convenient to activate the local minimization as soon
as the number of function evaluations reaches the 30% of the available budget
b(n), which corresponds to a value of γ = 0.3.

Finally, the performance of DIRMIN(3) and (9) and DIRMIN-2(3) and (6)
are compared. Figure 9 shows the comparison in terms of data and per-
formance profiles. Profiles corresponding to DIRMIN(3) and DIRMIN-2(3) are
close to each other. Even though DIRMIN-2(3) is slightly inferior in terms
of efficiency, it is significantly better in terms of robustness. As expected,
DIRMIN(9) and DIRMIN-2(6) have a poor performance in terms of efficiency.
Nevertheless, DIRMIN(9) is the most robust method overall. The newly pro-
posed method DIRMIN-2(3) has a robustness performance close to that of
DIRMIN(9), while preserves a good efficiency. Overall, DIRMIN-2(3) is the most
promising method, combining efficiency and robustness.
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Fig. 8 Algorithms’ performance for the test problems

5.2 SBD optimization of the DTMB 5415

A preliminary sensitivity analysis for each design variable is shown in Fig. 10,
showing the relative percent resistance reduction (∆obj) with respect to the
parent hull. Unfeasible designs are not reported. Changes in ∆obj are found
significant, revealing a reduction of the total resistance at Fr = 0.25 close to
10%.

The SBD optimization procedure achieves a reduction of the objective
function by 15.9 and 16.2%, using DIRMIN(3) and DIRMIN(9) respectively, and
a reduction by 16.2 and 16.1%, using DIRMIN-2(3) and DIRMIN-2(6) respec-
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Fig. 9 Data and performance profiles comparing DIRMIN(3) and (9) with DIRMIN-2(3) and
(6)

tively. The convergence history of the objective function towards the minimum
is shown in Fig. 11a, confirming the efficiency and robustness of the newly
proposed method DIRMIN-2(3). Figure 11b presents the values of the corre-
sponding optimal design variables, showing appreciable differences. Figure 12
shows the optimized shapes compared to the original. The reduction of the to-
tal resistance is consistent with the reduction of the wave elevation patterns,
both in terms of transverse and diverging Kelvin waves, as shown in Fig. 13.
Finally, Fig. 14 shows the pressure field on the optimized hulls compared to
the original, showing a better pressure recovery towards the stern. A summary
of the results is presented in Tab. 7.

6 Conclusions

A simulation-based derivative-free global optimization of the hull-form design
of a military vessel (namely the DTMB 5415 model) has been shown, based
on global/local hybridizations of the DIRECT algorithm by local search. Two
hybridization algorithms (namely DIRMIN and the novel DIRMIN-2) have been
presented and tested on a set of forty six well-known analytical problems and
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Table 7 Summary of optimization results for DTMB 5415

Design variables (non-dimensional) RT × 105(N)

DIRMIN x1 x2 x3 x4 x5 x6 value ∆obj(%)

3 1.000 -0.834 -0.599 0.174 -1.000 0.682 2.888 -15.9
9 1.000 -0.944 -0.774 0.172 -0.997 0.674 2.878 -16.2

DIRMIN-2 x1 x2 x3 x4 x5 x6 value ∆obj(%)

3 1.000 -0.944 -0.774 0.172 -0.998 0.667 2.878 -16.2
6 1.000 -0.890 -0.663 0.148 -0.996 0.706 2.882 -16.1

on the ship design problem. The two algorithms differ in the local search
management. In particular, while DIRMIN executes the local search starting
from the centroids of all the potentially-optimal hyperrectangles, DIRMIN-2
performs a single local minimization starting from the best point produced by
dividing the potentially-optimal hyperrectangles. The latter method results in
a more efficient algorithm, with beneficial effects on the overall computational
cost, which is a considerable advantage especially when the objective function
is evaluated through computer simulations.
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(a) DIRMIN(3) (b) DIRMIN(9)

(c) DIRMIN-2(3) (b) DIRMIN-2(6)

Fig. 12 Optimal hull-form shapes compared with the original

Nine diverse setups of the algorithms have been investigated, varying the
local search activation trigger γ and the local search tolerance β. Data and
performance profiles, along with absolute evaluation metrics, have been used
to identify the most promising algorithm with respect to efficiency and robust-
ness. The results on the test problems and the ship design optimization have
been found consistent. Specifically, the novel algorithm DIRMIN-2, with a low
value of both γ and β, has been found the most promising method in terms
of the trade-off between efficiency and robustness.

The hull-form optimization has achieved a reduction of the resistance in
calm water at 18 kn close to 16%. Design variants have been produced us-
ing a set of orthogonal functions, defined over body-surface patches for both
the hull and the sonar dome. The simulations have been conducted using a
potential-flow solver, with a viscous correction based on a local flat-plate ap-
proximation. The effects of the optimization are visible in the wave elevation
pattern produced by the optimized design, consisting in a reduction of both
the transverse and the diverging Kelvin waves. The optimized hull also shows
a better pressure recovery astern.
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(a) DIRMIN(3) (b) DIRMIN(9)

(c) DIRMIN-2(3) (b) DIRMIN-2(6)

Fig. 13 Wave elevation patterns produced by the optimal hull-form shapes at Fr = 0.25
compared with the original

(a) DIRMIN(3) (b) DIRMIN(9)

(c) DIRMIN-2(3) (b) DIRMIN-2(6)

Fig. 14 Pressure field on the optimal hull-form shapes at Fr = 0.25 compared with the
original
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Future work include the extension of global/local hybridization of the
DIRECT algorithm to multiobjective problems, along with the application of
higher fidelity solvers (such as Reynolds-averaged Navier-Stokes equations
solvers) and design optimization based on static/dynamic metamodels [36].
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