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Abstract. Let Ω be an open connected subset of R
n for which the imbedding

of the Sobolev space W 1,2(Ω) into the space L2(Ω) is compact. We consider
the Neumann eigenvalue problem for the Laplace operator in the open subset
φ(Ω) of R

n, where φ is a Lipschitz continuous homeomorphism of Ω onto φ(Ω).
Then we prove a result of real analytic dependence for symmetric functions
of the eigenvalues upon variation of φ.
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1. Introduction.

This paper concerns the dependence of the Neumann eigenvalues for the Laplace
operator upon domain perturbation, and one of our goals is to consider nonsmooth
domains. Our main results, namely Theorems 2.2 and 2.5 find application in [8],
[9].

To prove our results, we exploit an abstract Theorem in Hilbert space proved
in [7] and concerning the dependence of the eigenvalues of selfadjoint operators
upon perturbation both of the operator and of the scalar product in Hilbert space.

We fix a connected open subset Ω of R
n of finite measure. We consider the

Sobolev space W 1,2(Ω) endowed with its usual norm (cf. (2.1)), and we assume
that W 1,2(Ω) is compactly imbedded into L2(Ω), an assumption which holds under
weak regularity assumptions on Ω (cf. Burenkov [1]), and which implies the validity
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of the Poincaré-Wirtinger inequality. We parametrize our perturbed domain by a
homeomorphism φ of Ω onto φ(Ω) ⊆ R

n. In Continuum Mechanics, φ plays the
role of deformation of the body Ω. We shall assume that φ is Lipschitz continuous
together with its inverse function φ(−1). Then we consider the Neumann eigenvalue
problem in φ(Ω)

∫

φ(Ω)

DvDw dy = λ

∫

φ(Ω)

vw dy ∀w ∈ W 1,2(φ(Ω)) (1.1)

in the unknowns v ∈ W 1,2(φ(Ω)) (the Neumann eigenfunctions), λ ∈ R (the
Neumann eigenvalues.) If φ(Ω) is of class C1, such problem has the well known
classical formulation

−∆v = λv in φ(Ω),
∂v

∂ν
= 0 on ∂φ(Ω),

where −∆ is the Laplace operator, ν is the unit outer normal to ∂φ(Ω). Problem
(1.1) is well known to have an increasing sequence of eigenvalues

0 = λ0[φ] < λ1[φ] ≤ λ2[φ] ≤ · · · , (1.2)

where we write each eigenvalue as many times as its multiplicity. Here we are
interested in the dependence of λj [φ] on φ for all j ∈ N \ {0}. Now, by a standard
procedure, problem (1.1) can be reduced to an eigenvalue problem for a compact
selfadjoint operator in the space W 1,2(φ(Ω))/R endowed with the scalar product
induced by the bilinear form

∫

φ(Ω)

Dv1Dvt
2 dy ∀v1, v2 ∈ W 1,2(φ(Ω)). (1.3)

Clearly, one of the main difficulties here is that the Sobolev space W 1,2(φ(Ω))
changes as φ is perturbed. In order to overcome this difficulty, as often done in
domain perturbation problems (cf. e.g., Pólya and Schiffer [13]), we plan to change
variables in equation (1.1) and to ‘transplant’ our problem into the fixed domain
Ω. Namely, we consider the transformation

v 7→ u = v ◦ φ

which takes an element v of W 1,2(φ(Ω)) to an element u of W 1,2(Ω), and by means
of such transformation we pull back our problem to the fixed domain Ω. In this
way, problem (1.1) can be reduced to an eigenvalue problem for an operator Tφ,N

in the space W 1,2(Ω)/R (see Theorem 2.1.) In particular, all eigenvalues λj [φ],
for j ∈ N \ {0}, coincide with the reciprocals of the eigenvalues of such operator
Tφ,N . The operator Tφ,N turns out to be compact and selfadjoint in the space
W 1,2(Ω)/R with respect to the natural scalar product induced on W 1,2(Ω)/R by
the bilinear form

Qφ[u1, u2] ≡

∫

φ(Ω)

D
(

u1 ◦ φ(−1)
)

D
(

u2 ◦ φ(−1)
)t

dy ∀u1, u2 ∈ W 1,2(Ω) ,

(1.4)
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which is obtained by pulling back (1.3) to Ω. Thus the domain of Tφ,N is fixed but
the corresponding scalar product Qφ depends on φ. As we shall see, both Tφ,N

and Qφ depend analytically on φ.

Then we can resort to the abstract scheme of [7] which is concerned with
families of operators in Hilbert space with variable scalar product and we can prove
our results. Namely, we fix a finite subset F of indices of N \ {0} of cardinality
|F |, and we consider the set AΩ[F ] of φ’s such that the eigenvalues λj [φ] with
j ∈ F do not equal any of the eigenvalues λl[φ] with l /∈ F . We show that AΩ[F ]
is open in the set of admissible φ’s endowed with a Lipschitz norm (cf. Theorem
2.2.) Note that the eigenvalues of (1.1) indexed by j ∈ F can well be multiple.
Then we show that the elementary symmetric functions ΛF,s for s = 1, . . . , |F | of
λj [φ] with j ∈ F depend real analytically on φ, although each λj [φ] is well known
not to be real analytic, or even differentiable on φ, unless the multiplicity is one
(cf. Theorem 2.2.) Also, we note that real analyticity of ΛF,s[φ] in φ is well known
to be stronger than the real analyticity of ΛF,s[φt] in t for all families {φt}t∈I

in
AΩ[F ] depending real analytically on t in some open neighborhood I of 0 in R.
Then our result cannot be derived by the celebrated Theorem of Rellich and Nagy
(cf. Rellich [14, Thm. 1, p. 33].)

At the end of the paper, we compute the first order derivatives of the functions
ΛF,s at a point φ̃ such that the eigenvalues λj [φ̃] coincide for all j ∈ F .

We point out that other authors have used different methods to ‘transplant’
equation (1.1) to the fixed domain Ω. Their methods lead to the rather simpler
case of families of compact selfadjoint operators in a Hilbert space with a fixed
scalar product (cf. e.g., Micheletti [11].) However such methods require stronger
regularity assumptions on the map φ, which we do not want to assume, as we are
interested in nonsmooth domains.

2. The real analyticity Theorem

We first introduce some technical preliminaries and notation. Let X , Y, Z be real
Banach spaces. We denote by L (X ,Y) the Banach space of linear and continuous
maps of X to Y endowed with its usual norm of the uniform convergence on the unit
sphere of X . We denote by Bs (X × Y,Z) the space of the bilinear symmetric and
continuous maps of X ×Y to Z endowed with the norm of the uniform convergence
on the cross product of the unit sphere of X and of the unit sphere of Y. We say
that the space X is continuously imbedded in the space Y provided that X is a
linear subspace of Y, and that the inclusion map is continuous. We denote by Z

the set of integer numbers, and by N the set of natural numbers including 0. The
inverse function of an invertible function f is denoted f (−1), as opposed to the
reciprocal of a complex-valued function g, or the inverse of a matrix A, which are
denoted g−1 and A−1, respectively. We denote by Mm(R) the set of m×m matrices
with real entries, and by Sm(R) the set of the symmetric elements of Mm(R). If
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A ∈ Mm(R), we denote by At the transpose matrix of A. If A is invertible, we set

A−t ≡
(

A−1
)t

. All elements of R
n are thought as row vectors.

Let Ω be an open subset of R
n. We denote by clΩ the closure of Ω and by ∂Ω

the boundary of Ω. Throughout this paper, we shall consider only case n ≥ 2. We
denote by L2(Ω) the space of square summable real valued measurable functions
defined on Ω, and by W 1,2(Ω) the Sobolev space of distributions in Ω which have
weak derivatives up to the first order in L2(Ω), endowed with the norm defined by

‖u‖W 1,2(Ω) ≡

{

‖u‖2
L2(Ω) +

n
∑

l=1

‖uxl
‖2

L2(Ω)

}1/2

∀u ∈ W 1,2(Ω) . (2.1)

Now, we are interested in open connected subsets Ω of R
n of finite measure |Ω|

such that

W 1,2(Ω) is compactly imbedded in L2(Ω) . (2.2)

As is well known, if (2.2) holds, then the Poincaré-Wirtinger inequality holds in
Ω (cf. e.g., Evans [2, Proof of Thm. 1, p. 275].) Then we deform Ω by a Lipschitz
continuous homeomorphism of the class AΩ which we now introduce. We denote
by Lip(Ω) the set of Lipschitz continuous functions of Ω to R, and we set

AΩ ≡

{

φ ∈ (Lip(Ω))
n

: (2.3)

lΩ[φ] ≡ inf

{

|φ(x) − φ(y)|

|x − y|
: x, y ∈ Ω, x 6= y

}

> 0

}

.

We note that

lΩ[φ] ≤ |det Dφ(x)|
1/n

, (2.4)

for almost all x ∈ Ω (cf. [10, Lem. 4.22].) Clearly, AΩ coincides with the set of
injections φ of Ω into R

n such that both φ and φ(−1) are Lipschitz continuous. Now
it can be verified that if Ω satisfies (2.2) and if φ ∈ AΩ, then φ(Ω) also satisfies (2.2)
(cf. [5, §2].) Accordingly, the Neumann eigenvalue problem (1.1) has a sequence of
eigenvalues as in (1.2). In this paper we are interested in the dependence of λj [φ]
on φ for all j ∈ N \ {0}. Thus we need to introduce a topology in AΩ. As usual,
we introduce the seminorm

|f |1 ≡ sup

{

|f(x) − f(y)|

|x − y|
: x, y ∈ Ω, x 6= y

}

∀f ∈ Lip(Ω) ,

on Lip(Ω). It is easily seen that AΩ is open in (Lip(Ω))
n

(cf. [10, Prop. 4.29],
[7, Thm. 3.11].) As is well known, (Lip(Ω), | · |1) is a complete seminormed space.
However, we prefer to deal with a normed space, rather than with a seminormed
space. Then we will state our results for an arbitrary Banach space XΩ, contin-
uously imbedded in (Lip(D), | · |1). Alternatively, one could also endow Lip(Ω)
with a norm which renders Lip(Ω) a Banach space continuously imbedded in
(Lip(Ω), | · |1), and take XΩ equal to such Banach space.

As we have said in the introduction, one of the main difficulties in analyz-
ing problem (1.1) upon perturbation of φ is that the domain φ(Ω), on which the
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Sobolev space W 1,2(φ(Ω)) is defined, changes as φ is perturbed. In order to over-
come this difficulty, we plan to change the variables in problem (1.1) by means
of φ, and to obtain a problem in W 1,2(Ω). Actually, we will obtain a problem in
W 1,2(Ω)/R, as we need to get rid of the constants which generate the eigenspace
corresponding to the trivial eigenvalue λ0[φ] = 0. See Theorem 2.1.

To do so, we need to introduce some notation, under the assumption that Ω
is a nonempty open connected subset of R

n, and that φ ∈ AΩ. We denote by I
the canonical imbedding of W 1,2(Ω) into L2(Ω). We denote by Jφ the operator of

L2(Ω) to the strong dual
(

W 1,2(Ω)
)′

which takes u ∈ L2(Ω) to the the functional

Jφ[u] ∈
(

W 1,2(Ω)
)′

defined by

Jφ[u][w] ≡

∫

Ω

uw|detDφ| dx ∀w ∈ W 1,2(Ω) . (2.5)

We set

W 1,2,0
φ (Ω) ≡

{

u ∈ W 1,2(Ω) :

∫

Ω

u|detDφ| dx = 0

}

.

Then we simply write W 1,2,0(Ω) in case φ is the identity. We also find convenient to
denote by w1,2,0(Ω) the space W 1,2,0(Ω) endowed with the energy scalar product

< u1, u2 >≡

∫

Ω

Du1Dut
2 dx ∀u1, u2 ∈ W 1,2,0(Ω) . (2.6)

We denote by πφ the map of W 1,2(Ω) to W 1,2,0
φ (Ω) defined by

πφ[u] = u −

∫

Ω
u|detDφ| dx

∫

Ω
|detDφ| dx

,

for all u ∈ W 1,2(Ω). If φ is the identity, we write π instead of πφ. We denote by

π♯
φ the map of W 1,2(Ω)/R onto W 1,2,0

φ (Ω) defined by equality πφ = π♯
φ ◦ p, where

p is the canonical projection of W 1,2(Ω) onto the quotient W 1,2(Ω)/R. We denote

by Q♯
φ the bilinear form

Q♯
φ[p[u1], p[u2]] ≡ Qφ[u1, u2] ∀u1, u2 ∈ W 1,2(Ω),

which is clearly a scalar product on the quotient W 1,2(Ω)/R. We denote by

w1,2
φ (Ω)/R the quotient W 1,2(Ω)/R endowed with Q♯

φ. Then we write simply

w1,2(Ω)/R in case φ is the identity. Thus w1,2(Ω)/R is endowed with its usual

energy scalar product. We denote by ∆φ,N the operator of W 1,2,0
φ (Ω) to

F(Ω) ≡
{

F ∈
(

W 1,2(Ω)
)′

: F [1] = 0
}

,

which takes u ∈ W 1,2,0
φ (Ω) to the element ∆φ,N [u] of F(Ω) defined by equality

∆φ,N [u][w] = −Qφ[u,w] ∀w ∈ W 1,2(Ω). (2.7)

If φ is the identity, we write ∆N instead of ∆φ,N .
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Then we have the following Theorem which states that the eigenvalues λj [φ]
coincide with the reciprocals of the eigenvalues of a suitable compact selfadjoint
operator Tφ,N in w1,2

φ (Ω)/R.

Theorem 2.1. Let Ω be a nonempty open connected subset of R
n of finite measure.

Let (2.2) hold. Let φ ∈ AΩ. Then the following statements hold.

(i) The operator ∆φ,N of W 1,2,0
φ (Ω) onto F(Ω) is a linear homeomorphism, and

the operator Tφ,N ≡ −
(

π♯
φ

)(−1)

◦∆
(−1)
φ,N ◦Jφ◦I◦π♯

φ is compact and selfadjoint

in w1,2
φ (Ω)/R.

(ii) The pair (λ, v) of the set R ×
(

w1,2,0(φ(Ω)) \ {0}
)

satisfies equation (1.1)

if and only if λ > 0 and the pair
(

µ ≡ λ−1, ŭ ≡ p[v ◦ φ]
)

of the set R ×
((

w1,2
φ (Ω)/R

)

\ {0}
)

satisfies equation

µŭ = Tφ,N ŭ . (2.8)

(iii) Equation (2.8) has a decreasing sequence {µj [φ]}j∈N\{0} of eigenvalues in

]0,+∞[, and µj [φ] = λ−1
j [φ] for all j ∈ N \ {0}, where {λj [φ]}j∈N\{0} is the

sequence of all the nonzero eigenvalues of (1.1) counted with their multiplicity.
Each eigenvalue of (1.1), or of (2.8) has finite multiplicity.

A proof of Theorem 2.1 can be obtained by a standard argument (see [5,

Thm. 2.8, Prop. 2.10].) Finally, we shall also need the scalar product Q̂φ on
W 1,2(Ω) defined by

Q̂φ[u1, u2] ≡

∫

Ω

u1u2|detDφ| dx + Qφ[u1, u2] ∀u1, u2 ∈ W 1,2(Ω) .

We are now ready to prove the following.

Theorem 2.2. Let Ω be a nonempty open connected subset of R
n of finite measure

satisfying (2.2). Let XΩ be a normed space continuously imbedded in Lip(Ω). Let
F be a finite nonempty subset of N \ {0}. Let

AΩ[F ] ≡ {φ ∈ AΩ ∩ Xn
Ω : λl[φ] /∈ {λj [φ] : j ∈ F} ∀l ∈ N \ (F ∪ {0})} .

Then the following statements hold.

(i) The set AΩ[F ] is open in Xn
Ω . The map P̂F of the set AΩ[F ] to the space

L
(

W 1,2(Ω),W 1,2(Ω)
)

which takes φ ∈ AΩ[F ] to the orthogonal projection

P̂F [φ] of
(

W 1,2(Ω), Q̂φ

)

onto the (finite dimensional) subspace Ê[φ, F ] gen-

erated by the set
{

u ∈ W 1,2,0
φ (Ω) : −∆N

[

u ◦ φ(−1)
]

= λj [φ]J ◦ I
[

u ◦ φ(−1)
]

for some j ∈ F
}

is real analytic.
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(ii) Let s ∈ {1, . . . , |F |}. The function ΛF,s of AΩ[F ] to R defined by

ΛF,s[φ] ≡
∑

j1,...,js∈F j1<···<js

λj1 [φ] · · ·λjs
[φ] ∀φ ∈ AΩ[F ]

is real analytic.

Proof. We shall prove the statement by exploiting an abstract result of [7, §2]. To

do so, we need to introduce some notation. We denote by Bs

(

(

w1,2(Ω)/R
)2

, R
)

the normed space of symmetric bilinear and continuous functions of
(

w1,2(Ω)/R
)2

to R. Then we set

Q
(

(

w1,2(Ω)/R
)2

, R
)

≡

{

B ∈ Bs

(

(

w1,2(Ω)/R
)2

, R
)

:

η [B] ≡ inf

{

B[ŭ, ŭ]

‖ŭ‖
2
w1,2(Ω)/R

: ŭ ∈
(

w1,2(Ω)/R
)

\ {0}

}

> 0

}

.

Clearly, Q
(

(

w1,2(Ω)/R
)2

, R
)

is the set of scalar products on w1,2(Ω)/R which

induce on w1,2(Ω)/R the topology of w1,2(Ω)/R. Also, it is can be readily checked

that Q
(

(

w1,2(Ω)/R
)2

, R
)

is an open subset of Bs

(

(

w1,2(Ω)/R
)2

, R
)

(cf. [7, §2].)

Then we set

OΩ ≡

{

(Q,T ) ∈ Q

((

w1,2(Ω)/R

)2

, R

)

× L
(

w1,2(Ω)/R, w1,2(Ω)/R
)

: (2.9)

T is compact and selfadjoint in
(

w1,2(Ω)/R, Q
)

}

.

If T is compact and selfadjoint in
(

w1,2(Ω)/R, Q
)

for a Q ∈ Q
(

(

w1,2(Ω)/R
)2

, R
)

,

then the spectrum σ[T ] of T is finite or countable and each element of σ[T ] dif-
ferent form zero is an eigenvalue of T of finite multiplicity. We denote by j+ [T ]
the (possibly infinite) number of elements of σ [T ]∩]0,+∞[, each counted with
its multiplicity, and we denote by j− [T ] the (possibly infinite) number of ele-
ments of σ [T ]∩] − ∞, 0[, each counted with its multiplicity. We need to enu-
merate the eigenvalues of T in a suitable way. To do so, we also set J+ [T ] ≡
{j ∈ Z : 1 ≤ j ≤ j+ [T ]}, J− [T ] ≡ {j ∈ Z : −j− [T ] ≤ j ≤ −1}. Then there exists
a uniquely determined function j 7→ µj [T ] of J [T ] ≡ J− [T ] ∪ J+ [T ] to R \ {0}
such that j 7→ µj [T ] is decreasing on J− [T ] and on J+ [T ], and such that

σ [T ] \ {0} = {µj [T ] : j ∈ J [T ]} ,

and such that each eigenvalue µj [T ] is repeated as many times as its multiplicity.
Then we consider the set

A[F ] ≡ {(Q,T ) ∈ OΩ : F ⊆ J [T ], (2.10)

µl[T ] /∈ {µj [T ] : j ∈ F} ∀l ∈ J [T ] \ F} .
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By [7, §2], the set A[F ] is open in OΩ. The gradient operator D is obviously

linear and continuous from (Lip(Ω))
n

to (L∞(Ω))
n2

. Then we note that the op-
erator ∆φ,N [·] can be defined on all of W 1,2(Ω) by use of equality (2.7). Since
linear and bilinear continuous operators are real analytic, and Xn

Ω is continuously
imbedded in (Lip(Ω))

n
, we conclude that the maps which take φ ∈ AΩ ∩ Xn

Ω

to ∆φ,N , and to Jφ, and to Q♯
φ, and to π♯

φ are real analytic from AΩ ∩ Xn
Ω

to the space L
(

W 1,2(Ω),F(Ω)
)

, and to the space L
(

L2(Ω),
(

W 1,2(Ω)
)′

)

, and

to Q
(

(

w1,2(Ω)/R
)2

, R
)

, and to the space L
(

w1,2(Ω)/R,W 1,2(Ω)
)

, respectively.

Then ∆φ,N ◦ π♯
φ is real analytic in φ from AΩ ∩ Xn

Ω to L
(

w1,2(Ω)/R,F(Ω)
)

, and

Jφ ◦ I ◦ π♯
φ is real analytic in φ from AΩ ∩Xn

Ω to L
(

w1,2(Ω)/R,
(

W 1,2(Ω)
)′

)

, and

thus to L
(

w1,2(Ω)/R,F(Ω)
)

(cf. (2.5).) Since the map which takes an operator into

its inverse is real analytic on the set of invertible operators in L
(

w1,2(Ω)/R,F(Ω)
)

(cf. e.g., Hille and Phillips [3, Thms. 4.3.2, 4.3.4]), it follows that the map φ 7→
(

Q♯
φ, Tφ,N

)

is real analytic from AΩ ∩ Xn
Ω to OΩ. By Theorem 2.1 (iii), the set

AΩ[F ] coincides with the set
{

φ ∈ AΩ ∩ Xn
Ω :

(

Q♯
φ, Tφ,N

)

∈ A[F ]
}

.

Since A[F ] is open in OΩ, and
(

Q♯
φ, Tφ,N

)

is continuous in φ ∈ AΩ ∩ Xn
Ω , we

conclude that AΩ[F ] is open in Xn
Ω . Now let φ̃ ∈ AΩ[F ] be fixed. By [7, Thm. 2.18],

there exists an open neighborhood W̃ of
(

Q♯

φ̃
, Tφ̃,N

)

in Q
(

(

w1,2(Ω)/R
)2

, R
)

×

L
(

w1,2(Ω)/R, w1,2(Ω)/R
)

, and a real analytic operator P ♯
F of W̃ to the space

L
(

w1,2(Ω)/R, w1,2(Ω)/R
)

such that P ♯
F [Q,T ] equals the orthogonal projection

PF [Q,T ] of
(

w1,2(Ω)/R, Q
)

onto the subspace E[T, F ] generated by the set
{

ŭ ∈ w1,2(Ω)/R : T ŭ = µŭ, for some µ ∈ {µj [T ] : j ∈ F}
}

,

for all (Q,T ) ∈ W̃ ∩ A[F ]. Now let W1 be an open neighborhood of φ̃ in AΩ[F ]

such that (Q♯
φ, Tφ,N ) ∈ W̃ for all φ ∈ W1. Such W1 exists by continuity of

(Q♯
φ, Tφ,N ) in the variable φ. Then we have PF

[

Q♯
φ, Tφ,N

]

= P ♯
F

[

Q♯
φ, Tφ,N

]

for

all φ ∈ W1, and thus the map φ 7→ PF

[

Q♯
φ, Tφ,N

]

is real analytic from W1 to

L
(

w1,2(Ω)/R, w1,2(Ω)/R
)

. Now we note that

π♯
φ[E[Tφ,N , F ]] = Ê[φ, F ], P̂F [φ] = π♯

φ ◦ PF [Q♯
φ, Tφ,N ] ◦ p , (2.11)

for all φ ∈ W1 (see also [5, (2.37) p. 131]). Since π♯
φ depends real analytically on

φ, we conclude that statement (i) follows. We now prove statement (ii). Thus we
consider the functions MF,s[·] of A[F ] to R defined by

MF,s[T ] ≡
∑

j1,...,js∈F, j1<···<js

µj1 [T ] · · ·µjs
[T ] ∀s ∈ {1, . . . , |F |} , (2.12)
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for all (Q,T ) ∈ A[F ]. Possibly shrinking W̃, [7, Thm. 2.30] ensures that there exist

real analytic functions M ♯
F,s[·, ·] for s = 1, . . . , |F | of W̃ to R such that

M ♯
F,s[Q,T ] = MF,s[T ] (2.13)

for all (Q,T ) ∈ W̃ ∩ A[F ], and for all s = 1, . . . , |F |. Since µj [Tφ,N ] = µj [φ] =
λ−1[φ], we have

ΛF,s[φ] =
MF,|F |−s[Tφ,N ]

MF,|F |[Tφ,N ]
s = 1, . . . , |F | , (2.14)

where MF,0[Tφ,N ] ≡ 1, and statement (ii) follows. ¤

Then we have the following immediate Corollary.

Corollary 2.3. Let Ω be a nonempty open connected subset of R
n of finite measure

satisfying (2.2). Let F be a finite nonempty subset of N \ {0}. Let

ΘΩ[F ] ≡ {φ ∈ AΩ[F ] : λj [φ] have a common value λF [φ] ∀j ∈ F} . (2.15)

Then the real analytic functions

(

(

|F |
1

)−1

ΛF,1[·]

)
1

1

, . . . ,

(

(

|F |
|F |

)−1

ΛF,|F |[·]

)
1

|F |

,

of AΩ[F ] to R coincide on ΘΩ[F ] with the function which takes φ to λF [φ].

Roughly speaking, the previous Corollary says that multiple eigenvalues de-
pend analytically on the domain, as long as their multiplicity do not change, which
is a known fact for simple eigenvalues (in case of smooth domains and Dirichlet
boundary conditions, we refer to [6] for a similar result.)

We conclude this section by computing the first order derivatives of the func-
tions ΛF,s[·] at a point φ̃ ∈ ΘΩ[F ].

Let Ω be an open subset of R
n. As customary, we denote by W 2,2(Ω) the

Sobolev space of distributions in Ω with derivatives of order less or equal to 2 in
L2(Ω), and by W 1,∞(Ω) the space of distributions in Ω with derivatives of order
less or equal to 1 in L∞(Ω). Then we have the following technical Lemma.

Lemma 2.4. Let Ω be a nonempty open connected subset of R
n of finite measure

satisfying (2.2). Let XΩ be a normed space continuously imbedded in Lip(Ω). Let

F be a finite nonempty subset of N \ {0}. Let φ̃ ∈ ΘΩ[F ]. Let ũ1, ũ2 ∈ W 1,2(Ω) be

such that p[ũ1], p[ũ2] be two eigenvectors corresponding to the eigenvalue λ−1
F [φ̃]
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of the operator Tφ̃,N . Then we have that

Q♯

φ̃

[{

d|φ=φ̃ [Tφ,N ] [ψ]
}

[p[ũ1]] , p[ũ2]
]

= (2.16)

λ−1
F [φ̃]

{

∫

φ̃(Ω)

Dṽ1

[

D
(

ψ ◦ φ̃(−1)
)

+ D
(

ψ ◦ φ̃(−1)
)t

]

Dṽt
2 dy

−

∫

φ̃(Ω)

Dṽ1Dṽt
2div

(

ψ ◦ φ̃(−1)
)

dy

}

+

∫

φ̃(Ω)

π[ṽ1]π[ṽ2]div
(

ψ ◦ φ̃(−1)
)

dy ,

for all ψ ∈ Xn
Ω , where ṽ1 ≡ ũ1 ◦ φ̃(−1), ṽ2 ≡ ũ2 ◦ φ̃(−1). If we further assume that

ṽ1, ṽ2 ∈ W 2,2(φ̃(Ω)), then the right hand side of (2.16) equals

−λ−1
F [φ̃]

∫

φ̃(Ω)

div
[(

Dṽ1Dṽt
2 − λF [φ̃]π[ṽ1]π[ṽ2]

) (

ψ ◦ φ̃(−1)
)]

dy , (2.17)

for all ψ ∈ (Lip(Ω) ∩ L∞(Ω))
n
.

Proof. To shorten our notation, we set λ̃ ≡ λF [φ̃]. By standard Calculus in Banach

space, and by the obvious equality ∆φ̃,Nπ♯

φ̃
[p[ũi]] = −λ̃Jφ̃◦I◦π♯

φ̃
[p[ũi]], for i = 1, 2,

and by the symmetry of Q♯

φ̃
, and by the definition of ∆φ̃,N , the left hand side of

(2.16) equals

Q♯

φ̃

[

(

π♯

φ̃

)(−1)

◦
(

∆φ̃,N

)(−1)

◦
(

d|φ=φ̃

(

∆φ,N ◦ π♯
φ

)

[ψ]
)

◦ (2.18)

◦
(

π♯

φ̃

)(−1)

◦
(

∆φ̃,N

)(−1)

◦ Jφ̃ ◦ I ◦ π♯

φ̃
[p[ũ1]], p[ũ2]

]

−Q♯

φ̃

[

(

π♯

φ̃

)(−1)

◦
(

∆φ̃,N

)(−1)

◦
(

d|φ=φ̃

(

Jφ ◦ I ◦ π♯
φ

)

[ψ]
)

[p[ũ1]], p[ũ2]

]

= −

{

(

d|φ=φ̃

(

∆φ,N ◦ π♯
φ

)

[ψ]
)

◦
(

π♯

φ̃

)(−1)

◦

◦
(

∆φ̃,N

)(−1)

◦ Jφ̃ ◦ I ◦ π♯

φ̃
[p[ũ1]]

}

[

π♯

φ̃
[p[ũ2]]

]

+
{(

d|φ=φ̃

(

Jφ ◦ I ◦ π♯
φ

)

[ψ]
)

[p[ũ1]]
} [

π♯

φ̃
[p[ũ2]]

]

= λ̃−1
{

d|φ=φ̃ (∆φ,N ◦ πφ[ũ1]) [ψ]
} [

πφ̃[ũ2]
]

+
{

d|φ=φ̃ (Jφ ◦ I ◦ πφ[ũ1]) [ψ]
} [

πφ̃[ũ2]
]

,

for all ψ ∈ Xn
Ω . We now compute d|φ=φ̃ {(Jφ ◦ I ◦ πφ[ũ1]) [ψ]}

[

πφ̃[ũ2]
]

. By stan-

dard calculus, it is easy to see that
[(

d|φ=φ̃ (detDφ) [ψ]
)

◦ φ̃(−1)
]

detDφ̃(−1) = div
(

ψ ◦ φ̃(−1)
)

, (2.19)
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and that the map of A ≡ {f ∈ L∞(Ω) : ess infΩ |f | > 0} to L∞(Ω) which takes f
to |f | is differentiable, and that for all f ∈ A, its differential at f is the map of
L∞(Ω) to itself which maps h to sgn(f)h. Then by (2.19), and by changing the

variables with the map φ̃ (cf. Reshetnyak [15, Thm. 2.2, p. 99]), and by equality
∫

Ω
πφ̃[ũ2]|detDφ̃| dx = 0, we obtain

d|φ=φ̃ {(Jφ ◦ I ◦ πφ[ũ1]) [ψ]}
[

πφ̃[ũ2]
]

(2.20)

=

∫

Ω

πφ̃[ũ1]πφ̃[ũ2]d|φ=φ̃ (|detDφ|) [ψ] dx

=

∫

φ̃(Ω)

(

πφ̃[ũ1] ◦ φ̃(−1)
)(

πφ̃[ũ2] ◦ φ̃(−1)
)

div
(

ψ ◦ φ̃(−1)
)

dy .

We now compute
{

d|φ=φ̃ (∆φ,N ◦ πφ[ũ1]) [ψ]
} [

πφ̃[ũ2]
]

. To shorten our notation,

we find convenient to set Gφ ≡ (Dφ)
−1

(Dφ)
−t

. Then by definition of ∆φ,N , we
obtain

{

d|φ=φ̃ (∆φ,N ◦ πφ[ũ1]) [ψ]
} [

πφ̃[ũ2]
]

= (2.21)

−

∫

Ω

Dũ1

(

d|φ=φ̃Gφ[ψ]
)

Dũt
2|detDφ̃| dx

−

∫

Ω

Dũ1Gφ̃Dũt
2d|φ=φ̃ (|detDφ|) [ψ] dx .

By equality (2.19), we have
∫

Ω

Dũ1Gφ̃Dũt
2d|φ=φ̃ (|detDφ|) [ψ] dx =

∫

φ̃(Ω)

Dṽ1Dṽt
2div

(

ψ ◦ φ̃(−1)
)

dy . (2.22)

We now observe that
[

d|φ=φ̃Gφ[ψ]
]

◦ φ̃(−1) = (2.23)

−D
(

φ̃(−1)
)

[

D
(

ψ ◦ φ̃(−1)
)

+ D
(

ψ ◦ φ̃(−1)
)t

]

D
(

φ̃(−1)
)t

.

Then, by another change of variables, we obtain
∫

Ω

Dũ1

(

d|φ=φ̃Gφ[ψ]
)

Dũt
2|detDφ̃| dx (2.24)

= −

∫

φ̃(Ω)

Dṽ1

[

D
(

ψ ◦ φ̃(−1)
)

+ D
(

ψ ◦ φ̃(−1)
)t

]

Dṽt
2 dy .

By the above equalities, it follows that (2.16) holds. We now consider the case in

which we further assume that ṽ1, ṽ2 ∈ W 2,2(φ̃(Ω)). To shorten our notation, we

set ω ≡ (ωs)s=1,...,n where ωs = ψs ◦ φ̃(−1) and ψ = (ψs)s=1,...,n. Since lΩ[φ̃] > 0,

then φ̃(−1) is Lipschitz continuous on φ̃(Ω), and thus ω is also Lipschitz contin-

uous on φ̃(Ω), and the functions ωs have essentially bounded first order distri-

butional derivatives. Since ψ ∈ (L∞(Ω))
n
, the Lipschitz continuity of φ̃(−1) in
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φ̃(Ω) ensures that ω ∈
(

L∞(φ̃(Ω))
)n

. Then we have ω ∈
(

W 1,∞(φ̃(Ω))
)n

, and

ωDṽt
r ∈ W 1,2(φ̃(Ω)) for r = 1, 2. Now we note that

Dṽ1

(

Dω + Dωt
)

Dṽt
2 (2.25)

= div
(

(ωDṽt
1)Dṽ2 + (ωDṽt

2)Dṽ1 − (Dṽ1Dṽt
2)ω

)

−
[

(ωDṽt
1)∆ṽ2 + (ωDṽt

2)∆ṽ1

]

+ (Dṽ1Dṽt
2)divω ,

where ∆ denotes the Laplacian (in the sense of distributions) applied to a function

of W 2,2(φ̃(Ω)). Since ωDṽt
r ∈ W 1,2(φ̃(Ω)), and π[ṽr] is an eigenvector correspond-

ing to the eigenvalue λ̃ of problem (1.1) for φ = φ̃ and for r = 1, 2, we have
∫

φ̃(Ω)

D
(

ωDṽt
r

)

Dṽt
s dy = λ̃

∫

φ̃(Ω)

(

ωDṽt
r

)

π[ṽs] dy , (2.26)

for r, s = 1, 2. Since ṽs ∈ W 2,2(φ̃(Ω)) and ∆ṽs = −λ̃π[ṽs] in φ̃(Ω) for s = 1, 2
equality (2.26) and Leibnitz rule for derivation implies that

∫

φ̃(Ω)

div
[(

ωDṽt
r

)

Dṽs

]

dy = 0 r, s = 1, 2 . (2.27)

Then by equalities (2.25) and (2.27), we have
∫

φ̃(Ω)

Dṽ1

(

Dω + Dωt
)

Dṽt
2 (2.28)

= −

∫

φ̃(Ω)

div
[

(Dṽ1Dṽt
2)ω

]

dy + λ̃

∫

φ̃(Ω)

[

(ωDṽt
1)π[ṽ2] + (ωDṽt

2)π[ṽ1]
]

dy

+

∫

φ̃(Ω)

Dṽ1Dṽt
2divω dy .

Then by equality (2.28), the right hand side of equality (2.16) equals

−λ̃−1

∫

φ̃(Ω)

div
[

(Dṽ1Dṽt
2)ω

]

dy (2.29)

+

∫

φ̃(Ω)

(ωDṽt
1)π[ṽ2] + (ωDṽt

2)π[ṽ1] + π[ṽ1]π[ṽ2]divω dy .

Now we note that

∫

φ̃(Ω)

(ωDṽt
1)π[ṽ2] dy (2.30)

=

∫

φ̃(Ω)

div [π[ṽ1]π[ṽ2]ω] dy −

∫

φ̃(Ω)

π[ṽ1]π[ṽ2]divω dy −

∫

φ̃(Ω)

(ωDṽt
2)π[ṽ1]dy .

Then equality (2.17) follows by (2.29).
¤

Then we have the following.
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Theorem 2.5. Let Ω be a nonempty open connected subset of R
n of finite measure

satisfying (2.2). Let XΩ be a normed space continuously imbedded in Lip(Ω). Let F

be a finite nonempty subset of N\{0}. Let ΘΩ[F ] be as in (2.15). Let φ̃ ∈ ΘΩ[F ]. Let
ṽ1,. . . ,ṽ|F | be an orthonormal basis of the eigenspace associated to the eigenvalue

λF [φ̃] of −∆N in w1,2,0(φ̃(Ω)), where the orthonormality is taken with respect to
the scalar product of (1.3). Let s ∈ {1, . . . , |F |}. Then we have

d|φ=φ̃ (ΛF,s) [ψ] (2.31)

= −λs
F [φ̃]

(

|F | − 1
s − 1

) |F |
∑

l=1

{

∫

φ̃(Ω)

[

λF [φ̃]ṽ2
l − |Dṽl|

2
]

div
(

ψ ◦ φ̃(−1)
)

dy

+

∫

φ̃(Ω)

Dṽl

[

D
(

ψ ◦ φ̃(−1)
)

+ D
(

ψ ◦ φ̃(−1)
)t

]

Dṽt
l dy

}

,

for all ψ ∈ Xn
Ω . If we further assume that ṽl ∈ W 2,2(φ̃(Ω)) for l = 1, . . . , |F |, then

the right hand side of (2.31) equals

λs
F [φ̃]

(

|F | − 1
s − 1

) |F |
∑

l=1

∫

φ̃(Ω)

div
[(

|Dṽl|
2
− λF [φ̃]ṽ2

l

)(

ψ ◦ φ̃(−1)
)]

dy , (2.32)

for all ψ ∈ (Lip(Ω) ∩ L∞(Ω))
n
.

Proof. We set ũl = ṽl ◦ φ̃, for all l = 1, . . . , |F |. Clearly p[ũl], l = 1, . . . , |F | is an

orthonormal basis of the eigenspace associated to the eigenvalue λ−1
F [φ̃] of Tφ̃,N in

w1,2

φ̃
(Ω)/R. We first consider case |F | > 1. Let MF,s, M ♯

F,s be as in the proof of

Theorem 2.2 (see (2.13).) Then by [7, Thm. 2.30], we have

dT M ♯
F,s[Q

♯

φ̃
, Tφ̃,N ](Ṫ ) =

(

|F | − 1
s − 1

)

λ1−s
F [φ̃]

|F |
∑

l=1

Q♯

φ̃

[

Ṫ [p[ũl]], p[ũl]
]

, (2.33)

for all compact and selfadjoint operators Ṫ in
(

w1,2(Ω)/R, Q♯

φ̃

)

, and for all s =

1, . . . , |F |. Then by (2.14), and by (2.33), we have

d|φ=φ̃ (ΛF,s) [ψ] =
{

d|φ=φ̃MF,|F |−s [Tφ,N ] [ψ]MF,|F |

[

Tφ̃,N

]

(2.34)

− MF,|F |−s

[

Tφ̃,N

]

d|φ=φ̃MF,|F | [Tφ,N ] [ψ]
}

λ
2|F |
F [φ̃]

=

[(

|F | − 1
|F | − s − 1

)

λ
s+1−2|F |
F [φ̃] −

(

|F |
s

)(

|F | − 1
|F | − 1

)

λ
s+1−2|F |
F [φ̃]

]

·λ
2|F |
F [φ̃]

|F |
∑

l=1

Q♯

φ̃

[{

d|φ=φ̃ [Tφ,N ] [ψ]
}

[p[ũl]] , p[ũl]
]

= −λs+1
F [φ̃]

(

|F | − 1
s − 1

) |F |
∑

l=1

Q♯

φ̃

[{

d|φ=φ̃ [Tφ,N ] [ψ]
}

[p[ũl]] , p[ũl]
]

.
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Then we can conclude by Lemma 2.4, and by the obvious equalities π[ṽl] = ṽl for
l = 1, . . . , |F |. Case |F | = 1 can be treated similarly. ¤

Concerning the statement of Lemma 2.4, we note that if φ̃(Ω) is of class

C1,1, then by standard elliptic regularity theory, we have ṽr ∈ W 2,2(φ̃(Ω)) for
r = 1, 2 (cf. e.g., Troianiello [16, Thm. 3.29, p. 195].) Moreover, by the Divergence
Theorem, the integral in (2.17) would equal

∫

∂φ̃(Ω)

(

Dṽ1Dṽt
2 − λF [φ̃]π[ṽ1]π[ṽ2]

) (

ψ ◦ φ̃(−1)
)

· νt dσ ,

where ν denotes the exterior normal to ∂
(

φ̃(Ω)
)

, and dσ denotes the (n − 1)-

dimensional area element of ∂
(

φ̃(Ω)
)

. A corresponding remark holds of course for

Theorem 2.5 and formula (2.32).

Furthermore, we note that if we assume that Ω is of class C1,1, and that
φ̃ ∈ AΩ has continuous partial derivatives in Ω satisfying a Lipschitz condition in
Ω, then φ̃(Ω) is of class C1,1 (cf. e.g., [6, Lem. 2.4].)
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