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Abstract. We derive the long time asymptotic of solutions to an evolutive

Hamilton-Jacobi-Bellman equation in a bounded smooth domain, in connec-
tion with ergodic problems recently studied in [1]. Our main assumption is

an appropriate degeneracy condition on the operator at the boundary. This

condition is related to the characteristic boundary points for linear operators
as well as to the irrelevant points for the generalized Dirichlet problem, and

implies in particular that no boundary datum has to be imposed. We prove

that there exists a constant c such that the solutions of the evolutive problem
converge uniformly, in the reference frame moving with constant velocity c, to

a unique steady state solving a suitable ergodic problem.

1. Introduction. We are concerned with the asymptotic behavior as t → +∞ of
solutions of the evolutive Hamilton-Jacobi-Bellman equation

ut + sup
α∈A

(
−b(x, α) ·Du− tr(a(x, α)D2u)− l(x, α)

)
= 0, x ∈ Ω, t > 0, (1)

with bounded initial data u(x, 0) = u0(x). The domain Ω ⊂ RN is assumed to
be bounded and smooth; no boundary condition is imposed, but just the following
control on the growth:

∃ λ > 0, lim
x→∂Ω

u(x, t)d(x)λ = 0 loc. unif. in t ≥ 0 (2)

where d(x) is the distance of x ∈ Ω from ∂Ω.
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The main assumption is that the fully nonlinear elliptic operator

F [u] := sup
α∈A

(
−b(x, α) ·Du(x)− tr

(
a(x, α)D2u(x)

))
, (3)

degenerates in the normal direction to the boundary ∂Ω, for all α ∈ A, and the
quantity b(x, α) · Dd(x) + tr(a(x, α)D2d(x)) is positive near ∂Ω (see Assumption
(11)).

This condition is related to the invariance of the set Ω for the controlled diffusion
process associated with the operator F (see [1]). It allows us to prove existence and
uniqueness of a smooth solution to the Cauchy problem associated with (1), without
imposing any boundary condition on ∂Ω, but just the control on the growth (see
Theorem 4.2).

Once the well posedness of the Cauchy problem is established, we investigate the
large time behavior. Our main result states that there exists a unique constant c,
called the ergodic constant, which governs the large time behavior of solutions, in
the following sense: for every bounded continuous initial datum u0, there exists a
constant K, depending only on u0, such that the unique smooth solution to the
Cauchy problem satisfies

u(x, t) + ct− χ(x) +K → 0 as t→ +∞, uniformly in x ∈ Ω.

For the precise statement we refer to Corollary 1 at the end of the paper. The
constant c and the function χ are uniquely defined as the solution of the so called
ergodic problem (or additive eigenvalue problem), that is,{

supα∈A
(
−b(x, α) ·Dχ(x)− tr(a(x, α)D2χ(x))− l(x, α)

)
= c, x ∈ Ω

χ ∈ L∞(Ω), supχ = 0.
(4)

Recently in [1] it has been proved that there exists a unique c such that the
first equation in (4) admits a smooth solution (unique up to additive constants)
satisfying the growth condition

lim
x→∂Ω

χ(x)

log d(x)
= 0.

In this paper, we refine this result, showing that actually the solution χ is bounded
in Ω by using appropriate bounded barriers at the boundary of Ω (see Proposition
2). Moreover, in Proposition 2 we derive some regularity estimates of the solution χ
to (4) up to the boundary of Ω, which in particular imply Hölder regularity of χ up
to the boundary in the 1D case. An interesting open problem is to determine under
which conditions χ is Lipschitz-continuous up to the boundary. Such regularity can-
not be expected in general under our assumptions, as shown in Remark 1 in Section
5. Analogous regularity results for solutions of ergodic problems for linear opera-
tors with singular drift in bounded domains have been obtained in [14]. Moreover
we recall that the generalized Dirichlet problem and the state constraint problem
for Hamilton-Jacobi-Bellman operators in bounded domains has been studied in
[2, 11, 12].

Our methods are mainly based on comparison principle, strong maximum princi-
ple and careful estimates of solutions to (1) up to the boundary of Ω (see Proposition
1).

Finally we recall that large time asymptotic of solutions to fully nonlinear para-
bolic equations have been studied in the periodic setting by Barles and Souganidis
in [4]. More recently, the large time behavior in the periodic setting for possibly
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degenerate Hamilton-Jacobi equations has been treated in [6, 13]. Results on the
large time behaviour of solutions in bounded domains have been obtained by Da
Lio with Neumann boundary conditions in [8], and with state constraint boundary
conditions by Barles, Porretta and Tchamba in [3].

The paper is organized as follows. In Section 2 we specify our assumptions and
set up convenient notations for the development of our study. Section 3 is devoted
to the explicit construction of Lyapunov functions and bounded barriers. In Section
4 we study the well posedness of the Cauchy problem associated with (1) as well as
some ad hoc comparison principles for sub/super solutions satisfying mild growth
conditions at the boundary. Next, in Section 5 we apply these results to the study
of the boundary behavior and the sharp regularity of the solution to (1). Finally,
we establish in Section 6 our main result about the large time convergence towards
a steady state solving a suitable additive eigenvalue problem.

2. Assumptions and notations. Throughout the paper we will assume, if not
otherwise stated, that Ω be a bounded domain in RN with C2 boundary. Let d(x)
be the signed distance function to ∂Ω, i.e.

d(x) := dist(x,Rn\Ω)− dist(x,Ω).

We know, from e.g. [10, Lemma 14.16], that d is of class C2 in some neighborhood
Ωδ of the boundary, where, here and in the sequel,

Ωδ := {x ∈ Ω | d(x) < δ}. (5)

We introduce the fully nonlinear homogeneous operator

F [u] := sup
α∈A

(
−b(x, α) ·Du(x)− tr

(
a(x, α)D2u(x)

))
. (6)

and the Hamilton-Jacobi-Bellman operator

H[u] := sup
α∈A

(
−b(x, α) ·Du(x)− tr(a(x, α)D2u(x))− l(x, α)

)
. (7)

where A is a complete metric space and

b, l : Ω×A→ RN , a : Ω×A→MN×N

are bounded and continuous, MN×N being the space of N ×N real matrices. We
further assume a(x, α) to be symmetric and nonnegative definite for all x, α. This
implies that a ≡ σσT for some σ : Ω×A→MN×r, r ∈ N.

The main regularity assumptions on the coefficients of the operator are the fol-
lowing: there exist B > 0, η ∈ (0, 1], β ∈ (1/2, 1] such that, for all x, y ∈ Ω and
α ∈ A,

|b(x, α)− b(y, α)|, |l(x, α)− l(y, α)| ≤ B|x− y|η (8)

|σ(x, α)− σ(y, α)| ≤ B|x− y|β , (9)

where, even for matrices, | · | stands for the standard Euclidean norm. The reg-
ularity assumption on a is given in terms of its square root σ as it is natural for
applications to stochastic control problems. We recall that if a(·, α) ∈W 2,p(Ω) with
‖a(·, α)‖W 2,p ≤ C for some p > 2N and C > 0 independent of α ∈ A, then it has a
square root σ satisfying (9) with β = 1− N

p .

We assume that the operator is elliptic in the interior of Ω, in the strong sense

a(x, α) > 0 for all x ∈ Ω and α ∈ A (10)
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and that it degenerates at the boundary according to the following condition:

∃ δ, k > 0, γ < 2β − 1 ≤ 1, such that for all x ∈ ∂Ω and α ∈ A,{
σT (x, α)Dd(x) = 0

b(x, α) ·Dd(x) + tr
(
a(x, α)D2d(x)

)
≥ k dγ(x), x ∈ Ω ∩Bδ(x).

(11)

The first condition in (11) means that at any boundary point, the normal is a
direction of degeneracy for F . The second condition can be rewritten as: F [d] ≤
−k dγ in a neighborhood of ∂Ω; it is guaranteed if at the boundary the normal
component of the drift points inward and is sufficiently large. Notice however that
condition (11) does not prevent the function b(·, α) ·Dd(·) + tr(a(·, α)D2d(·)) from
vanishing at the boundary.

We recall that (11) is a sufficient condition for the invariance of the domain Ω
for the stochastic control system with drift b and diffusion σ (see Prop. 6.5 in [1]).

3. Lyapunov functions and barriers at the boundary. In this section we
show that under condition (11) the function V (x) = d(x)−λ, for λ > 0, plays the
role of a Lyapunov function for the system (see also [1]).

Lemma 3.1. Assume that (8), (9), (11) hold. Then for every M ≥ 0 and every
λ > 0, there exists δ > 0 such that d is of class C2 in the set Ωδ defined by (5) and
there holds

−F [d−λ] ≤ F [−d−λ] ≤ −M in Ωδ.

Proof. The first inequality immediately follows from the definition of F . For the
second one we take δ small enough so that d ∈ C2(Ωδ) and we compute, for x ∈ Ωδ,

F [−d−λ] =
λ

dλ+1
sup
α∈A

(
−b(x, α) ·Dd− tr

(
a(x, α)D2d

)
+
λ+ 1

d
|σ(x, α)Dd|2

)
.

Using (9), (11) and choosing x̄ ∈ ∂Ω such that Dd(x) = Dd(x̄), we get for every α

|σ(x, α)Dd(x)|2 = |(σ(x, α)− σ(x̄, α))Dd(x̄)|2 ≤ B2|x− x̄|2β = B2d2β(x). (12)

Then we obtain, using (11) and recalling that γ < 2β − 1,

F [−d−λ] ≤ λ

dλ+1

(
F [d] +B2(λ+ 1)d2β−1

)
≤ λ

dλ+1

(
−kdγ +B2(λ+ 1)d2β−1

)
,

which is smaller than any given −M in Ωδ, provided δ is sufficiently small.

In the following we will also need the existence of strict supersolutions to F = 0
in a neighborhood of the boundary of Ω which are not explosive at the boundary.

Lemma 3.2. Assume that (8), (9), (11) hold. Let ρ ∈ (0, 1 − γ), where γ is the
constant appearing in condition (11). Then for every M > 0 there exists δ small
enough such that the function 1− dρ is C2(Ωδ) and satisfies

−F [1− dρ] ≤ F [dρ − 1] ≤ −M in Ωδ.

Proof. As before, we prove the second inequality, since the first comes from the
definition of F . For δ ∈ (0, 1) small enough we have that the function dρ − 1 is of
class C2 in Ωδ, where it satisfies

F [dρ − 1] = ρdρ−1 sup
α

(
−b(x, α) ·Dd− ρ− 1

d
|σ(x, α)Dd|2 − tr(a(x, α)D2d)

)
.

Then, recalling that 0 < ρ < 1 and the computation (12), we obtain

F [dρ − 1] ≤ ρdρ−1
(
F [d] + (ρ− 1)B2d2β−1

)
.
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Hence, using (11) and choosing ρ < 1− γ, we see that

F [dρ − 1] ≤ ρdγ+ρ−1
(
−k + (ρ− 1)B2d2β−γ−1

)
≤ −M in Ωδ,

provided δ is sufficiently small (depending in particular on k,B, β, γ, ρ,M).

4. The Cauchy problem. We study the following Cauchy problem in the cylinder
Ω× (0,+∞): {

ut +H[u] = 0, x ∈ Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω.
(13)

The initial condition is understood to hold in the classical sense, with u0 ∈ C(Ω) ∩
L∞(Ω). Notice that no boundary condition on ∂Ω is imposed.

The first result is a comparison principle between smooth sub and supersolution
which satisfy an appropriate growth condition at the boundary.

Lemma 4.1. Let u, u ∈ C2,1(Ω× (0, T ])∩C(Ω× [0, T ]) be respectively a sub and a
supersolution to (13) such that

∃ λ > 0, lim sup
x→∂Ω

u(x, t)d(x)λ ≤ 0 ≤ lim inf
x→∂Ω

u(x, t)d(x)λ uniformly in t ∈ [0, T ].

Then u ≤ u in Ω× (0, T ].

Proof. We start with observing that

∀u,w ∈ C2, H[u]− F [w] ≤ H[u− w] ≤ H[u] + F [−w]. (14)

The first inequality implies that the function w := u− u satisfies

wt + F [w] ≥ ut +H[u]− ut −H[u] ≥ 0, x ∈ Ω, t > 0.

Furthermore, w is nonnegative at t = 0 and fulfills the same condition as u at ∂Ω.
We know from Lemma 3.1 that F [−d(x)−λ] < −1 in some Ωδ. Fix T > 0 and call

m := min

{
min

(Ω\Ωδ)×[0,T ]
w , 0

}
.

For ε > 0, the function Vε(x) := m − εd(x)−λ satisfies F [Vε] < 0 in Ωδ, as well as
Vε(x) < m ≤ w(x, t) if d(x) = δ, and also

lim inf
x→∂Ω

(w(x, t)− Vε(x)) = +∞ uniformly in t ∈ [0, T ].

The latter implies that, for δ′ ∈ (0, δ) small enough, w(x, t) > Vε(x) if d(x) = δ′

and t ∈ [0, T ]. Finally, observe that w ≥ Vε at initial time. We can therefore
apply the standard parabolic comparison principle (see, e.g., [15]) in the cylinder
(Ωδ \ Ωδ′) × [0, T ] and infer that w ≥ Vε there. Due to the arbitrariness of δ′ and
ε, this implies that w ≥ m in Ωδ × [0, T ], whence

inf
Ω×[0,T ]

w ≥ min

{
min

(Ω\Ωδ)×[0,T ]
w , 0

}
.

If the above right-hand side were negative, since w ≥ 0 at t = 0, it would be reached
at some (x, t) ∈ (Ω \ Ωδ)× (0, T ], and therefore, by the parabolic strong maximum
principle (see [15]), w would coincide with a negative constant for t ≤ t, which is
impossible. This shows that w ≥ 0 in Ω× [0, T ].

Theorem 4.2. For any u0 ∈ L∞(Ω)∩C(Ω), problem (13) admits a unique solution
u ∈ C2,1(Ω×(0,+∞))∩C(Ω×[0,+∞)) satisfying (2). Moreover, u ∈ L∞(Ω×(0, T ))
for every T > 0.



6 DANIELE CASTORINA, ANNALISA CESARONI AND LUCA ROSSI

Proof. We start by proving existence and interior regularity. Let Ωn := Ω \ Ω1/n

(according to definition (5)), for n sufficiently large, so that Ωn is smooth. Let ξ be
a standard mollifier with support contained in the unit ball and ξn(x) := nNξ(nx)
for n ∈ N. We define u0,n := u0 ∗ ξn and consider the following Cauchy-Dirichlet
problem 

vt +H[v] = 0, x ∈ Ωn, t > 0

v(x, t) = u0,n(x), x ∈ ∂Ωn, t > 0

v(x, 0) = u0,n(x), x ∈ Ωn

(15)

By [15, Theorem 14.18], problem (15) admits a unique solution un ∈ C2,1(Ωn ×
(0,+∞)) ∩ C(Ωn × [0,+∞)).

Let us now fix T > 0 and a compact set Q ⊂ Ω× (0, T ). Then Q ⊂ Ωn × (0, T )
for n larger than some n. Thanks to our assumptions and a covering argument,
we can apply Theorem 1.1 in [18] (see also Remark 1.1 parts (a) and (b) for the
regularity issues regarding u and H respectively) in order to see that there exist
some constants θ ∈ (0, 1] and C > 0 not depending on n such that

∀n > n, ‖D2un‖Cθ,θ/2(Q) ≤ C. (16)

Notice that in principle C depends also on n through the uniform bound ‖un‖L∞(Ωn×[0,T ]),
but we can actually substitute this bound with the uniform bound ‖u0‖L∞(Ω), inde-
pendent of n, because ±‖u0,n‖L∞(Ωn) ± ‖l‖∞t are sub/super solutions of (15) and
thus the standard comparison principle yields

‖un‖L∞(Ωn×[0,T ]) ≤ ‖u0,n‖L∞(Ωn) + ‖l‖∞T ≤ ‖u0‖L∞(Ω) + ‖l‖∞T. (17)

Now, from (15), (16) and the regularity of the coefficients, it follows that the
(∂tun)n>n are uniformly Hölder-continuous in Q in both the x, t variables. The
Ascoli-Arzelà theorem eventually implies that there is a subsequence of (un)n∈N
converging in C2+ζ,1+ζ/2(Q), ζ < θ, to a function u satisfying the first equation
of (13) in Q. Finally, by a diagonal argument, we find a subsequence of (un)n for
which this convergence holds true in any compact subset of Ωn × (0, T ). Notice
that, the limit being just local, we lose the information about the boundary and
the initial behavior of the solution. Observe nevertheless that by (17), we get that
u is bounded in Ω× [0, T ].

We claim now that u ∈ C(Ω × [0,+∞)) and satisfies u(x, 0) = u0(x), that is, it
solves (13). Fix x0 ∈ Ω. For 0 < ε < dist(x0, ∂Ω) consider the function uε0,n ∈ C(Ω)
defined by

uε0,n(x) = max
|z−x0|≤ε

u0,n(z) +
2

ε2
|x− x0|2‖u0,n‖∞.

We compute

H[uε0,n] ≥ −4‖u0,n‖∞
ε2

(‖b‖∞ diam(Ω) +N‖a‖∞)− ‖l‖∞.

Then, we take M ≥ ‖b‖∞ diam(Ω) +N‖a‖∞ and define the function

uεn(x, t) = uε0,n(x) +
4M

ε2
‖u0,n‖∞t+ ‖l‖∞t.

It is easy to check, using our choice of M and noticing that uεn(x, t) ≥ uε0,n(x) ≥
u0,n(x) in Ωn× [0, T ], that uεn(x, t) is a supersolution to (15). Then, by comparison,
we get

un(x, t) ≤ uεn(x, t) x ∈ Ωn, t ≥ 0.



ON A PARABOLIC HJB EQUATION DEGENERATING AT THE BOUNDARY 7

Computing the previous inequality at x = x0 and letting n→ +∞, we obtain

u(x0, t) ≤ max
|z−x0|≤ε

u0(z) +
4M

ε2
‖u0‖∞t+ ‖l‖∞t t ≥ 0.

Now, letting t→ 0, we get

lim sup
t→0

u(x0, t) ≤ max
|z−x0|≤ε

u0(z).

Finally letting ε→ 0, the continuity of u0 yields

lim sup
t→0

u(x0, t) ≤ u0(x0).

Arguing in an analogous way, with the function

uεn(x, t) = min
|z−x0|≤ε

u0,n(z)− 2

ε2
|x− x0|2‖u0,n‖∞ −

4M

ε2
‖u0,n‖∞t− ‖l‖∞t

we also obtain that

lim inf
t→0

u(x0, t) ≥ u0(x0).

We conclude by the arbitrariness of x0. Finally, uniqueness follows from Lemma
4.1.

5. Boundary behavior of the solution. We investigate now the behavior of the
solution u to (13) at the boundary of Ω.

Proposition 1. Let u be the solution to (13), (2) provided by Theorem 4.2. Then
for every ρ ∈ (0, 1− γ), there exists δ̄ ∈ (0, 1) such that for δ < δ̄ it holds

∀ x ∈ Ωδ, t ≥ 1, −δρ+d(x)ρ+ min
(∂Ωδ\∂Ω)×[0,t]

u ≤ u(x, t) ≤ δρ−d(x)ρ+ max
(∂Ωδ\∂Ω)×[0,t]

u.

(18)

Proof. By Lemma 3.2 there exists δ̄ > 0 such that, for x ∈ Ωδ̄,

F [1− d(x)ρ] ≥M, F [d(x)ρ − 1] ≤ −M, with M := 2‖u0‖∞ + ‖l‖∞.
Owing to Lemma 3.1, up to reducing δ̄ if needed, we also have that F [−d(x)−1] ≤ 0
and F [d(x)−1] ≥ 0 in Ωδ̄. Fix t ≥ 1 and, for δ < δ̄ and ε > 0, let us define in
Ωδ̄ × [0, t] the following function:

vε(x, s) := max
∂Ωδ\∂Ω×[0,t]

u+ (1− d(x)ρ)− 1 + δρ + εd(x)−1 − 2(s− t)‖u0‖∞
t

.

This is a C2,1 function which, by (14), satisfies in Ωδ × (0, t],

vεs+H[vε] ≥ −2
‖u0‖∞
t

+F [1−d(x)ρ]−‖l‖∞−εF [−d(x)−1] > −2‖u0‖∞+M−‖l‖∞ = 0.

Moreover vε fulfills the boundary condition

lim inf
x→∂Ω

vε(x, s)d(x) = ε uniformly in s ∈ [0, t],

and, for x ∈ ∂Ωδ \ ∂Ω and s ∈ [0, t],

vε(x, s) = max
∂Ωδ\∂Ω×[0,t]

u+ εδ−1 + 2(t− s)‖u0‖∞
t

≥ max
∂Ωδ\∂Ω×[0,t]

u ≥ u(x, s),

as well as the initial condition

vε(x, 0) ≥ max
∂Ωδ\∂Ω×[0,t]

u+ 2‖u0‖∞ ≥ max
∂Ωδ\∂Ω

u0 + 2‖u0‖∞ ≥ u0(x).
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Then by the comparison principle given by Lemma 4.1 applied with λ = 1 (recall
that u is bounded in Ω× [0, t]) we obtain

u(x, s) ≤ vε(x, s) for x ∈ Ωδ, s ∈ [0, t],

which, computed at s = t and with ε→ 0, eventually implies the second inequality
in (18).

To obtain the first inequality in (18) one argues analogously: define the function

wε(x, s) = min
∂Ωδ\∂Ω×[0,t]

u− 1 + d(x)ρ + 1− δρ − εd(x)−1 + 2(s− t)‖u0‖∞
t

,

and, after observing that

wεs +H[wε] ≤ 2
‖u0‖∞
t

+H[d(x)ρ − 1] + εF [−d(x)−1] ≤ 2‖u0‖∞ −M ≤ 0,

one concludes as before.

We now turn to the ergodic problem

H[χ] = c, in Ω. (19)

The solution χ will be used to derive the large time behavior for the Cauchy problem
(13).

It has been proved in [1] that, under the same standing assumptions as here, there
exists a unique constant c for which (19) admits a solution χ ∈ C2(Ω) satisfying (2).
Moreover χ is unique up to additive constants and actually satisfies the stronger
condition

χ(x) = o(− log(d(x))) as x→ ∂Ω. (20)

However, such condition is not sufficient for our purpose, but we need boundedness.
This is provided by the following.

Proposition 2. Let c ∈ R and χ ∈ C2(Ω) be the solution to (19) satisfying (20).
Then χ ∈ L∞(Ω). In particular, for every ρ ∈ (0, 1− γ), there exists δ̄ ∈ (0, 1) such
that, for every δ ≤ δ̄ and x ∈ Ωδ, there holds

min
∂Ωδ\∂Ω

χ− δρ + d(x)ρ ≤ χ(x) ≤ max
∂Ωδ\∂Ω

χ+ δρ − d(x)ρ. (21)

Proof. First of all notice that χ(x)− ct is an entire solution to the first equation in
(13). Set M = 2|c|+ ‖l‖∞ and consider the associated quantity δ given by Lemma
3.2. Then

−H[1− d(x)ρ] ≤ H[d(x)ρ − 1] ≤ −2|c| for x ∈ Ωδ.

Possibly decreasing δ, we can also assume that −F [d(x)−1] ≤ F [−d(x)−1] ≤ 0 in
Ωδ by Lemma 3.1.

Take now tε < 0 such that

−|c|tε ≥ max
x∈Ωδ

(χ(x)− εd(x)−1)− max
∂Ωδ\∂Ω

χ.

Note that the first maximum above exists due to the fact that χ satisfies (20).
For ε > 0 define in Ωδ × [tε, 0] the function

vε(x, s) = max
∂Ωδ\∂Ω

χ+ (1− d(x)ρ)− 1 + δρ + εd(x)−1 − 2|c|s.

Then vε is in C2,1(Ωδ × [tε, 0]) and satisfies the boundary condition

lim inf
x→∂Ω

vε(x, t)d(x) = ε ≥ 0



ON A PARABOLIC HJB EQUATION DEGENERATING AT THE BOUNDARY 9

uniformly in t ∈ [tε, 0]. Moreover

vεs +H[vε] ≥ −2|c|+H[1− d(x)ρ]− εF [−d(x)−1] ≥ 0.

Finally at x ∈ ∂Ωδ \ ∂Ω, for s ∈ [tε, 0],

vε(x, s) = max
∂Ωδ\∂Ω

χ+ εδ−1 − 2|c|s ≥ max
∂Ωδ\∂Ω

χ− |c|s ≥ χ(x)− cs

and for all x ∈ Ωδ

vε(x, tε) ≥ max
∂Ωδ\∂Ω

χ+ εd(x)−1 − 2|c|tε ≥ χ(x)− ctε

by our choice of tε. Then by the parabolic comparison principle (see Lemma 4.1),
we get that for every ε > 0

χ(x)− cs ≤ vε(x, s) x ∈ Ωδ, s ∈ [tε, 0].

Computing the previous inequality at s = 0, and letting ε → 0, we get the right
hand side of the inequality (21).

The other side is obtained with similar arguments, by considering the function

wε(x, s) = min
∂Ωδ\∂Ω

χ− (1− d(x)ρ) + 1− δρ − εd(x)−1 + 2|c|s

for s ∈ [tε, 0], where tε < 0 satisfies

|c|tε ≤ min
x∈Ωδ

(χ(x) + εd(x)−1)− min
∂Ωδ\∂Ω

χ.

Remark 1. In dimension N = 1 condition (21) implies that χ is Hölder-continuous
in Ω with Hölder exponent up to 1 − γ. Indeed, if Ω = (a, b) then the sets Ωδ are
composed by two disjoint intervals and this allows one to split the estimates (21)
into the following two sets of estimates:

∀ a < x < y < a+δ, χ(y)− (y−a)ρ+(x−a)ρ ≤ χ(x) ≤ χ(y)+(y−a)ρ− (x−a)ρ,

∀ b− δ < y < x < b, χ(y)− (b− y)ρ + (b−x)ρ ≤ χ(x) ≤ χ(y) + (b− y)ρ− (b−x)ρ.

Combining this with standard interior regularity for elliptic equations, we get that
χ ∈ Cρ(Ω) for every ρ ∈ (0, 1− γ).

In general we cannot expect more than Hölder regularity for χ under the hypoth-
esis (11). In particular, if the constant γ there is strictly positive, χ may not be
Lipschitz-continuous in Ω, as shown by the following example. Let Ω be the interval
(0, 1), the set A to be a singleton, a to be a smooth function such that a > 0 for
x ∈ (0, 1), a(x) = x2β for x in a neighborhood of 0 and a(x) = (1− x)2β for x in a
neighborhood of 1 with 2β > 1, b be a smooth function such that b(0) = b(1) = 0,
and l be a smooth function such that l(0) 6= l(1). Assume moreover that there exist
δ, k, γ, with 0 < γ < 2β − 1 such that

∀ x ∈ (0, δ), b(x) ≥ kxγ and ∀ x ∈ (1− δ, 1), b(x) ≤ −k(1− x)γ .

Note that this condition is exactly condition (11), and that is compatible with the
assumption b(0) = b(1) = 0, since γ > 0. The solution χ of (19) solves

χ′′(x) = a(x)−1(−b(x)χ′(x)− l(x)− c), x ∈ (0, 1).
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Define G(x) = −b(x)χ′(x)− l(x)− c. Assume by contradiction that χ is Lipschitz-
continuous in (0, 1), so in particular there exists C > 0 such that |χ′| ≤ C. By our
assumptions on the coefficients,

lim
x→0+

G(x) = −l(0)− c 6= lim
x→1−

G(x) = −l(1)− c.

Then necessarily, either limx→0+ G(x) 6= 0 or limx→1− G(x) 6= 0. Assume to fix the
ideas that limx→0+ G(x) 6= 0 (the other case is completely analogous), then in a
neighborhood of 0 we get that χ′′(x) ≈ a(x)−1 = x−2β . So χ′(x) ≈ x−2β+1 + C,
and this is in contradiction with the Lipschitz-continuity of χ because 1− 2β < 0.

6. Convergence result. In this last section we show that solutions of the Cauchy
problem share the same large time behavior. This will imply our main result.

Theorem 6.1. Let u1, u2 ∈ C2,1(Ω×(0,+∞))∩C(Ω× [0,+∞)) be two solutions to
the first equation in (13) which satisfy the boundary control (2), such that u1 − u2

is bounded and

∀τ > 0, K ⊂⊂ Ω, ∃C > 0, θ ∈ (0, 1], ‖u1−u2‖C2+θ,1+θ/2(K×(τ,+∞)) ≤ C. (22)

Then, as t→ +∞, u1 − u2 converges to a constant uniformly in Ω.

Proof. Consider the difference function w := u1− u2, which is bounded by hypoth-
esis. By Lemmas 3.1 and 3.2, there exist δ ∈ (0, 1) and ρ ∈ (0, 1 − γ) such that
F [−d−1] ≤ −1 and F [dρ − 1] ≤ −2‖w‖∞ in Ωδ. For t > 0 define

m(t) := min
x∈Ω\Ωδ

w(x, t).

Let (tn)n∈N be such that

lim
n→∞

tn = +∞, lim
n→∞

m(tn) = lim inf
t→+∞

m(t) =: m̃ .

Our aim is to show that w = u1 − u2 → m̃ uniformly in Ω as t→ +∞.

Step 1. w(·, ·+ tn)→ m̃ as n→∞, locally uniformly in Ω× (−∞, 0].

By assumption (22), the functions (w(·, ·+ tn))n∈N and their derivatives ∂t, D, D2

are locally uniformly bounded in Ω×R. Moreover, by (14), w solves wt+F [w] ≥ 0.
Thus, as n→∞, w(·, ·+ tn) converges locally uniformly (up to subsequences) to a
supersolution w̃ of the same equation in Ω× R, which satisfies in addition

min
(Ω\Ωδ)×R

w̃ = min
(Ω\Ωδ)×{0}

w̃ = m̃ . (23)

For given T ∈ R and ε > 0, the function v defined by

v(x, t) := ε(t− T − d(x)−1) + m̃

satisfies vt + F [v] ≤ 0 in Ωδ × R. Moreover, for x ∈ Ωδ, v(x, t) < m̃ if t ≤ T , and
v(x, t) < inf w̃ if t is less than some tε ∈ R, that we can suppose to be smaller than
T . We can therefore apply the comparison principle between v and w̃ in Ωδ× [tε, T ]
and deduce in particular that

∀ x ∈ Ωδ, w̃(x, T ) ≥ v(x, T ) = −εd(x)−1 + m̃ .

By the arbitrariness of ε and T , we then infer that w̃ ≥ m̃ in Ωδ × R. Eventually,
by (23), w̃ attains its global minimum m̃ somewhere in Ω \ Ωδ at time 0. The
parabolic strong maximum principle then implies that w̃ = m̃ for all t ≤ 0. We
have shown that w(·, ·+ tn)→ m̃ as n→∞, locally uniformly in Ω× (−∞, 0].

Step 2. w(·, tn)→ m̃ uniformly in Ω as n→∞.
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Definemn,δ := min(y,s)∈(Ω\Ωδ)×[−1,0] w(y, tn+s). Observe that by Step 1, limnmn,δ =
m̃. For given n ∈ N consider the function

v(x, t) = mn,δ − 1 + d(x)ρ + 1− δρ − εd(x)−1 + 2t‖w‖∞.

Using (14) and recalling our definition of δ, we find that

vt + F [v] ≤ 2‖w‖∞ + F [d(x)ρ − 1] + εF [−d(x)−1] ≤ 0, x ∈ Ωδ, t ∈ (−1, 0).

Moreover lim supx→∂Ω v(x, t)d(x) ≤ 0, uniformly in t ∈ (−1, 0), and

∀x ∈ Ωδ, v(x,−1) ≤ mn,δ − 2‖w‖∞ ≤ −‖w‖∞ ≤ w(x, tn − 1).

Finally, if d(x) = δ and t ∈ [−1, 0], then v(x, t) ≤ mn,δ. Then the standard
comparison principle yields

∀x ∈ Ωδ, s ∈ [−1, 0], w(x, t+ tn) ≥ mn,δ + d(x)ρ − δρ − εd(x)−1 + 2s‖w‖∞.

Letting ε→ 0 and computing the inequality at s = 0, we obtain

w(x, tn) ≥ mn,δ + d(x)ρ − δρ ≥ mn,δ − δρ x ∈ Ωδ.

This implies that

mn,δ − δρ ≤ inf
x∈Ω

w(x, tn) ≤ mn,δ.

So, letting n→ +∞, by the arbitrariness of δ we get

lim inf
n

inf
x∈Ω

w(x, tn) = m̃.

Again by Step 1, as n→ +∞ we have

Mn,δ := − max
(y,s)∈(Ω\Ωδ)×[−1,0]

w(y, tn+ s) = min
(y,s)∈(Ω\Ωδ)×[−1,0]

(−w(y, tn+ s))→ −m̃.

Hence repeating the same argument as above for −w (exchanging the role of u1, u2)
we get

lim inf
n

inf
x∈Ω

(−w(x, tn)) = −m̃, i.e. lim sup
n

sup
x∈Ω

w(x, tn) = m̃.

This concludes the proof of the step.

Step 3. w(·, t)→ m̃ uniformly in Ω as t→ +∞.

Define

m(t) := inf
x∈Ω

w(x, t), m(t) := sup
x∈Ω

w(x, t).

For any s > 0, the function u2 +m(s) is a subsolution to the first equation in (13)
and lies below u1 at time t = s. Hence, Lemma 4.1 implies that u2 + m(s) ≤ u1

for all t ≥ s, from which we deduce that t 7→ m(t) is nondecreasing. Analogously,
u2 +m(s) ≥ u1 for all t ≥ s, whence t 7→ m(t) is nonincreasing. It follows that

lim
t→+∞

m(t) = lim
n→∞

m(tn) = m̃ = lim
n→∞

m(tn) = lim
t→+∞

m(t).

This concludes the proof.

Corollary 1. Let u0 ∈ L∞(Ω) ∩ C(Ω) and let u be the unique solution to (13)
satisfying the boundary control (2). Then there exists a constant K, depending only
on ‖u0‖∞, such that

u(x, t) + ct− χ(x) +K → 0 as t→ +∞, uniformly in x ∈ Ω,

where (c, χ) is the bounded solution to (19) normalized by supχ = 0.
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Proof. The result is a straightforward application of Theorem 6.1 to u1(x, t) :=
u(x, t) and u2(x, t) := χ(x)− ct, once we check the assumptions.

We recall that χ is bounded, by Proposition 2. Then, by the comparison principle
of Lemma 4.1, we have that

−‖u0‖∞ ≤ u(x, t)− (χ(x)− ct) ≤ ‖u0‖∞ − inf χ.

This implies that u1−u2 is bounded. The same inequality also implies that u(x, t)+
ct is bounded in Ω× (0,+∞). So, both u(x, t) + ct and χ(x) are globally bounded
solutions to ũt+H[ũ] = c. Let ũ be a solution to ũt+H[ũ] = c, such that ũ ∈ L∞(Ω×
(0,∞)). Arguing as in Theorem 4.2, by Theorem 1.1 in [18], we infer that, for all
τ > 0 and all Ω′ ⊂⊂ Ω, there exist θ, C > 0 such that ‖D2ũ‖Cθ,θ/2(Ω′×(τ,+∞)) ≤ C.

Hence, using the equation, we eventually find that ũ ∈ C2+θ,1+θ/2(Ω′ × (τ,+∞)).
In particular, we have that this estimate holds for both u(x, t) + ct and χ, which
implies that the hypothesis (22) is satisfied.
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