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8, I-35131, Padova, Italy

Francisco Pérez-Bernal
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A simple and yet powerful approach for modeling the structure of endohedrally confined diatomic molecules
is introduced. The theory, based on a u(4) ⊕ u(3) dynamical algebra, combines u(4), the vibron model dynamical
algebra, with a u(3) dynamical algebra that models a spherically symmetric three-dimensional potential. The first
algebra encompasses the internal rotovibration degrees of freedom of the molecule, while the second takes into
account the confined molecule center-of-mass degrees of freedom. A resulting subalgebra chain is connected to
the underlying physics and the model is applied to the prototypical case of H2 caged in a fullerene molecule. The
spectrum of the supramolecular complex H2@C60 is described with a few parameters, and predictions for not yet
detected levels are made. Our fits suggest that the quantum numbers of a few lines should be reassigned to obtain
better agreement with data.
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I. INTRODUCTION

Supramolecular species in which a guest atom or molecule
is inserted in the interior of a host molecule (usually fullerenes)
are known as endohedral compounds, and form systems that
are bound by the pure confinement rather than by intramolecu-
lar forces. The first endohedral compounds obtained consisted
of trapped metal atoms [1] followed by endofullerenes with
a trapped molecule [2]. These systems display a full gamut
of quantum effects, because the confinement of the molecule
results in the splitting of the translational degrees of freedom
of the incarcerated molecule center of mass and their coupling
with rotovibrational ones. A fundamental breakthrough that
has allowed the application of different spectroscopic tools to
molecular endofullerenes has been the achievement of high
reaction yields in their synthesis using the so-called molecular
surgery (see, e.g., Refs. [3,4] and references therein). Komatsu
and coworkers have presented the synthesis of the endohedral
species H2@C60, which is the subject of the present work [5].
Another impressive step forward in this area has been Murata’s
group achievement, using similar experimental techniques, of
the synthesis of a closed water endofullerene [6] and the recent
encapsulation of hydrogen fluoride inside C60 [7].

Significant experimental and theoretical research efforts
have been devoted to the elucidation of the spectral properties
of H2@C60 due to the remarkable quantum effects that link
rotovibrational and translational degrees of freedom, coming
into play once the diatomic molecule is trapped into the buck-
yball. In the case of incarcerated H2, the well-known existence
of two allotropes of the hydrogen molecule, para-H2 and
ortho-H2, make this compound a valuable tool for explorations
in spin chemistry [8]. These fascinating characteristics of the
supramolecular complex H2@C60 have stimulated remarkable
experimental efforts with different techniques [3,9], mainly
nuclear magnetic resonance (NMR) [5,8,10], infrared (IR)
[11–13], and inelastic neutron scattering (INS) [14–18]. In
particular, an INS spectroscopy selection rule of H2@C60

has been recently discovered [17,19,20]. The search for
an adequate description of the structure and the peculiar
properties of this endohedral species has provoked intense
theoretical efforts [19–24]. This system represents an almost
ideal testing ground for theories because it couples the simplest
diatomic molecule with an almost perfect spherical cage (the
icosahedral symmetry can be neglected for most practical
purposes). The neutral molecule retains its bound character
but, at the same time, it is affected by the presence of the
fullerene: its motion is confined and quantized due to the
interaction with the cage, a situation that can be fully explored
by powerful and simple symmetry-guided models.

Measurements of the IR spectrum of H2@C60 from low
temperatures up to room temperatures have been performed
[11–13]. Combining IR spectroscopy data and INS results,
the lowest portion of the endohedral compound spectrum has
been measured with sufficient detail to allow the experimental
underpinning of the differences, shifts, and splitting of the
levels with respect to the free H2 counterpart. The spectrum
of the confined H2 molecule has been interpreted in terms
of a very accurate, though computationally involved, five-
dimensional phenomenological model [21–24]. While these
five-dimensional calculations are accurate and can be used to
conveniently describe the observations and to make guesses
about still unobserved excited states, it is not completely
obvious what is the origin of the perturbations in the potential
energy terms. For example in [22] the authors use Lennard-
Jones potentials for each H-C pair in the complex, realizing that
the use of an angular momentum quantum number associated
with a harmonic motion of the molecule inside the cage is
indeed appropriate. This fact supports the convenience of a
computationally inexpensive symmetry-based approach like
the one we suggest.

We will describe our algebraic approach in Sec. II, discuss
the methodology and the fits to a set of experimental lines in
Sec. III, and draw conclusions in Sec. IV.
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LORENZO FORTUNATO AND FRANCISCO PÉREZ-BERNAL PHYSICAL REVIEW A 94, 032508 (2016)

II. ALGEBRAIC APPROACH

Stimulated by the success of the existing approach [11,12],
with the aim of obtaining a simple model that encompasses the
main physical ingredients for such an enticing system, we pro-
pose an algebraic theory for the quantum modes of a diatomic
molecule confined in an isotropic three-dimensional cage.
Symmetry considerations constitute the guiding principle that
inspires the treatment of the energy terms obtained from a
Hamiltonian operator that includes molecular rotovibrational
and center-of-mass modes, and the coupling of these two
subsystems. The rotations and vibrations of the diatomic
molecule are described within the vibron model [25–27],
which amounts to a u(4) Lie algebra arising from the bilinear
products of scalar s,s† (� = 0) and vector pμ,p†

μ (� = 1,μ =
±1,0) boson operators [25]. The fullerene cage is modeled
as a spherical three-dimensional well and can be dealt with a
u(3) Lie algebra, arising from a vector boson operator qμ,q†

μ

(� = 1,μ = ±1,0) [28]. Taking this into consideration we
invoke an algebraic model based on the direct sum Lie algebra
up(4) ⊕ uq(3) to describe the intrinsic modes of excitations
of the supramolecular complex H2@C60, where we use the
subindexes p and q to distinguish the two different sets of
degrees of freedom. Our symmetry-inspired scheme should
be desirable for at least the following peculiar features: (i)
it gives a simple framework that singles out what are the
linearly independent energy terms and their connection with
physical operators; (ii) it gives a natural explanation for the
interaction between translational and rotovibrational degrees
of freedom responsible for term energy splittings; (iii) it also
gives a natural explanation for the specific radial and angular

dependence ({R,�,�s} in the notation of Refs. [11,12]) of
the terms that have been found to contribute to the expansion
of the coupling potential function; (iv) it treats on an equal
footing para- and ortho-H2 states; (v) there is no need to find
separate sets of parameters for each vibrational band, a single
fit encompasses all vibrational states simultaneously; and (vi)
it is computationally inexpensive: the matrix elements of each
operator are known in closed form and the diagonalization
can be performed exactly and rapidly. In addition, it yields
precise predictions for higher lying modes that, although
unseen heretofore, might be investigated in the future.

A model that shares a similar algebraic structure, with a
dynamical algebra u(7) ⊃ u(3) ⊕ u(4), has been used in the
description of hadronic structure in terms of quark building
blocks [28,29]. In that model the u(7) algebra arises from
two Jacobi coordinate vectors that describe quarks inside a
baryon plus a scalar boson and it is used for the spatial part
of the description that must be supplemented by a fermionic
part containing the flavor, spin, and color degrees of freedom.
While the algebraic structure is very similar, clearly the physics
behind the model is completely different.

Our model provides a complete mathematical character-
ization of all possible interactions that comply with the
underlying symmetries and therefore naturally gives a hint
of the various physical mechanisms that might generate them.
We will confine the present discussion to identifying the most
important terms and return to the laborious task of a complete
classification in a longer paper [30].

Among the many possible subalgebra chains, we consider
the following dynamical symmetry:

up(4)
Np

⊕ uq(3)
Nq

⊃ sop

ω

(4) ⊕ uq(3) ⊃ sop

J

(3) ⊕ soq (3)
L

⊃ sopq(3)
�

⊃ sopq

M�

(2)
, (1)

where we have used the so(4) limit of the vibron model
[25–28] and where the second line gives the quantum numbers
associated with the Casimir operators of each algebra. With
the proviso that ω is related to the vibrational quantum number
v through v = 1

2 (Np − ω), the set (vJNqL�) corresponds to
the quantum numbers used so far in theoretical investigations.
The basis states can therefore be labeled, very similarly to
Refs. [9,11,12,14,15,21,22,31], as |NpvJ ; NqL; �〉.

The quantum numbers follow the well-known branching
rules [27,28]

ω = Np,Np − 2, . . . ,1 or 0,

J = 0,1, . . . ,ω,

L = Nq,Nq − 2, . . . ,1 or 0,

� = |J − L|,|J − L| + 1, . . . ,J + L.

M� = −�, − � + 1, . . . ,� − 1,�. (2)

The total Hamiltonian can be written as

Ĥendo = Ĥup(4) + Ĥuq (3) + Ĥcoupl, (3)

where the first term represents the vibron model Hamiltonian
for rotations and vibrations of a diatomic molecule [26], the
second is the quantized motion of the molecular center-of-mass

inside the three-dimensional spherically symmetric confining
potential, and the last term includes molecule-cage couplings.

The u(4) vibron model Hamiltonian can be modeled as

Ĥup(4) = Ĥso(4) + ĤDun, (4)

where the first term contains the two-body Casimir operators
of the so(4) dynamical symmetry and the second includes two
higher-order terms in a Dunham-like expansion [26,27] where
the first term represents a centrifugal correction and the second
a rotation-vibration coupling:

Ĥso(4) = E0 + β Ĉ2[sop(4)] + γ Ĉ2[sop(3)], (5)

ĤDun = γ2Ĉ2[sop(3)]2 + κ Ĉ2[sop(4)]Ĉ2[sop(3)]. (6)

The Casimir operators in Eqs. (5) and (6) are diagonal in the
chosen basis (1):

〈α|Ĉ2[sop(4)]|α〉 = ω(ω + 2),

〈α|Ĉ2[sop(3)]|α〉 = J (J + 1), (7)

〈α|Ĉ2[sop(4)]Ĉ2[sop(3)]|α〉 = ω(ω + 2)J (J + 1),
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where |α〉 = |NpvJ ; NqL; �〉.
The energy formula obtained for Ĥup(4) is

Eup(4) =E0 + β ω(ω + 2) + γ J (J + 1)

+ γ2[J (J + 1)]2 + κ [ω(ω + 2)J (J + 1)], (8)

where ω = Np,Np − 2, . . . ,1 or 0 or, alternatively, v =
0,1, . . . , 1

2 (Np − 1) or 1
2Np and J = 0,1, . . . ,ω. The param-

eters in Eq. (8) are free parameters that can be adjusted to
optimize the agreement with experimental data and can be put
in direct correspondence with those defined in the approach of
Refs. [11,12].

The center-of-mass degrees of freedom Hamiltonian, within
the uq(3) dynamical symmetry, is

Ĥuq (3) = a Ĉ1[uq(3)] + b Ĉ2[uq(3)] + c Ĉ2[soq(3)], (9)

where the first term is the number of q bosons (and would
be the only term if the confining potential were an isotropic
three-dimensional harmonic oscillator), the second term is an
anharmonic correction, and the third term is the H2 center-of-
mass centrifugal energy.

Again the Casimir operators are diagonal in the chosen
basis,

〈α|Ĉ1[uq(3)]|α〉 = Nq,

〈α|Ĉ2[uq(3)]|α〉 = N2
q , (10)

〈α|Ĉ2[soq(3)]|α〉 = L(L + 1),

where |α〉 = |NpvJ ; NqL; �〉. The free parameters are a, b,
and c and the spectrum associated with the center-of-mass

degrees of freedom can be written in this approach as

Euq (3) = a Nq + b N2
q + c L(L + 1), (11)

where Nq is the eigenvalue of the number of quanta operator
and L is the orbital angular momentum of the whole confined
particle (viz. the center of mass of the H2 molecule) inside the
fullerene cage.

A. Diatomic molecule and spherical cage coupling

The guest diatomic molecule and the cage interact through
a number of different physical mechanisms that can be traced
back to scalar operators built out of the elements of the different
algebras. Even at this level, the model is quite rich, therefore
one needs to select the most important operators guided by
some physical principle and intuition, rather than looking for
global fits that would entail too many parameters. We have
found that the relevant terms imply quadrupole-quadrupole
couplings.

The algebraic scheme entails two sets of quadrupole op-
erators, namely, Q̂p = [p† × p̃](2), the quadrupole operators
of up(4), and Q̂q = [q† × q̃](2), the quadrupole operators of
uq(3). The former describes the intrinsic (non-null if J �= 0)
quadrupole of the H2 molecule, while the latter can be
associated with the quadrupole deformation of the probability
amplitude of the whole molecule inside the spherical cage.
A scalar coupling can be built from these two operators as
[Q̂(2)

p × Q̂(2)
q ](0), which is the basis for the coupling term in the

Hamiltonian (3). In addition, following the spirit of a Dunham
expansion, further terms can be considered that lead us to
selecting the following coupling Hamiltonian:

Ĥcoupl = ϑpq

[
Q̂(2)

p × Q̂(2)
q

](0) + ϑpqw

{
Ĉ2[sop(4)]

[
Q̂(2)

p × Q̂(2)
q

](0) + [
Q̂(2)

p × Q̂(2)
q

](0)
Ĉ2[sop(4)]

} + vpqĈ1[uq(3)]Ĉ2[sop(4)].

(12)

The parameters ϑpq , ϑpqw, and vpq can be used to adjust the interaction strengths. The most important finding about the
[Q̂(2)

p × Q̂(2)
q ](0) quadrupole-quadrupole interaction is that it lifts the degeneracy of � �= 0 multiplets, giving the correct and

unusual ordering seen in experiments. For example, the triplet of states with J = 1, Nq = L = 2 has the ordering � = 2,3,1 that
cannot be due to a scalar coupling of the rotational and translational angular momentum. In fact, once J (the rotational angular
momentum) and L (the translational angular momentum) are set, a term of the form �J · �L always gives a splitting of the levels
| J − L |< � < J + L that strictly follows an increasing or decreasing ordering depending on the sign of the strength constant.

Following the appendix of Ref. [32] or Ref. [33], the matrix elements of the scalar coupling of the Q̂p and Q̂q quadrupole
operators are 〈

NpωJ ; NqL; �
∣∣[Q̂(2)

p × Q̂(2)
q

](0)∣∣Npω′J ′; N ′
qL

′; �′〉
= (−1)L+�+J ′√

5

{
J L �

L′ J ′ 2

}
〈NqL||Q̂q ||N ′

qL
′〉〈ωJ ||Q̂p||ω′J ′〉δ�,�′ . (13)

Once we separate the molecular and cage degrees of freedom, the reduced matrix elements of the molecular (Q̂p) and center-of-
mass (Q̂q) quadrupole degrees of freedom are [27]

〈NqL||Q̂q ||NqL〉 = (2Nq + 3)

√
L(L + 1)(2L + 1)

6(2L − 1)(2L + 3)
,

〈NqL + 2||Q̂q ||NqL〉 =
√

(Nq − L)(Nq + L + 3)(L + 1)(L + 2)

(2L + 3)
,

〈ω0||Q̂p||ω0〉 = 0,
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〈ωJ ||Q̂p||ωJ 〉 = (Np + 2)

(
1 + J (J + 1)

ω(ω + 2)

)√
J (J + 1)(2J + 1)

6(2J − 1)(2J + 3)
,

〈ωJ + 2||Q̂p||ωJ 〉 = (Np + 2)

√
(ω − J − 1)2(ω + J + 2)2(J + 1)(J + 2)

4ω2(ω + 2)2(2J + 3)
,

〈ω + 2J − 2||Q̂p||ωJ 〉 =
√

(Np − ω)(Np + ω + 4)(ω − J + 1)4J (J − 1)

16(ω + 1)3(ω + 2)(2J − 1)
,

〈ω + 2J ||Q̂p||ωJ 〉 =
√

(Np − ω)(Np + ω + 4)(ω − J + 1)2(ω + J + 2)2J (J + 1)(2J + 1)

24(ω + 1)3(ω + 2)(2J − 1)(2J + 3)
,

〈ω + 2J + 2||Q̂p||ωJ 〉 =
√

(Np − ω)(Np + ω + 4)(ω + J + 2)4(J + 1)(J + 2)

16(ω + 1)3(ω + 2)(2J + 3)
,

where we introduce the Pochhammer symbol (a)b = a(a +
1) · · · (a + b − 1).

The matrix elements for the other two operators in
the coupling term (12), {Ĉ2[sop(4)][Q̂(2)

p × Q̂(2)
q ](0) + [Q̂(2)

p ×
Q̂(2)

q ](0)Ĉ2[sop(4)]} and Ĉ1[uq(3)]Ĉ2[sop(4)] are trivially com-
puted using Eqs. (7), (10), and (13).

Another relevant consideration with regard to the
quadrupole-quadrupole coupling is the following: if one de-
fines a total quadrupole operator as the sum of the two effects,
Q̂T = Q̂p + Q̂q , and takes the ratio of the expectation values
of this in the first two excited states, namely, |A〉 = |00111〉
and |B〉 = |01001〉, the resulting expression, 〈Q〉A/〈Q〉B =
(Np + 2 + 2/Np)/3, depends only on Np, the label of the
totally symmetric representation of up(4) that sets the available
Hilbert space for the rotovibrational degrees of freedom, thus
giving an alternative to the usual methods of assessing this
parameter [26].

III. EXPERIMENTAL DATA AND FIT RESULTS

We have extracted from the literature a total of 71 line
positions, compiling a database that includes 55 IR transitions
[12] and 16 INS transitions [15]. In these references, lines have
been assigned with initial and final quantum numbers on the
basis of experimental evidence and theoretical models.

The first step in the fitting procedure has been the
assessment of the parameter Np. As experimental data for
the endohedrally confined species only involve v = 0,1 H2

vibrational states, there is not enough information to estimate
the Np parameter for the hydrogen molecule. This parameter is
usually fixed considering the ratio between first- and second-
order parameters in the Dunham expansion for the molecule
under study [26]. Therefore, we devised an alternative way to
assess this parameter, using the rotovibrational spectroscopy
of the free H2 molecule making use of free H2 vibrational data
and explored the Np dependence of the fit to the experimental
energy terms beneath 10 000 cm−1 with a so(4) dynamical
symmetry Hamiltonian

Ĥso(4) =β Ĉ2[so(4)] + γ Ĉ2[so(3)] (14)

+ γ2Ĉ2[so(3)]2 + κ Ĉ2[so(3)]Ĉ2[so(4)].

The reason for setting an energy threshold is that the inclusion
of highly excited energy levels, close to the molecular dissocia-
tion limit, implies the necessity of including continuum effects
and resonances that are out of the scope of the vibron model,
based on a u(4) compact Lie algebra [25,34,35]. The resulting
root-mean-square (rms) deviation for a fit to a total of 31
rotovibrational experimental term energies from Refs. [36–38]
is depicted as a function of Np in Fig. 1, where it is clear that the
best fit is obtained for Np = 34 and the resulting parameters
can be found in Table I.

With the value of Np set to 34, we can return to the caged
system. A PYTHON code has been developed to calculate the
eigenvalues and eigenstates of the total Hamiltonian Ĥendo

that encompasses the molecular rotovibrational degrees of
freedom [Eq. (4)], the incarcerated center-of mass degrees of
freedom [Eq. (9)], and the coupling between them in Eq. (12),
and to compute the free parameter values that minimize the
difference between calculated results and experimental line
positions from Refs. [12,15]. The code makes use of SYMPY

[39] and LMFIT [40] packages and is available upon request.

FIG. 1. Root-mean-square deviation for fits to free H2 rotovi-
brational experimental term energies under a threshold value of
10 000 cm−1 with Hamiltonian (14) as a function of the number of
vibrons parameter Np .
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TABLE I. Parameters of Hamiltonian (14) optimized to repro-
duce experimental term energies of the free H2 molecule under
10 000 cm−1 with Np = 34 and rms of the fit. Parameters are given
in cm−1 units. The fit to 31 experimental energy levels has an rms =
4.0 cm−1.

β γ γ2 κ

1041.54(6) 32.80(7) −0.036215(7) 0.72423(20)

In a preliminary set of calculations we have made several
fits to the full data set and to different subsets, obtaining
a good overall description. We have found that, leaving
aside a constant energy shift, a minimal Hamiltonian that
complies with all symmetry requirements and provides results
that agree with experimental data has seven parameters:
{β,γ,κ,a,b,c,ϑpq}. The first three from Eqs. (5) and (6), the
second three from Eq. (9), plus the low-order quadrupole
coupling in Eq. (12). The fits with this set are denoted as F0.

A finer fit, denoted as F1, can be obtained with three
more parameters, up to a total of ten free parameters. The
three added parameters are γ2 from Eq. (6), and the coupling
parameters ϑpqw and vpq of Eq. (12) associated with operators
{Ĉ2[sop(4)][Q̂(2)

p × Q̂(2)
q ](0) + [Q̂(2)

p × Q̂(2)
q ](0)Ĉ2[sop(4)]} and

Ĉ1[uq(3)]Ĉ2[sop(4)], respectively.
Preliminary calculations gave a satisfactory agreement

with the experimental line positions, though some levels
had a residual value much larger than expected from the
overall fit agreement. This suggested that we consider a
tentative reassignment of a set of five transitions showing
unusually large deviations, as indicated in Table II. With this
reassignment the quality of the fit has largely improved. The
convenience of this reassignment in the framework of this
model can be seen in Fig. 2 where the residuals for fits F0 and
F1 are plotted as a function of the line position energy. The
outcome for the original level assignment is shown in the upper
panels, while the residuals with the new level assignment are
depicted in the lower panels. The achieved improvement in
the fit is remarkable though a deeper analysis is on the way to
confirm these assignments and the findings will be published in
a forthcoming paper [30]. In the following we refer to the set of
experimental states with the five mentioned reassignments.

The final F0 and F1 parameters, with rms = 3.1 and
1.7 cm−1, respectively, are given in Table III. The full list
of residuals (experimental value minus calculated value) for

TABLE II. Reassigned experimental transitions. Experimental
states are given with the quantum numbers vJNqL�. Line positions
are given in cm−1 units.

Old assignment New assignment

Initial Final Initial Final Expt. Ref.

00200 01111 00200 01110 −85.5 [15]
01221 11311 01334 11443 4294.8 [12]
00200 10311 01334 11445 4294.8 [12]
01334 11444 01221 11311 4300.0 [12]
01334 11445 01332 12312 4316.4 [12]

FIG. 2. Residuals of the F0 and F1 fits (see text) with the original
assignments (upper panels) and including the changes suggested in
Table II (lower panels).

both fits, plotted in Fig. 2, are given in Table IV together
with the experimental line positions and initial and final state
assignments.

The quality and robustness of our calculations allow us to
estimate the energies of levels not yet accessed experimentally.
We have included in Fig. 3 the calculated v = 0,1, and 2 levels,
the latter not yet measured. One can notice that with growing

TABLE III. F0 (minimal) and F1 (finer) fit parameter values. In
both cases Np = 34. Hamiltonian parameters and rms are expressed
in cm−1 units.

Ĥup (4) β γ κ γ2

F0 −1083.23(18) 58.09(17) 0.88(4)
F1 −1081.72(15) 58.28(20) 0.810(25) −0.032(15)
Ĥuq (3) a b c

F0 178.3(8) 9.6(3) −3.26(15)
F1 179.0(4) 8.46(17) −3.18(8)
ĤCoupl ϑpq ϑpqw vpq

F0 0.94(7)
F1 0.86(5) −0.014(7) −1.02(8)
rms F0 3.1 F1 1.7
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TABLE IV. Residuals for fits F0 and F1. Initial and final states are denoted by the quantum numbers of basis (1), vJNqL�. Experimental
states are extracted from Refs. [12,15] and reassigned transitions (see Table I) are highlighted in red. Both experimental line positions and
residual values are expressed in cm−1.

Initial Final Expt. Calc. F0 Calc. F1 Initial Final Expt. Calc. F0 Calc. F1

0 1 0 0 1 0 0 0 0 0 −118.6 −2.42 −2.16 0 1 0 0 1 1 1 1 1 1 4244.4 −2.76 −0.96
0 1 1 1 1 0 0 1 1 1 −113.7 −3.00 −2.27 0 2 1 1 2 1 2 2 2 3 4250.7 −0.65 −1.12
0 0 2 0 0 0 1 1 1 2 −95.7 −0.06 −3.00 0 1 0 0 1 1 1 1 1 2 4250.7 −3.14 −1.48
0 0 2 0 0 0 1 1 1 0 −85.5 −0.17 −2.19 0 0 0 0 0 1 0 1 1 1 4255.6 −3.649 −1.45
0 0 2 2 2 0 1 1 1 1 −82.7 0.44 −2.67 0 1 1 1 2 1 1 2 2 2 4255.6 −0.84 −0.82
0 0 2 2 2 0 1 1 1 2 −76.9 −0.44 −2.97 0 1 0 0 1 1 1 1 1 0 4261.3 −2.85 −1.43
0 2 0 0 2 0 1 1 1 1 −57.7 −1.09 −1.46 0 2 1 1 1 1 2 2 2 0 4261.3 2.77 0.83
0 2 0 0 2 0 1 1 1 2 −51.6 −1.66 −1.47 0 1 1 1 2 1 1 2 2 3 4267.1 0.64 0.43
0 1 0 0 1 0 0 1 1 1 65.2 0.15 0.73 0 1 1 1 1 1 1 2 2 1 4272.1 −1.05 −0.46
0 0 0 0 0 0 1 0 0 1 118.5 2.32 2.06 0 0 1 1 1 1 0 2 2 2 4272.1 0.25 0.72
0 1 0 0 1 0 1 1 1 1 178.8 3.05 2.91 0 1 2 2 2 1 1 3 3 3 4277.1 1.37 0.46
0 1 0 0 1 0 1 1 1 2 184.5 2.07 2.51 0 1 2 2 3 1 1 3 3 4 4281.2 2.12 0.05
0 1 0 0 1 0 1 1 1 0 196.0 3.26 4.61 0 0 2 2 2 1 0 3 3 3 4286.5 2.06 0.81
0 1 0 0 1 0 2 0 0 2 235.5 3.13 3.38 0 1 1 1 2 1 1 2 0 1 4290.2 0.62 0.55
0 0 0 0 0 0 1 1 1 0 304.9 −4.02 −2.92 0 0 1 1 1 1 0 2 0 0 4290.2 −0.79 0.14
0 1 0 0 1 0 2 1 1 1 417.8 −1.84 −0.71 0 1 3 3 4 1 1 4 4 3 4294.8 2.82 −0.93
0 1 2 0 1 1 1 1 1 2 3855.6 2.37 0.01 0 1 3 3 4 1 1 4 4 5 4294.8 3.10 −0.83
0 0 2 0 0 1 0 1 1 1 3866.0 1.0 0.08 0 1 2 2 1 1 1 3 1 1 4300.0 1.91 1.19
0 1 2 0 1 1 1 1 1 0 3866.0 2.45 −0.14 0 1 2 2 2 1 1 3 1 1 4306.7 −1.424 −1.570
0 2 1 1 3 1 2 0 0 2 3872.2 −3.04 0.59 0 1 3 3 2 1 2 3 1 2 4316.4 4.45 −1.90
0 1 2 2 1 1 1 1 1 1 3872.2 2.53 1.68 0 1 2 0 1 1 3 1 1 2 4407.4 2.63 0.11
0 1 3 3 3 1 1 2 2 2 3876.0 8.92 3.02 0 1 2 2 3 1 3 1 1 4 4426.8 1.77 0.39
0 0 3 3 3 1 0 2 2 2 3878.6 7.04 0.67 0 1 1 1 2 1 3 0 0 3 4431.9 −4.94 −0.30
0 1 2 2 3 1 1 1 1 2 3878.6 2.25 0.96 0 0 0 0 0 1 2 1 1 1 4592.0 −2.02 −1.53
0 0 2 2 2 1 0 1 1 1 3884.9 0.72 0.20 0 0 1 1 1 1 2 2 2 1 4608.9 2.25 1.02
0 1 1 1 2 1 1 0 0 1 3884.9 −4.08 0.62 0 1 0 0 1 1 3 0 0 3 4612.5 −6.77 −1.69
0 1 1 1 1 1 1 0 0 1 3891.3 −4.36 0.92 0 0 1 1 1 1 2 2 0 2 4624.3 0.76 −0.06
0 0 1 1 1 1 0 0 0 0 3891.3 −5.49 −0.16 0 0 2 2 2 1 2 3 3 1 4630.0 4.24 1.14
0 1 0 0 1 1 1 0 0 1 4065.4 −6.01 −0.86 0 1 0 0 1 1 3 1 1 2 4802.6 −2.77 −1.28
0 0 0 0 0 1 0 0 0 0 4071.4 −6.62 −0.96 0 1 1 1 2 1 3 2 2 2 4814.8 0.13 −0.17
0 3 0 0 3 1 3 1 1 4 4223.3 1.70 0.76 0 1 1 1 1 1 3 2 2 2 4821.6 0.26 0.53
0 0 1 1 1 1 2 0 0 2 4223.3 −2.20 1.57 0 1 1 1 1 1 3 2 2 1 4829.7 1.29 1.40
0 3 0 0 3 1 3 1 1 2 4226.2 1.74 0.73 0 1 1 1 2 1 3 2 0 3 4836.2 1.68 1.74
0 2 0 0 2 1 2 1 1 2 4233.1 −0.82 −0.04 0 1 2 2 2 1 3 3 3 1 4846.4 1.83 0.35
0 2 0 0 2 1 2 1 1 3 4239.8 −1.34 −0.72 0 1 2 2 1 1 3 3 1 2 4864.5 −0.96 −2.24
0 2 0 0 2 1 2 1 1 1 4244.4 −1.07 −0.56

v, the higher the J the bigger the negative energy shift of cor-
responding states. An extensive table with all calculated levels
for v = 0,1,2 vibrational quanta with Nq � 4 and � � 5 can
be found in the Supplemental Material [41]. In addition to the
term energy, expressed in cm−1 units, we also indicate in the
table the probability of the largest component (squared coeffi-
cient) of the corresponding eigenstate expressed in basis (1).

IV. SUMMARY AND CONCLUSIONS

In summary, we have introduced a u(4) ⊕ u(3) algebraic
scheme that combines the vibron model description of a
diatomic molecule rotovibrational structure with an algebraic
description of the motion of the molecule center of mass
inside an isotropic cage. This model is mathematically rich
and has a large number of possible terms that can be attributed
to different physical mechanisms. We have presented here a

discussion of a few selected physical mechanisms that, in spite
of the model’s simplicity, give insight into the spectroscopic
properties of diatomic endohedrally confined molecules. We
have then applied the symmetry-guided scheme to a database
of experimental lines, finding a very good overall agreement
to the experimental line positions and finding that the fits
improve considerably upon reassigning the quantum numbers
of a small subset of energy levels.

The next step is the inclusion of transition intensities in
the model and the enrichment of the approach, which could
take place in one of two possible venues, either by defining
an embedding upq(7) ⊃ up(4) ⊕ uq(3) dynamical algebra or
by a dynamical algebra up(4) ⊕ uq(4) with results that will
be published soon [30]. Another venue for future research is
the inclusion in the algebraic model of the cage icosahedral
symmetry effect on the spectrum, which has recently been
investigated [18,20].
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FIG. 3. Theoretical rotovibrational spectrum of H2@C60. The three cuts show the energy levels in a 700 cm−1 wide energy window just
above the three lowest vibrational excitations v = 0,1, and 2. States are further divided into para (left) and ortho (right) states and are labeled
by J on the horizontal axis and NqL� on each state. These quantum numbers are repeated with the same order in each panel, except where
noted.
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Coord. Chem. Rev. 255, 938 (2011).

[10] M. Carravetta, A. Danquigny, S. Mamone, F. Cuda, O. G. Johan-
nessen, I. Heinmaa, K. Panesar, R. Stern, M. C. Grossel, A. J.
Horsewill, A. Samoson, M. Murata, Y. Murata, K. Komatsu, and
M. H. Levitt, Phys. Chem. Chem. Phys. 9, 4879 (2007).
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Rev. B 83, 241403(R) (2011).
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